/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "common/debug.h" #include "common/debug-channels.h" #include "sci/sci.h" #include "sci/console.h" #include "sci/resource.h" #include "sci/engine/features.h" #include "sci/engine/state.h" #include "sci/engine/kernel.h" #include "sci/engine/object.h" #include "sci/engine/script.h" #include "sci/engine/seg_manager.h" #include "sci/engine/selector.h" // for SELECTOR #include "sci/engine/gc.h" #include "sci/engine/workarounds.h" namespace Sci { const reg_t NULL_REG = {0, 0}; const reg_t SIGNAL_REG = {0, SIGNAL_OFFSET}; const reg_t TRUE_REG = {0, 1}; // Enable the define below to have the VM abort on cases where a conditional // statement is followed by an unconditional jump (which will most likely lead // to an infinite loop). Aids in detecting script bugs such as #3040722. //#define ABORT_ON_INFINITE_LOOP // validation functionality static reg_t &validate_property(EngineState *s, Object *obj, int index) { // A static dummy reg_t, which we return if obj or index turn out to be // invalid. Note that we cannot just return NULL_REG, because client code // may modify the value of the returned reg_t. static reg_t dummyReg = NULL_REG; // If this occurs, it means there's probably something wrong with the garbage // collector, so don't hide it with fake return values if (!obj) error("validate_property: Sending to disposed object"); if (getSciVersion() == SCI_VERSION_3) index = obj->locateVarSelector(s->_segMan, index); else index >>= 1; if (index < 0 || (uint)index >= obj->getVarCount()) { // This is same way sierra does it and there are some games, that contain such scripts like // iceman script 998 (fred::canBeHere, executed right at the start) debugC(kDebugLevelVM, "[VM] Invalid property #%d (out of [0..%d]) requested from object %04x:%04x (%s)", index, obj->getVarCount(), PRINT_REG(obj->getPos()), s->_segMan->getObjectName(obj->getPos())); return dummyReg; } return obj->getVariableRef(index); } static StackPtr validate_stack_addr(EngineState *s, StackPtr sp) { if (sp >= s->stack_base && sp < s->stack_top) return sp; else error("[VM] Stack index %d out of valid range [%d..%d]", (int)(sp - s->stack_base), 0, (int)(s->stack_top - s->stack_base - 1)); } static bool validate_variable(reg_t *r, reg_t *stack_base, int type, int max, int index) { const char *names[4] = {"global", "local", "temp", "param"}; if (index < 0 || index >= max) { Common::String txt = Common::String::format( "[VM] Attempt to use invalid %s variable %04x ", names[type], index); if (max == 0) txt += "(variable type invalid)"; else txt += Common::String::format("(out of range [%d..%d])", 0, max - 1); if (type == VAR_PARAM || type == VAR_TEMP) { int total_offset = r - stack_base; if (total_offset < 0 || total_offset >= VM_STACK_SIZE) { // Fatal, as the game is trying to do an OOB access error("%s. [VM] Access would be outside even of the stack (%d); access denied", txt.c_str(), total_offset); return false; } else { debugC(kDebugLevelVM, "%s", txt.c_str()); debugC(kDebugLevelVM, "[VM] Access within stack boundaries; access granted."); return true; } } return false; } return true; } #ifndef REDUCE_MEMORY_USAGE extern const char *opcodeNames[]; // from scriptdebug.cpp #endif static reg_t read_var(EngineState *s, int type, int index) { if (validate_variable(s->variables[type], s->stack_base, type, s->variablesMax[type], index)) { if (s->variables[type][index].segment == 0xffff) { switch (type) { case VAR_TEMP: { // Uninitialized read on a temp // We need to find correct replacements for each situation manually SciTrackOriginReply originReply; SciWorkaroundSolution solution = trackOriginAndFindWorkaround(index, uninitializedReadWorkarounds, &originReply); if (solution.type == WORKAROUND_NONE) { #ifdef RELEASE_BUILD // If we are running an official ScummVM release -> fake 0 in unknown cases warning("Uninitialized read for temp %d from method %s::%s (room %d, script %d, localCall %x)", index, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset); s->variables[type][index] = NULL_REG; break; #else error("Uninitialized read for temp %d from method %s::%s (room %d, script %d, localCall %x)", index, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset); #endif } assert(solution.type == WORKAROUND_FAKE); s->variables[type][index] = make_reg(0, solution.value); break; } case VAR_PARAM: // Out-of-bounds read for a parameter that goes onto stack and hits an uninitialized temp // We return 0 currently in that case debugC(kDebugLevelVM, "[VM] Read for a parameter goes out-of-bounds, onto the stack and gets uninitialized temp"); return NULL_REG; default: break; } } return s->variables[type][index]; } else return s->r_acc; } static void write_var(EngineState *s, int type, int index, reg_t value) { if (validate_variable(s->variables[type], s->stack_base, type, s->variablesMax[type], index)) { // WORKAROUND: This code is needed to work around