/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "sci/sound/audio32.h" #include "audio/audiostream.h" // for SeekableAudioStream #include "audio/decoders/raw.h" // for makeRawStream, RawFlags::FLAG_16BITS #include "audio/decoders/wave.h" // for makeWAVStream #include "audio/rate.h" // for RateConverter, makeRateConverter #include "audio/timestamp.h" // for Timestamp #include "common/config-manager.h" // for ConfMan #include "common/endian.h" // for MKTAG #include "common/memstream.h" // for MemoryReadStream #include "common/str.h" // for String #include "common/stream.h" // for SeekableReadStream #include "common/system.h" // for OSystem, g_system #include "common/textconsole.h" // for warning #include "common/types.h" // for Flag::NO #include "engine.h" // for Engine, g_engine #include "sci/engine/features.h" // for GameFeatures #include "sci/engine/guest_additions.h" // for GuestAdditions #include "sci/engine/state.h" // for EngineState #include "sci/engine/vm_types.h" // for reg_t, make_reg, NULL_REG #include "sci/resource.h" // for ResourceId, ResourceType::kResour... #include "sci/sci.h" // for SciEngine, g_sci, getSciVersion #include "sci/sound/decoders/sol.h" // for makeSOLStream namespace Sci { bool detectSolAudio(Common::SeekableReadStream &stream) { const size_t initialPosition = stream.pos(); byte header[6]; if (stream.read(header, sizeof(header)) != sizeof(header)) { stream.seek(initialPosition); return false; } stream.seek(initialPosition); if ((header[0] & 0x7f) != kResourceTypeAudio || READ_BE_UINT32(header + 2) != MKTAG('S', 'O', 'L', 0)) { return false; } return true; } bool detectWaveAudio(Common::SeekableReadStream &stream) { const size_t initialPosition = stream.pos(); byte blockHeader[8]; if (stream.read(blockHeader, sizeof(blockHeader)) != sizeof(blockHeader)) { stream.seek(initialPosition); return false; } stream.seek(initialPosition); const uint32 headerType = READ_BE_UINT32(blockHeader); if (headerType != MKTAG('R', 'I', 'F', 'F')) { return false; } return true; } #pragma mark - Audio32::Audio32(ResourceManager *resMan) : _resMan(resMan), _mixer(g_system->getMixer()), _handle(), _mutex(), _numActiveChannels(0), _inAudioThread(false), _globalSampleRate(44100), _maxAllowedSampleRate(44100), _globalBitDepth(16), _maxAllowedBitDepth(16), _globalNumOutputChannels(2), _maxAllowedOutputChannels(2), _preload(0), _robotAudioPaused(false), _pausedAtTick(0), _startedAtTick(0), _attenuatedMixing(true), _monitoredChannelIndex(-1), _monitoredBuffer(nullptr), _monitoredBufferSize(0), _numMonitoredSamples(0) { if (getSciVersion() < SCI_VERSION_3) { _channels.resize(5); } else { _channels.resize(8); } _useModifiedAttenuation = g_sci->_features->usesModifiedAudioAttenuation(); // The mixer stream type is given as `kSFXSoundType` so that audio from // Audio32 will be mixed at the same standard volume as the video players // (which must use `kSFXSoundType` as well). _mixer->playStream(Audio::Mixer::kSFXSoundType, &_handle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true); } Audio32::~Audio32() { stop(kAllChannels); _mixer->stopHandle(_handle); free(_monitoredBuffer); } #pragma mark - #pragma mark AudioStream implementation int Audio32::writeAudioInternal(Audio::AudioStream *const sourceStream, Audio::RateConverter *const converter, Audio::st_sample_t *targetBuffer, const int numSamples, const Audio::st_volume_t leftVolume, const Audio::st_volume_t rightVolume, const bool loop) { int samplesToRead = numSamples; // The parent rate converter will request N * 2 // samples from this `readBuffer` call, because // we tell it that we send stereo output, but // the source stream we're mixing in may be // mono, in which case we need to request half // as many samples from the mono stream and let // the converter double them for stereo output samplesToRead >>= 1; int samplesWritten = 0; do { if (loop && sourceStream->endOfStream()) { Audio::RewindableAudioStream *rewindableStream = dynamic_cast(sourceStream); if (rewindableStream == nullptr) { error("[Audio32::writeAudioInternal]: Unable to cast stream"); } rewindableStream->rewind(); } const int loopSamplesWritten = converter->flow(*sourceStream, targetBuffer, samplesToRead, leftVolume, rightVolume); if (loopSamplesWritten == 0) { break; } samplesToRead -= loopSamplesWritten; samplesWritten += loopSamplesWritten; targetBuffer += loopSamplesWritten << (sourceStream->isStereo() ? 