/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "sci/tools.h" #include "sci/include/sci_memory.h" #include "sci/sfx/softseq.h" #include "common/frac.h" namespace Sci { #define FREQUENCY 44100 #define CHANNELS_NR 10 #define HW_CHANNELS_NR 16 /* Samplerate of the instrument bank */ #define BASE_FREQ 20000 /* Instrument looping flag */ #define MODE_LOOP 1 << 0 /* Instrument pitch changes flag */ #define MODE_PITCH 1 << 1 #define PAN_LEFT 91 #define PAN_RIGHT 164 /* #define DEBUG */ typedef struct envelope { /* Phase period length in samples */ int length; /* Velocity delta per period */ int delta; /* Target velocity */ int target; } envelope_t; /* Fast decay envelope */ static envelope_t env_decay = {FREQUENCY / (32 * 64), 1, 0}; typedef struct instrument { char name[30]; int mode; /* Size of non-looping part in bytes */ int size; /* Starting offset and size of loop in bytes */ int loop_size; /* Transpose value in semitones */ int transpose; /* Envelope */ envelope_t envelope[4]; sbyte *samples; sbyte *loop; } instrument_t; typedef struct bank { char name[30]; int size; instrument_t *instruments[256]; } bank_t; typedef struct channel { int instrument; int note; int note_velocity; int velocity; int envelope; /* Number of samples till next envelope event */ int envelope_samples; int decay; int looping; int hw_channel; frac_t offset; frac_t rate; } channel_t; typedef struct hw_channel { int instrument; int volume; int pan; } hw_channel_t; /* Instrument bank */ static bank_t bank; /* Internal channels */ static channel_t channels[CHANNELS_NR]; /* External channels */ static hw_channel_t hw_channels[HW_CHANNELS_NR]; /* Overall volume */ static int volume = 127; /* Frequencies for every note */ static int freq_table[] = { 58, 62, 65, 69, 73, 78, 82, 87, 92, 98, 104, 110, 117, 124, 131, 139, 147, 156, 165, 175, 185, 196, 208, 220, 234, 248, 262, 278, 294, 312, 331, 350, 371, 393, 417, 441, 468, 496, 525, 556, 589, 625, 662, 701, 743, 787, 834, 883, 936, 992, 1051, 1113, 1179, 1250, 1324, 1403, 1486, 1574, 1668, 1767, 1872, 1984, 2102, 2227, 2359, 2500, 2648, 2806, 2973, 3149, 3337, 3535, 3745, 3968, 4204, 4454, 4719, 5000, 5297, 5612, 5946, 6299, 6674, 7071, 7491, 7937, 8408, 8908, 9438, 10000, 10594, 11224, 11892, 12599, 13348, 14142, 14983, 15874, 16817, 17817, 18877, 20000, 21189, 22449, 23784, 25198, 26696, 28284, 29966, 31748, 33635, 35635, 37754, 40000, 42378, 44898, 47568, 50396, 53393, 56568, 59932, 63496, 67271, 71271, 75509, 80000, 84757, 89796 }; static void set_envelope(channel_t *channel, envelope_t *envelope, int phase) { channel->envelope = phase; channel->envelope_samples = envelope[phase].length; if (phase == 0) channel->velocity = channel->note_velocity / 2; else channel->velocity = envelope[phase - 1].target; } static inline int interpolate(sbyte *samples, frac_t offset) { int x = fracToInt(offset); int diff = (samples[x + 1] - samples[x]) << 8; return (samples[x] << 8) + fracToInt(diff * (offset & FRAC_LO_MASK)); } static void play_instrument(gint16 *dest, channel_t *channel, int count) { int index = 0; int vol = hw_channels[channel->hw_channel].volume; instrument_t *instrument = bank.instruments[channel->instrument]; while (1) { /* Available source samples until end of segment */ frac_t lin_avail; int seg_end, rem, i, amount; sbyte *samples; if (channel->looping) { samples = instrument->loop; seg_end = instrument->loop_size; } else { samples = instrument->samples; seg_end = instrument->size; } lin_avail = intToFrac(seg_end) - channel->offset; rem = count - index; /* Amount of destination samples that we will compute this iteration */ amount = lin_avail / channel->rate; if (lin_avail % channel->rate) amount++; if (amount > rem) amount = rem; /* Stop at next envelope event */ if ((channel->envelope_samples != -1) && (amount > channel->envelope_samples)) amount = channel->envelope_samples; for (i = 0; i < amount; i++) { dest[index++] = interpolate(samples, channel->offset) * channel->velocity / 64 * channel->note_velocity * vol / (127 * 127); channel->offset += channel->rate; } if (channel->envelope_samples != -1) channel->envelope_samples -= amount; if (channel->envelope_samples == 0) { envelope_t *envelope; int delta, target, velocity; if (channel->decay) envelope = &env_decay; else envelope = &instrument->envelope[channel->envelope]; delta = envelope->delta; target = envelope->target; velocity = channel->velocity - envelope->delta; /* Check whether we have reached the velocity target for the current phase */ if ((delta >= 0 && velocity <= target) || (delta < 0 && velocity >= target)) { channel->velocity = target; /* Stop note after velocity has dropped to 0 */ if (target == 0) { channel->note = -1; break; } else switch (channel->envelope) { case 0: case 2: /* Go to next phase */ set_envelope(channel, instrument->envelope, channel->envelope + 1); break; case 1: case 3: /* Stop envelope */ channel->envelope_samples = -1; break; } } else { /* We haven't reached the target yet */ channel->envelope_samples = envelope->length; channel->velocity = velocity; } } if (index == count) break; if (fracToInt(channel->offset) >= seg_end) { if (instrument->mode & MODE_LOOP) { /* Loop the samples */ channel->offset -= intToFrac(seg_end); channel->looping = 1; } else { /* All samples have been played */ channel->note = -1; break; } } } } static void change_instrument(int channel, int instrument) { #ifdef DEBUG if (bank.instruments[instrument]) sciprintf("[sfx:seq:amiga] Setting channel %i to \"%s\" (%i)\n", channel, bank.instruments[instrument]->name, instrument); else sciprintf("[sfx:seq:amiga] Warning: instrument %i does not exist (channel %i)\n", instrument, channel); #endif hw_channels[channel].instrument = instrument; } static void stop_channel(int ch) { int i; /* Start decay phase for note on this hw channel, if any */ for (i = 0; i < CHANNELS_NR; i++) if (channels[i].note != -1 && channels[i].hw_channel == ch && !channels[i].decay) { /* Trigger fast decay envelope */ channels[i].decay = 1; channels[i].envelope_samples = env_decay.length; break; } } static void stop_note(int ch, int note) { int channel; instrument_t *instrument; for (channel = 0; channel < CHANNELS_NR; channel++) if (channels[channel].note == note && channels[channel].hw_channel == ch && !channels[channel].decay) break; if (channel == CHANNELS_NR) { #ifdef DEBUG sciprintf("[sfx:seq:amiga] Warning: cannot stop note %i on channel %i\n", note, ch); #endif return; } instrument = bank.instruments[channels[channel].instrument]; /* Start the envelope phases for note-off if looping is on and envelope is enabled */ if ((instrument->mode & MODE_LOOP) && (instrument->envelope[0].length != 0)) set_envelope(&channels[channel], instrument->envelope, 2); } static void start_note(int ch, int note, int velocity) { instrument_t *instrument; int channel; if (hw_channels[ch].instrument < 0 || hw_channels[ch].instrument > 255) { sciprintf("[sfx:seq:amiga] Error: invalid instrument %i on channel %i\n", hw_channels[ch].instrument, ch); return; } instrument = bank.instruments[hw_channels[ch].instrument]; if (!instrument) { sciprintf("[sfx:seq:amiga] Error: instrument %i does not exist\n", hw_channels[ch].instrument); return; } for (channel = 0; channel < CHANNELS_NR; channel++) if (channels[channel].note == -1) break; if (channel == CHANNELS_NR) { sciprintf("[sfx:seq:amiga] Warning: could not find a free channel\n"); return; } stop_channel(ch); if (instrument->mode & MODE_PITCH) { int fnote = note + instrument->transpose; if (fnote < 0 || fnote > 127) { sciprintf("[sfx:seq:amiga] Error: illegal note %i\n", fnote); return; } /* Compute rate for note */ channels[channel].rate = doubleToFrac(freq_table[fnote] / (double) FREQUENCY); } else channels[channel].rate = doubleToFrac(BASE_FREQ / (double) FREQUENCY); channels[channel].instrument = hw_channels[ch].instrument; channels[channel].note = note; channels[channel].note_velocity = velocity; if ((instrument->mode & MODE_LOOP) && (instrument->envelope[0].length != 0)) set_envelope(&channels[channel], instrument->envelope, 0); else { channels[channel].velocity = 64; channels[channel].envelope_samples = -1; } channels[channel].offset = 0; channels[channel].hw_channel = ch; channels[channel].decay = 0; channels[channel].looping = 0; } static gint16 read_int16(byte *data) { return (data[0] << 8) | data[1]; } static gint32 read_int32(byte *data) { return (data[0] << 24) | (data[1] << 16) | (data[2] << 8) | data[3]; } static instrument_t *read_instrument(FILE *file, int *id) { instrument_t *instrument; byte header[61]; int size; int seg_size[3]; int loop_offset; int i; if (fread(header, 1, 61, file) < 61) { sciprintf("[sfx:seq:amiga] Error: failed to read instrument header\n"); return NULL; } instrument = (instrument_t *) sci_malloc(sizeof(instrument_t)); seg_size[0] = read_int16(header + 35) * 2; seg_size[1] = read_int16(header + 41) * 2; seg_size[2] = read_int16(header + 47) * 2; instrument->mode = header[33]; instrument->transpose = (gint8) header[34]; for (i = 0; i < 4; i++) { int length = (gint8) header[49 + i]; if (length == 0 && i > 0) length = 256; instrument->envelope[i].length = length * FREQUENCY / 60; instrument->envelope[i].delta = (gint8) header[53 + i]; instrument->envelope[i].target = header[57 + i]; } /* Final target must be 0 */ instrument->envelope[3].target = 0; loop_offset = read_int32(header + 37) & ~1; size = seg_size[0] + seg_size[1] + seg_size[2]; *id = read_int16(header); strncpy(instrument->name, (char *) header + 2, 29); instrument->name[29] = 0; #ifdef DEBUG sciprintf("[sfx:seq:amiga] Reading instrument %i: \"%s\" (%i bytes)\n", *id, instrument->name, size); sciprintf(" Mode: %02x\n", instrument->mode); sciprintf(" Looping: %s\n", instrument->mode & MODE_LOOP ? "on" : "off"); sciprintf(" Pitch changes: %s\n", instrument->mode & MODE_PITCH ? "on" : "off"); sciprintf(" Segment sizes: %i %i %i\n", seg_size[0], seg_size[1], seg_size[2]); sciprintf(" Segment offsets: 0 %i %i\n", loop_offset, read_int32(header + 43)); #endif instrument->samples = (sbyte *) sci_malloc(size + 1); if (fread(instrument->samples, 1, size, file) < (unsigned int)size) { sciprintf("[sfx:seq:amiga] Error: failed to read instrument samples\n"); return NULL; } if (instrument->mode & MODE_LOOP) { if (loop_offset + seg_size[1] > size) { #ifdef DEBUG sciprintf("[sfx:seq:amiga] Warning: looping samples extend %i bytes past end of sample block\n", loop_offset + seg_size[1] - size); #endif seg_size[1] = size - loop_offset; } if (seg_size[1] < 0) { sciprintf("[sfx:seq:amiga] Error: invalid looping point\n"); return NULL; } instrument->size = seg_size[0]; instrument->loop_size = seg_size[1]; instrument->loop = (sbyte*)sci_malloc(instrument->loop_size + 1); memcpy(instrument->loop, instrument->samples + loop_offset, instrument->loop_size); instrument->samples[instrument->size] = instrument->loop[0]; instrument->loop[instrument->loop_size] = instrument->loop[0]; } else { instrument->size = size; instrument->samples[instrument->size] = 0; } return instrument; } static int ami_set_option(sfx_softseq_t *self, const char *name, const char *value) { return