a probable script bug, or a // limitation of the original SCI engine, which can be observed in LSL5. // // In some games, ego walks via the "Grooper" object, in particular its "stopGroop" // child. In LSL5, during the game, ego is swapped from Larry to Patti. When this // happens in the original interpreter, the new actor is loaded in the same memory // location as the old one, therefore the client variable in the stopGroop object // points to the new actor. This is probably why the reference of the stopGroop // object is never updated (which is why I mentioned that this is either a script // bug or some kind of limitation). // // In our implementation, each new object is loaded in a different memory location, // and we can't overwrite the old one. This means that in our implementation, // whenever ego is changed, we need to update the "client" variable of the // stopGroop object, which points to ego, to the new ego object. If this is not // done, ego's movement will not be updated properly, so the result is // unpredictable (for example in LSL5, Patti spins around instead of walking). if (index == 0 && type == VAR_GLOBAL && getSciVersion() > SCI_VERSION_0_EARLY) { // global 0 is ego reg_t stopGroopPos = s->_segMan->findObjectByName("stopGroop"); if (!stopGroopPos.isNull()) { // does the game have a stopGroop object? // Find the "client" member variable of the stopGroop object, and update it ObjVarRef varp; if (lookupSelector(s->_segMan, stopGroopPos, SELECTOR(client), &varp, NULL) == kSelectorVariable) { reg_t *clientVar = varp.getPointer(s->_segMan); *clientVar = value; } } } // If we are writing an uninitialized value into a temp, we remove the uninitialized segment // this happens at least in sq1/room 44 (slot-machine), because a send is missing parameters, then // those parameters are taken from uninitialized stack and afterwards they are copied back into temps // if we don't remove the segment, we would get false-positive uninitialized reads later if (type == VAR_TEMP && value.segment == 0xffff) value.segment = 0; s->variables[type][index] = value; // If the game is trying to change its speech/subtitle settings, apply the ScummVM audio // options first, if they haven't been applied yet if (type == VAR_GLOBAL && index == 90 && !g_sci->getEngineState()->_syncedAudioOptions) { g_sci->syncIngameAudioOptions(); g_sci->getEngineState()->_syncedAudioOptions = true; } } } // Operating on the stack // 16 bit: #define PUSH(v) PUSH32(make_reg(0, v)) // 32 bit: #define PUSH32(a) (*(validate_stack_addr(s, (s->xs->sp)++)) = (a)) #define POP32() (*(validate_stack_addr(s, --(s->xs->sp)))) ExecStack *execute_method(EngineState *s, uint16 script, uint16 pubfunct, StackPtr sp, reg_t calling_obj, uint16 argc, StackPtr argp) { int seg = s->_segMan->getScriptSegment(script); Script *scr = s->_segMan->getScriptIfLoaded(seg); if (!scr || scr->isMarkedAsDeleted()) { // Script not present yet? seg = s->_segMan->instantiateScript(script); scr = s->_segMan->getScript(seg); } int temp = scr->validateExportFunc(pubfunct, false); if (getSciVersion() == SCI_VERSION_3) temp += scr->getCodeBlockOffset(); if (!temp) { #ifdef ENABLE_SCI32 if (g_sci->getGameId() == GID_TORIN && script == 64036) { // Script 64036 in Torin's Passage is empty and contains an invalid // (empty) export } else #endif error("Request for invalid exported function 0x%x of script %d", pubfunct, script); return NULL; } // Check if a breakpoint is set on this method g_sci->checkExportBreakpoint(script, pubfunct); ExecStack xstack(calling_obj, calling_obj, sp, argc, argp, seg, make_reg(seg, temp), -1, pubfunct, -1, s->_executionStack.size() - 1, EXEC_STACK_TYPE_CALL); s->_executionStack.push_back(xstack); return &(s->_executionStack.back()); } static void _exec_varselectors(EngineState *s) { // Executes all varselector read/write ops on the TOS while (!s->_executionStack.empty() && s->_executionStack.back().type == EXEC_STACK_TYPE_VARSELECTOR) { ExecStack &xs = s->_executionStack.back(); reg_t *var = xs.getVarPointer(s->_segMan); if (!var) { error("Invalid varselector exec stack entry"); } else { // varselector access? if (xs.argc) { // write? *var = xs.variables_argp[1]; } else // No, read s->r_acc = *var; } s->_executionStack.pop_back(); } } // from scriptdebug.cpp extern void debugSelectorCall(reg_t send_obj, Selector selector, int argc, StackPtr argp, ObjVarRef &varp, reg_t funcp, SegManager *segMan, SelectorType selectorType); ExecStack *send_selector(EngineState *s, reg_t send_obj, reg_t work_obj, StackPtr sp, int framesize, StackPtr argp) { // send_obj and work_obj are equal for anything but 'super' // Returns a pointer to the TOS exec_stack element assert(s); reg_t funcp; Selector selector; int argc; int origin = s->_executionStack.size() - 1; // Origin: Used for debugging int activeBreakpointTypes = g_sci->_debugState._activeBreakpointTypes; ObjVarRef varp; Common::List::iterator prevElementIterator = s->_executionStack.end(); while (framesize > 0) { selector = argp->requireUint16(); argp++; argc = argp->requireUint16(); if (argc > 0x800) // More arguments than the stack could possibly accomodate for error("send_selector(): More than 0x800 arguments to function call"); SelectorType selectorType = lookupSelector(s->_segMan, send_obj, selector, &varp, &funcp); if (selectorType == kSelectorNone) error("Send to invalid selector 0x%x of object at %04x:%04x", 0xffff & selector, PRINT_REG(send_obj)); ExecStackType stackType = EXEC_STACK_TYPE_VARSELECTOR; StackPtr curSP = NULL; reg_t curFP = NULL_REG; if (selectorType == kSelectorMethod) { stackType = EXEC_STACK_TYPE_CALL; curSP = sp; curFP = funcp; sp = CALL_SP_CARRY; // Destroy sp, as it will be carried over } if (activeBreakpointTypes || DebugMan.isDebugChannelEnabled(kDebugLevelScripts)) debugSelectorCall(send_obj, selector, argc, argp, varp, funcp, s->_segMan, selectorType); ExecStack xstack(work_obj, send_obj, curSP, argc, argp, 0xFFFF, curFP, selector, -1, -1, origin, stackType); if (selectorType == kSelectorVariable) xstack.addr.varp = varp; // The new stack entries should be put on the stack in reverse order // so that the first one is executed first s->_executionStack.insert(prevElementIterator, xstack); // Decrement the stack end pointer so that it points to our recently // added element, so that the next insert() places it before this one. --prevElementIterator; framesize -= (2 + argc); argp += argc + 1; } // while (framesize > 0) _exec_varselectors(s); return s->_executionStack.empty() ? NULL : &(s->_executionStack.back()); } static void addKernelCallToExecStack(EngineState *s, int kernelCallNr, int argc, reg_t *argv) { // Add stack frame to indicate we're executing a callk. // This is useful in debugger backtraces if this // kernel function calls a script itself. ExecStack xstack(NULL_REG, NULL_REG, NULL, argc, argv - 1, 0xFFFF, NULL_REG, kernelCallNr, -1, -1, s->_executionStack.size() - 1, EXEC_STACK_TYPE_KERNEL); s->_executionStack.push_back(xstack); } // from scriptdebug.cpp extern void logKernelCall(const KernelFunction *kernelCall, const KernelSubFunction *kernelSubCall, EngineState *s, int argc, reg_t *argv, reg_t result); static void callKernelFunc(EngineState *s, int kernelCallNr, int argc) { Kernel *kernel = g_sci->getKernel(); if (kernelCallNr >= (int)kernel->_kernelFuncs.size()) error("Invalid kernel function 0x%x requested", kernelCallNr); const KernelFunction &kernelCall = kernel->_kernelFuncs[kernelCallNr]; reg_t *argv = s->xs->sp + 1; if (kernelCall.signature && !kernel->signatureMatch(kernelCall.signature, argc, argv)) { // signature mismatch, check if a workaround is available SciTrackOriginReply originReply; SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelCall.workarounds, &originReply); switch (solution.type) { case WORKAROUND_NONE: kernel->signatureDebug(kernelCall.signature, argc, argv); error("[VM] k%s[%x]: signature mismatch via method %s::%s (room %d, script %d, localCall 0x%x)", kernelCall.name, kernelCallNr, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset); break; case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone return; case WORKAROUND_STILLCALL: // call kernel anyway break; case WORKAROUND_FAKE: // don't do kernel call, fake acc s->r_acc = make_reg(0, solution.value); return; default: error("unknown workaround type"); } } // Call kernel function if (!kernelCall.subFunctionCount) { addKernelCallToExecStack(s, kernelCallNr, argc, argv); s->r_acc = kernelCall.function(s, argc, argv); if (kernelCall.debugLogging) logKernelCall(&kernelCall, NULL, s, argc, argv, s->r_acc); if (kernelCall.debugBreakpoint) { debugN("Break on k%s\n", kernelCall.name); g_sci->_debugState.debugging = true; g_sci->_debugState.breakpointWasHit = true; } } else { // Sub-functions available, check signature and call that one directly if (argc < 1) error("[VM] k%s[%x]: no subfunction ID parameter given", kernelCall.name, kernelCallNr); if (argv[0].isPointer()) error("[VM] k%s[%x]: given subfunction ID is actually a pointer", kernelCall.name, kernelCallNr); const uint16 subId = argv[0].toUint16(); // Skip over subfunction-id argc--; argv++; if (subId >= kernelCall.subFunctionCount) error("[VM] k%s: subfunction ID %d requested, but not available", kernelCall.name, subId); const KernelSubFunction &kernelSubCall = kernelCall.subFunctions[subId]; if (kernelSubCall.signature && !kernel->signatureMatch(kernelSubCall.signature, argc, argv)) { // Signature mismatch SciTrackOriginReply originReply; SciWorkaroundSolution solution = trackOriginAndFindWorkaround(0, kernelSubCall.workarounds, &originReply); switch (solution.type) { case WORKAROUND_NONE: { kernel->signatureDebug(kernelSubCall.signature, argc, argv); int callNameLen = strlen(kernelCall.name); if (strncmp(kernelCall.name, kernelSubCall.name, callNameLen) == 0) { const char *subCallName = kernelSubCall.name + callNameLen; error("[VM] k%s(%s): signature mismatch via method %s::%s (room %d, script %d, localCall %x)", kernelCall.name, subCallName, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset); } error("[VM] k%s: signature mismatch via method %s::%s (room %d, script %d, localCall %x)", kernelSubCall.name, originReply.objectName.c_str(), originReply.methodName.c_str(), s->currentRoomNumber(), originReply.scriptNr, originReply.localCallOffset); break; } case WORKAROUND_IGNORE: // don't do kernel call, leave acc alone return; case WORKAROUND_STILLCALL: // call kernel anyway break; case WORKAROUND_FAKE: // don't do kernel call, fake acc s->r_acc = make_reg(0, solution.value); return; default: error("unknown workaround type"); } } if (!kernelSubCall.function) error("[VM] k%s: subfunction ID %d requested, but not available", kernelCall.name, subId); addKernelCallToExecStack(s, kernelCallNr, argc, argv); s->r_acc = kernelSubCall.function(s, argc, argv); if (kernelSubCall.debugLogging) logKernelCall(&kernelCall, &kernelSubCall, s, argc, argv, s->r_acc); if (kernelSubCall.debugBreakpoint) { debugN("Break on k%s\n", kernelSubCall.name); g_sci->_debugState.debugging = true; g_sci->_debugState.breakpointWasHit = true; } } // Remove callk stack frame again, if there's still an execution stack if (s->_executionStack.begin() != s->_executionStack.end()) s->_executionStack.pop_back(); } int readPMachineInstruction(const byte *src, byte &extOpcode, int16 opparams[4]) { uint offset = 0; extOpcode = src[offset++]; // Get "extended" opcode (lower bit has special meaning) const byte opcode = extOpcode >> 1; // get the actual opcode memset(opparams, 0, 4*sizeof(int16)); for (int i = 0; g_opcode_formats[opcode][i]; ++i) { //debugN("Opcode: 0x%x, Opnumber: 0x%x, temp: %d\n", opcode, opcode, temp); assert(i < 3); switch (g_opcode_formats[opcode][i]) { case Script_Byte: opparams[i] = src[offset++]; break; case Script_SByte: opparams[i] = (int8)src[offset++]; break; case Script_Word: opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; break; case Script_SWord: opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; break; case Script_Variable: case Script_Property: case Script_Local: case Script_Temp: case Script_Global: case Script_Param: case Script_Offset: if (extOpcode & 1) { opparams[i] = src[offset++]; } else { opparams[i] = READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; } break; case Script_SVariable: case Script_SRelative: if (extOpcode & 1) { opparams[i] = (int8)src[offset++]; } else { opparams[i] = (int16)READ_SCI11ENDIAN_UINT16(src + offset); offset += 2; } break; case Script_None: case Script_End: break; case Script_Invalid: default: error("opcode %02x: Invalid", extOpcode); } } // Special handling of the op_line opcode if (opcode == op_pushSelf) { // Compensate for a bug in non-Sierra compilers, which seem to generate // pushSelf instructions with the low bit set. This makes the following // heuristic fail and leads to endless loops and crashes. Our // interpretation of this seems correct, as other SCI tools, like for // example SCI Viewer, have issues with these scripts (e.g. script 999 // in Circus Quest). Fixes bug #3038686. if (!(extOpcode & 1) || g_sci->getGameId() == GID_FANMADE) { // op_pushSelf: no adjustment necessary } else { // Debug opcode op_file, skip null-terminated string (file name) while (src[offset++]) {} } } return offset; } void run_vm(EngineState *s) { assert(s); int temp; reg_t r_temp; // Temporary register StackPtr s_temp; // Temporary stack pointer int16 opparams[4]; // opcode parameters s->r_rest = 0; // &rest adjusts the parameter count by this value // Current execution data: s->xs = &(s->_executionStack.back()); ExecStack *xs_new = NULL; Object *obj = s->_segMan->getObject(s->xs->objp); Script *scr = 0; Script *local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment); int old_executionStackBase = s->executionStackBase; // Used to detect the stack bottom, for "physical" returns if (!local_script) error("run_vm(): program counter gone astray (local_script pointer is null)"); s->executionStackBase = s->_executionStack.size() - 1; s->variablesSegment[VAR_TEMP] = s->variablesSegment[VAR_PARAM] = s->_segMan->findSegmentByType(SEG_TYPE_STACK); s->variablesBase[VAR_TEMP] = s->variablesBase[VAR_PARAM] = s->stack_base; s->_executionStackPosChanged = true; // Force initialization #ifdef ABORT_ON_INFINITE_LOOP byte prevOpcode = 0xFF; #endif while (1) { int var_type; // See description below int var_number; g_sci->_debugState.old_pc_offset = s->xs->addr.pc.offset; g_sci->_debugState.old_sp = s->xs->sp; if (s->abortScriptProcessing != kAbortNone) return; // Stop processing if (s->_executionStackPosChanged) { scr = s->_segMan->getScriptIfLoaded(s->xs->addr.pc.segment); if (!scr) error("No script in segment %d", s->xs->addr.pc.segment); s->xs = &(s->_executionStack.back()); s->_executionStackPosChanged = false; obj = s->_segMan->getObject(s->xs->objp); local_script = s->_segMan->getScriptIfLoaded(s->xs->local_segment); if (!local_script) { error("Could not find local script from segment %x", s->xs->local_segment); } else { s->variablesSegment[VAR_LOCAL] = local_script->_localsSegment; if (local_script->_localsBlock) s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = local_script->_localsBlock->_locals.begin(); else s->variablesBase[VAR_LOCAL] = s->variables[VAR_LOCAL] = NULL; if (local_script->_localsBlock) s->variablesMax[VAR_LOCAL] = local_script->_localsBlock->_locals.size(); else s->variablesMax[VAR_LOCAL] = 0; s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp; s->variablesMax[VAR_PARAM] = s->xs->argc + 1; } s->variables[VAR_TEMP] = s->xs->fp; s->variables[VAR_PARAM] = s->xs->variables_argp; } if (s->abortScriptProcessing != kAbortNone) return; // Stop processing // Debug if this has been requested: // TODO: re-implement sci_debug_flags if (g_sci->_debugState.debugging /* sci_debug_flags*/) { g_sci->scriptDebug(); g_sci->_debugState.breakpointWasHit = false; } Console *con = g_sci->getSciDebugger(); con->onFrame(); if (s->xs->sp < s->xs->fp) error("run_vm(): stack underflow, sp: %04x:%04x, fp: %04x:%04x", PRINT_REG(*s->xs->sp), PRINT_REG(*s->xs->fp)); s->variablesMax[VAR_TEMP] = s->xs->sp - s->xs->fp; if (s->xs->addr.pc.offset >= scr->getBufSize()) error("run_vm(): program counter gone astray, addr: %d, code buffer size: %d", s->xs->addr.pc.offset, scr->getBufSize()); // Get opcode byte extOpcode; s->xs->addr.pc.offset += readPMachineInstruction(scr->getBuf() + s->xs->addr.pc.offset, extOpcode, opparams); const byte opcode = extOpcode >> 1; //debug("%s: %d, %d, %d, %d, acc = %04x:%04x, script %d, local script %d", opcodeNames[opcode], opparams[0], opparams[1], opparams[2], opparams[3], PRINT_REG(s->r_acc), scr->getScriptNumber(), local_script->getScriptNumber()); #ifdef ABORT_ON_INFINITE_LOOP if (prevOpcode != 0xFF) { if (prevOpcode == op_eq_ || prevOpcode == op_ne_ || prevOpcode == op_gt_ || prevOpcode == op_ge_ || prevOpcode == op_lt_ || prevOpcode == op_le_ || prevOpcode == op_ugt_ || prevOpcode == op_uge_ || prevOpcode == op_ult_ || prevOpcode == op_ule_) { if (opcode == op_jmp) error("Infinite loop detected in script %d", scr->getScriptNumber()); } } prevOpcode = opcode; #endif switch (opcode) { case op_bnot: // 0x00 (00) // Binary not s->r_acc = make_reg(0, 0xffff ^ s->r_acc.requireUint16()); break; case op_add: // 0x01 (01) s->r_acc = POP32() + s->r_acc; break; case op_sub: // 0x02 (02) s->r_acc = POP32() - s->r_acc; break; case op_mul: // 0x03 (03) s->r_acc = POP32() * s->r_acc; break; case op_div: // 0x04 (04) // we check for division by 0 inside the custom reg_t division operator s->r_acc = POP32() / s->r_acc; break; case op_mod: // 0x05 (05) // we check for division by 0 inside the custom reg_t modulo operator s->r_acc = POP32() % s->r_acc; break; case op_shr: // 0x06 (06) // Shift right logical s->r_acc = POP32() >> s->r_acc; break; case op_shl: // 0x07 (07) // Shift left logical s->r_acc = POP32() << s->r_acc; break; case op_xor: // 0x08 (08) s->r_acc = POP32() ^ s->r_acc; break; case op_and: // 0x09 (09) s->r_acc = POP32() & s->r_acc; break; case op_or: // 0x0a (10) s->r_acc = POP32() | s->r_acc; break; case op_neg: // 0x0b (11) s->r_acc = make_reg(0, -s->r_acc.requireSint16()); break; case op_not: // 0x0c (12) s->r_acc = make_reg(0, !(s->r_acc.offset || s->r_acc.segment)); // Must allow pointers to be negated, as this is used for checking whether objects exist break; case op_eq_: // 0x0d (13) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() == s->r_acc); break; case op_ne_: // 0x0e (14) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() != s->r_acc); break; case op_gt_: // 0x0f (15) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() > s->r_acc); break; case op_ge_: // 0x10 (16) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() >= s->r_acc); break; case op_lt_: // 0x11 (17) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() < s->r_acc); break; case op_le_: // 0x12 (18) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32() <= s->r_acc); break; case op_ugt_: // 0x13 (19) // > (unsigned) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32().gtU(s->r_acc)); break; case op_uge_: // 0x14 (20) // >= (unsigned) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32().geU(s->r_acc)); break; case op_ult_: // 0x15 (21) // < (unsigned) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32().ltU(s->r_acc)); break; case op_ule_: // 0x16 (22) // <= (unsigned) s->r_prev = s->r_acc; s->r_acc = make_reg(0, POP32().leU(s->r_acc)); break; case op_bt: // 0x17 (23) // Branch relative if true if (s->r_acc.offset || s->r_acc.segment) s->xs->addr.pc.offset += opparams[0]; break; case op_bnt: // 0x18 (24) // Branch relative if not true if (!