SFX_ERROR; } static int ami_init(sfx_softseq_t *self, byte *patch, int patch_len, byte *patch2, int patch2_len) { FILE *file; byte header[40]; int i; file = sci_fopen("bank.001", "rb"); if (!file) { sciprintf("[sfx:seq:amiga] Error: file bank.001 not found\n"); return SFX_ERROR; } if (fread(header, 1, 40, file) < 40) { sciprintf("[sfx:seq:amiga] Error: failed to read header of file bank.001\n"); fclose(file); return SFX_ERROR; } for (i = 0; i < 256; i++) bank.instruments[i] = NULL; for (i = 0; i < CHANNELS_NR; i++) { channels[i].note = -1; } for (i = 0; i < HW_CHANNELS_NR; i++) { hw_channels[i].instrument = -1; hw_channels[i].volume = 127; hw_channels[i].pan = (i % 4 == 0 || i % 4 == 3 ? PAN_LEFT : PAN_RIGHT); } bank.size = read_int16(header + 38); strncpy(bank.name, (char *) header + 8, 29); bank.name[29] = 0; #ifdef DEBUG sciprintf("[sfx:seq:amiga] Reading %i instruments from bank \"%s\"\n", bank.size, bank.name); #endif for (i = 0; i < bank.size; i++) { int id; instrument_t *instrument = read_instrument(file, &id); if (!instrument) { sciprintf("[sfx:seq:amiga] Error: failed to read bank.001\n"); fclose(file); return SFX_ERROR; } if (id < 0 || id > 255) { sciprintf("[sfx:seq:amiga] Error: instrument ID out of bounds\n"); return SFX_ERROR; } bank.instruments[id] = instrument; } fclose(file); return SFX_OK; } static void ami_exit(sfx_softseq_t *self) { int i; for (i = 0; i < bank.size; i++) { if (bank.instruments[i]) { free(bank.instruments[i]->samples); free(bank.instruments[i]); } } } static void ami_event(sfx_softseq_t *self, byte command, int argc, byte *argv) { int channel, oper; channel = command & 0x0f; oper = command & 0xf0; if (channel >= HW_CHANNELS_NR) { #ifdef DEBUG sciprintf("[sfx:seq:amiga] Warning: received event for non-existing channel %i\n", channel); #endif return; } switch (oper) { case 0x90: if (argv[1] > 0) start_note(channel, argv[0], argv[1]); else stop_note(channel, argv[0]); break; case 0xb0: switch (argv[0]) { case 0x07: hw_channels[channel].volume = argv[1]; break; case 0x0a: #ifdef DEBUG sciprintf("[sfx:seq:amiga] Warning: ignoring pan 0x%02x event for channel %i\n", argv[1], channel); #endif break; case 0x7b: stop_channel(channel); break; default: sciprintf("[sfx:seq:amiga] Warning: unknown control event 0x%02x\n", argv[0]); } break; case 0xc0: change_instrument(channel, argv[0]); break; default: sciprintf("[sfx:seq:amiga] Warning: unknown event %02x\n", command); } } void ami_poll(sfx_softseq_t *self, byte *dest, int len) { int i, j; gint16 *buf = (gint16 *) dest; gint16 *buffers = (gint16*)malloc(len * 2 * CHANNELS_NR); memset(buffers, 0, len * 2 * CHANNELS_NR); memset(dest, 0, len * 4); /* Generate samples for all notes */ for (i = 0; i < CHANNELS_NR; i++) if (channels[i].note >= 0) play_instrument(buffers + i * len, &channels[i], len); for (j = 0; j < len; j++) { int mixedl = 0, mixedr = 0; /* Mix and pan */ for (i = 0; i < CHANNELS_NR; i++) { mixedl += buffers[i * len + j] * (256 - hw_channels[channels[i].hw_channel].pan); mixedr += buffers[i * len + j] * hw_channels[channels[i].hw_channel].pan; } /* Adjust volume */ buf[2 * j] = mixedl * volume >> 16; buf[2 * j + 1] = mixedr * volume >> 16; } } void ami_volume(sfx_softseq_t *self, int new_volume) { volume = new_volume; } void ami_allstop(sfx_softseq_t *self) { int i; for (i = 0; i < HW_CHANNELS_NR; i++) stop_channel(i); } sfx_softseq_t sfx_softseq_amiga = { "amiga", "0.1", ami_set_option, ami_init, ami_exit, ami_volume, ami_event, ami_poll, ami_allstop, NULL, SFX_SEQ_PATCHFILE_NONE, SFX_SEQ_PATCHFILE_NONE, 0x40, 0, /* No rhythm channel (9) */ HW_CHANNELS_NR, /* # of voices */ {FREQUENCY, SFX_PCM_STEREO_LR, SFX_PCM_FORMAT_S16_NATIVE} }; } // End of namespace Sci