(s->r_acc.offset || s->r_acc.segment)) s->xs->addr.pc.offset += opparams[0]; break; case op_jmp: // 0x19 (25) s->xs->addr.pc.offset += opparams[0]; break; case op_ldi: // 0x1a (26) // Load data immediate s->r_acc = make_reg(0, opparams[0]); break; case op_push: // 0x1b (27) // Push to stack PUSH32(s->r_acc); break; case op_pushi: // 0x1c (28) // Push immediate PUSH(opparams[0]); break; case op_toss: // 0x1d (29) // TOS (Top Of Stack) subtract s->xs->sp--; break; case op_dup: // 0x1e (30) // Duplicate TOD (Top Of Stack) element r_temp = s->xs->sp[-1]; PUSH32(r_temp); break; case op_link: // 0x1f (31) // We shouldn't initialize temp variables at all // We put special segment 0xFFFF in there, so that uninitialized reads can get detected for (int i = 0; i < opparams[0]; i++) s->xs->sp[i] = make_reg(0xffff, 0); s->xs->sp += opparams[0]; break; case op_call: { // 0x20 (32) // Call a script subroutine int argc = (opparams[1] >> 1) // Given as offset, but we need count + 1 + s->r_rest; StackPtr call_base = s->xs->sp - argc; s->xs->sp[1].offset += s->r_rest; uint16 localCallOffset = s->xs->addr.pc.offset + opparams[0]; ExecStack xstack(s->xs->objp, s->xs->objp, s->xs->sp, (call_base->requireUint16()) + s->r_rest, call_base, s->xs->local_segment, make_reg(s->xs->addr.pc.segment, localCallOffset), NULL_SELECTOR, -1, localCallOffset, s->_executionStack.size() - 1, EXEC_STACK_TYPE_CALL); s->_executionStack.push_back(xstack); xs_new = &(s->_executionStack.back()); s->r_rest = 0; // Used up the &rest adjustment s->xs->sp = call_base; s->_executionStackPosChanged = true; break; } case op_callk: { // 0x21 (33) // Run the garbage collector, if needed if (s->gcCountDown-- <= 0) { s->gcCountDown = s->scriptGCInterval; run_gc(s); } // Call kernel function s->xs->sp -= (opparams[1] >> 1) + 1; bool oldScriptHeader = (getSciVersion() == SCI_VERSION_0_EARLY); if (!oldScriptHeader) s->xs->sp -= s->r_rest; int argc = s->xs->sp[0].requireUint16(); if (!oldScriptHeader) argc += s->r_rest; callKernelFunc(s, opparams[0], argc); if (!oldScriptHeader) s->r_rest = 0; // Calculate xs again: The kernel function might // have spawned a new VM xs_new = &(s->_executionStack.back()); s->_executionStackPosChanged = true; // If a game is being loaded, stop processing if (s->abortScriptProcessing != kAbortNone) return; // Stop processing break; } case op_callb: // 0x22 (34) // Call base script temp = ((opparams[1] >> 1) + s->r_rest + 1); s_temp = s->xs->sp; s->xs->sp -= temp; s->xs->sp[0].offset += s->r_rest; xs_new = execute_method(s, 0, opparams[0], s_temp, s->xs->objp, s->xs->sp[0].offset, s->xs->sp); s->r_rest = 0; // Used up the &rest adjustment if (xs_new) // in case of error, keep old stack s->_executionStackPosChanged = true; break; case op_calle: // 0x23 (35) // Call external script temp = ((opparams[2] >> 1) + s->r_rest + 1); s_temp = s->xs->sp; s->xs->sp -= temp; s->xs->sp[0].offset += s->r_rest; xs_new = execute_method(s, opparams[0], opparams[1], s_temp, s->xs->objp, s->xs->sp[0].offset, s->xs->sp); s->r_rest = 0; // Used up the &rest adjustment if (xs_new) // in case of error, keep old stack s->_executionStackPosChanged = true; break; case op_ret: // 0x24 (36) // Return from an execution loop started by call, calle, callb, send, self or super do { StackPtr old_sp2 = s->xs->sp; StackPtr old_fp = s->xs->fp; ExecStack *old_xs = &(s->_executionStack.back()); if ((int)s->_executionStack.size() - 1 == s->executionStackBase) { // Have we reached the base? s->executionStackBase = old_executionStackBase; // Restore stack base s->_executionStack.pop_back(); s->_executionStackPosChanged = true; return; // "Hard" return } if (old_xs->type == EXEC_STACK_TYPE_VARSELECTOR) { // varselector access? reg_t *var = old_xs->getVarPointer(s->_segMan); if (old_xs->argc) // write? *var = old_xs->variables_argp[1]; else // No, read s->r_acc = *var; } // Not reached the base, so let's do a soft return s->_executionStack.pop_back(); s->_executionStackPosChanged = true; s->xs = &(s->_executionStack.back()); if (s->xs->sp == CALL_SP_CARRY // Used in sends to 'carry' the stack pointer || s->xs->type != EXEC_STACK_TYPE_CALL) { s->xs->sp = old_sp2; s->xs->fp = old_fp; } } while (s->xs->type == EXEC_STACK_TYPE_VARSELECTOR); // Iterate over all varselector accesses s->_executionStackPosChanged = true; xs_new = s->xs; break; case op_send: // 0x25 (37) // Send for one or more selectors s_temp = s->xs->sp; s->xs->sp -= ((opparams[0] >> 1) + s->r_rest); // Adjust stack s->xs->sp[1].offset += s->r_rest; xs_new = send_selector(s, s->r_acc, s->r_acc, s_temp, (int)(opparams[0] >> 1) + (uint16)s->r_rest, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->r_rest = 0; break; case 0x26: // (38) case 0x27: // (39) if (getSciVersion() == SCI_VERSION_3) { if (extOpcode == 0x4c) s->r_acc = obj->getInfoSelector(); else if (extOpcode == 0x4d) PUSH32(obj->getInfoSelector()); else if (extOpcode == 0x4e) s->r_acc = obj->getSuperClassSelector(); // TODO: is this correct? // TODO: There are also opcodes in // here to get the superclass, and possibly the species too. else error("Dummy opcode 0x%x called", opcode); // should never happen } else error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_class: // 0x28 (40) // Get class address s->r_acc = s->_segMan->getClassAddress((unsigned)opparams[0], SCRIPT_GET_LOCK, s->xs->addr.pc); break; case 0x29: // (41) error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_self: // 0x2a (42) // Send to self s_temp = s->xs->sp; s->xs->sp -= ((opparams[0] >> 1) + s->r_rest); // Adjust stack s->xs->sp[1].offset += s->r_rest; xs_new = send_selector(s, s->xs->objp, s->xs->objp, s_temp, (int)(opparams[0] >> 1) + (uint16)s->r_rest, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->r_rest = 0; break; case op_super: // 0x2b (43) // Send to any class r_temp = s->_segMan->getClassAddress(opparams[0], SCRIPT_GET_LOAD, s->xs->addr.pc); if (!r_temp.isPointer()) error("[VM]: Invalid superclass in object"); else { s_temp = s->xs->sp; s->xs->sp -= ((opparams[1] >> 1) + s->r_rest); // Adjust stack s->xs->sp[1].offset += s->r_rest; xs_new = send_selector(s, r_temp, s->xs->objp, s_temp, (int)(opparams[1] >> 1) + (uint16)s->r_rest, s->xs->sp); if (xs_new && xs_new != s->xs) s->_executionStackPosChanged = true; s->r_rest = 0; } break; case op_rest: // 0x2c (44) // Pushes all or part of the parameter variable list on the stack temp = (uint16) opparams[0]; // First argument s->r_rest = MAX(s->xs->argc - temp + 1, 0); // +1 because temp counts the paramcount while argc doesn't for (; temp <= s->xs->argc; temp++) PUSH32(s->xs->variables_argp[temp]); break; case op_lea: // 0x2d (45) // Load Effective Address temp = (uint16) opparams[0] >> 1; var_number = temp & 0x03; // Get variable type // Get variable block offset r_temp.segment = s->variablesSegment[var_number]; r_temp.offset = s->variables[var_number] - s->variablesBase[var_number]; if (temp & 0x08) // Add accumulator offset if requested r_temp.offset += s->r_acc.requireSint16(); r_temp.offset += opparams[1]; // Add index r_temp.offset *= 2; // variables are 16 bit // That's the immediate address now s->r_acc = r_temp; break; case op_selfID: // 0x2e (46) // Get 'self' identity s->r_acc = s->xs->objp; break; case 0x2f: // (47) error("Dummy opcode 0x%x called", opcode); // should never happen break; case op_pprev: // 0x30 (48) // Pushes the value of the prev register, set by the last comparison // bytecode (eq?, lt?, etc.), on the stack PUSH32(s->r_prev); break; case op_pToa: // 0x31 (49) // Property To Accumulator s->r_acc = validate_property(s, obj, opparams[0]); break; case op_aTop: // 0x32 (50) // Accumulator To Property validate_property(s, obj, opparams[0]) = s->r_acc; break; case op_pTos: // 0x33 (51) // Property To Stack PUSH32(validate_property(s, obj, opparams[0])); break; case op_sTop: // 0x34 (52) // Stack To Property validate_property(s, obj, opparams[0]) = POP32(); break; case op_ipToa: // 0x35 (53) case op_dpToa: // 0x36 (54) case op_ipTos: // 0x37 (55) case op_dpTos: // 0x38 (56) { // Increment/decrement a property and copy to accumulator, // or push to stack reg_t &opProperty = validate_property(s, obj, opparams[0]); if (opcode & 1) opProperty += 1; else opProperty -= 1; if (opcode == op_ipToa || opcode == op_dpToa) s->r_acc = opProperty; else PUSH32(opProperty); break; } case op_lofsa: // 0x39 (57) case op_lofss: // 0x3a (58) // Load offset to accumulator or push to stack r_temp.segment = s->xs->addr.pc.segment; switch (g_sci->_features->detectLofsType()) { case SCI_VERSION_0_EARLY: r_temp.offset = s->xs->addr.pc.offset + opparams[0]; break; case SCI_VERSION_1_MIDDLE: r_temp.offset = opparams[0]; break; case SCI_VERSION_1_1: r_temp.offset = opparams[0] + local_script->getScriptSize(); break; case SCI_VERSION_3: // In theory this can break if the variant with a one-byte argument is // used. For now, assume it doesn't happen. r_temp.offset = local_script->relocateOffsetSci3(s->xs->addr.pc.offset-2); break; default: error("Unknown lofs type"); } if (r_temp.offset >= scr->getBufSize()) error("VM: lofsa/lofss operation overflowed: %04x:%04x beyond end" " of script (at %04x)", PRINT_REG(r_temp), scr->getBufSize()); if (opcode == op_lofsa) s->r_acc = r_temp; else PUSH32(r_temp); break; case op_push0: // 0x3b (59) PUSH(0); break; case op_push1: // 0x3c (60) PUSH(1); break; case op_push2: // 0x3d (61) PUSH(2); break; case op_pushSelf: // 0x3e (62) // Compensate for a bug in non-Sierra compilers, which seem to generate // pushSelf instructions with the low bit set. This makes the following // heuristic fail and leads to endless loops and crashes. Our // interpretation of this seems correct, as other SCI tools, like for // example SCI Viewer, have issues with these scripts (e.g. script 999 // in Circus Quest). Fixes bug #3038686. if (!(extOpcode & 1) || g_sci->getGameId() == GID_FANMADE) { PUSH32(s->xs->objp); } else { // Debug opcode op_file } break; case op_line: // 0x3f (63) // Debug opcode (line number) break; case op_lag: // 0x40 (64) case op_lal: // 0x41 (65) case op_lat: // 0x42 (66) case op_lap: // 0x43 (67) // Load global, local, temp or param variable into the accumulator case op_lagi: // 0x48 (72) case op_lali: // 0x49 (73) case op_lati: // 0x4a (74) case op_lapi: // 0x4b (75) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_lagi ? s->r_acc.requireSint16() : 0); s->r_acc = read_var(s, var_type, var_number); break; case op_lsg: // 0x44 (68) case op_lsl: // 0x45 (69) case op_lst: // 0x46 (70) case op_lsp: // 0x47 (71) // Load global, local, temp or param variable into the stack case op_lsgi: // 0x4c (76) case op_lsli: // 0x4d (77) case op_lsti: // 0x4e (78) case op_lspi: // 0x4f (79) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_lsgi ? s->r_acc.requireSint16() : 0); PUSH32(read_var(s, var_type, var_number)); break; case op_sag: // 0x50 (80) case op_sal: // 0x51 (81) case op_sat: // 0x52 (82) case op_sap: // 0x53 (83) // Save the accumulator into the global, local, temp or param variable case op_sagi: // 0x58 (88) case op_sali: // 0x59 (89) case op_sati: // 0x5a (90) case op_sapi: // 0x5b (91) // Save the accumulator into the global, local, temp or param variable, // using the accumulator as an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_sagi ? s->r_acc.requireSint16() : 0); if (opcode >= op_sagi) // load the actual value to store in the accumulator s->r_acc = POP32(); write_var(s, var_type, var_number, s->r_acc); break; case op_ssg: // 0x54 (84) case op_ssl: // 0x55 (85) case op_sst: // 0x56 (86) case op_ssp: // 0x57 (87) // Save the stack into the global, local, temp or param variable case op_ssgi: // 0x5c (92) case op_ssli: // 0x5d (93) case op_ssti: // 0x5e (94) case op_sspi: // 0x5f (95) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_ssgi ? s->r_acc.requireSint16() : 0); write_var(s, var_type, var_number, POP32()); break; case op_plusag: // 0x60 (96) case op_plusal: // 0x61 (97) case op_plusat: // 0x62 (98) case op_plusap: // 0x63 (99) // Increment the global, local, temp or param variable and save it // to the accumulator case op_plusagi: // 0x68 (104) case op_plusali: // 0x69 (105) case op_plusati: // 0x6a (106) case op_plusapi: // 0x6b (107) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_plusagi ? s->r_acc.requireSint16() : 0); s->r_acc = read_var(s, var_type, var_number) + 1; write_var(s, var_type, var_number, s->r_acc); break; case op_plussg: // 0x64 (100) case op_plussl: // 0x65 (101) case op_plusst: // 0x66 (102) case op_plussp: // 0x67 (103) // Increment the global, local, temp or param variable and save it // to the stack case op_plussgi: // 0x6c (108) case op_plussli: // 0x6d (109) case op_plussti: // 0x6e (110) case op_plusspi: // 0x6f (111) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_plussgi ? s->r_acc.requireSint16() : 0); r_temp = read_var(s, var_type, var_number) + 1; PUSH32(r_temp); write_var(s, var_type, var_number, r_temp); break; case op_minusag: // 0x70 (112) case op_minusal: // 0x71 (113) case op_minusat: // 0x72 (114) case op_minusap: // 0x73 (115) // Decrement the global, local, temp or param variable and save it // to the accumulator case op_minusagi: // 0x78 (120) case op_minusali: // 0x79 (121) case op_minusati: // 0x7a (122) case op_minusapi: // 0x7b (123) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_minusagi ? s->r_acc.requireSint16() : 0); s->r_acc = read_var(s, var_type, var_number) - 1; write_var(s, var_type, var_number, s->r_acc); break; case op_minussg: // 0x74 (116) case op_minussl: // 0x75 (117) case op_minusst: // 0x76 (118) case op_minussp: // 0x77 (119) // Decrement the global, local, temp or param variable and save it // to the stack case op_minussgi: // 0x7c (124) case op_minussli: // 0x7d (125) case op_minussti: // 0x7e (126) case op_minusspi: // 0x7f (127) // Same as the 4 ones above, except that the accumulator is used as // an additional index var_type = opcode & 0x3; // Gets the variable type: g, l, t or p var_number = opparams[0] + (opcode >= op_minussgi ? s->r_acc.requireSint16() : 0); r_temp = read_var(s, var_type, var_number) - 1; PUSH32(r_temp); write_var(s, var_type, var_number, r_temp); break; default: error("run_vm(): illegal opcode %x", opcode); } // switch (opcode) if (s->_executionStackPosChanged) // Force initialization s->xs = xs_new; if (s->xs != &(s->_executionStack.back())) { error("xs is stale (%p vs %p); last command was %02x", (void *)s->xs, (void *)&(s->_executionStack.back()), opcode); } ++s->scriptStepCounter; } } reg_t *ObjVarRef::getPointer(SegManager *segMan) const { Object *o = segMan->getObject(obj); return o ? &o->getVariableRef(varindex) : 0; } reg_t *ExecStack::getVarPointer(SegManager *segMan) const { assert(type == EXEC_STACK_TYPE_VARSELECTOR); return addr.varp.getPointer(segMan); } } // End of namespace Sci