0 : 1); } while (loop && samplesToRead > 0); samplesWritten <<= 1; return samplesWritten; } // In earlier versions of SCI32 engine, audio mixing is // split into three different functions. // // The first function is called from the main game thread in // AsyncEventCheck; later versions of SSCI also call it when // getting the playback position. This function is // responsible for cleaning up finished channels and // filling active channel buffers with decompressed audio // matching the hardware output audio format so they can // just be copied into the main DAC buffer directly later. // // The second function is called by the audio hardware when // the DAC buffer needs to be filled, and by `play` when // there is only one active sample (so it can just blow away // whatever was already in the DAC buffer). It merges all // active channels into the DAC buffer and then updates the // offset into the DAC buffer. // // Finally, a third function is called by the second // function, and it actually puts data into the DAC buffer, // performing volume, distortion, and balance adjustments. // // Since we only have one callback from the audio thread, // and should be able to do all audio processing in // real time, and we have streams, and we do not need to // completely fill the audio buffer, the functionality of // all these original functions is combined here and // simplified. int Audio32::readBuffer(Audio::st_sample_t *buffer, const int numSamples) { Common::StackLock lock(_mutex); if (_pausedAtTick != 0 || _numActiveChannels == 0) { return 0; } // ResourceManager is not thread-safe so we need to // avoid calling into it from the audio thread, but at // the same time we need to be able to clear out any // finished channels on a regular basis _inAudioThread = true; freeUnusedChannels(); // The caller of `readBuffer` is a rate converter, // which reuses (without clearing) an intermediate // buffer, so we need to zero the intermediate buffer // to prevent mixing into audio data from the last // callback. memset(buffer, 0, numSamples * sizeof(Audio::st_sample_t)); // This emulates the attenuated mixing mode of SSCI // engine, which reduces the volume of the target // buffer when each new channel is mixed in. // Instead of manipulating the content of the target // buffer when mixing (which would either require // modification of RateConverter or an expensive second // pass against the entire target buffer), we just // scale the volume for each channel in advance, with // the earliest (lowest) channel having the highest // amount of attenuation (lowest volume). uint8 attenuationAmount; uint8 attenuationStepAmount; if (_useModifiedAttenuation) { // channel | divisor // 0 | 0 (>> 0) // 1 | 4 (>> 2) // 2 | 8... attenuationAmount = _numActiveChannels * 2; attenuationStepAmount = 2; } else { // channel | divisor // 0 | 2 (>> 1) // 1 | 4 (>> 2) // 2 | 6... if (_monitoredChannelIndex == -1 && _numActiveChannels > 1) { attenuationAmount = _numActiveChannels + 1; attenuationStepAmount = 1; } else { attenuationAmount = 0; attenuationStepAmount = 0; } } int maxSamplesWritten = 0; for (int16 channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) { attenuationAmount -= attenuationStepAmount; const AudioChannel &channel = getChannel(channelIndex); if (channel.pausedAtTick || (channel.robot && _robotAudioPaused)) { continue; } // Channel finished fading and had the // stopChannelOnFade flag set, so no longer exists if (channel.fadeStartTick && processFade(channelIndex)) { --channelIndex; continue; } if (channel.robot) { if (channel.stream->endOfStream()) { stop(channelIndex--); } else { const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, kMaxVolume, kMaxVolume, channel.loop); if (channelSamplesWritten > maxSamplesWritten) { maxSamplesWritten = channelSamplesWritten; } } continue; } Audio::st_volume_t leftVolume, rightVolume; if (channel.pan == -1 || !isStereo()) { leftVolume = rightVolume = channel.volume * Audio::Mixer::kMaxChannelVolume / kMaxVolume; } else { // TODO: This should match the SCI3 algorithm, // which seems to halve the volume of each // channel when centered; is this intended? leftVolume = channel.volume * (100 - channel.pan) / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume; rightVolume = channel.volume * channel.pan / 100 * Audio::Mixer::kMaxChannelVolume / kMaxVolume; } if (_monitoredChannelIndex == -1 && _attenuatedMixing) { leftVolume >>= attenuationAmount; rightVolume >>= attenuationAmount; } if (channelIndex == _monitoredChannelIndex) { const size_t bufferSize = numSamples * sizeof(Audio::st_sample_t); if (_monitoredBufferSize < bufferSize) { _monitoredBuffer = (Audio::st_sample_t *)realloc(_monitoredBuffer, bufferSize); _monitoredBufferSize = bufferSize; } memset(_monitoredBuffer, 0, _monitoredBufferSize); _numMonitoredSamples = writeAudioInternal(channel.stream, channel.converter, _monitoredBuffer, numSamples, leftVolume, rightVolume, channel.loop); Audio::st_sample_t *sourceBuffer = _monitoredBuffer; Audio::st_sample_t *targetBuffer = buffer; const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples; while (sourceBuffer != end) { Audio::clampedAdd(*targetBuffer++, *sourceBuffer++); } if (_numMonitoredSamples > maxSamplesWritten) { maxSamplesWritten = _numMonitoredSamples; } } else if (!channel.stream->endOfStream() || channel.loop) { if (_monitoredChannelIndex != -1) { // Audio that is not on the monitored channel is silent // when the monitored channel is active, but the stream still // needs to be read in order to ensure that sound effects sync // up once the monitored channel is turned off. The easiest // way to guarantee this is to just do the normal channel read, // but set the channel volume to zero so nothing is mixed in leftVolume = rightVolume = 0; } const int channelSamplesWritten = writeAudioInternal(channel.stream, channel.converter, buffer, numSamples, leftVolume, rightVolume, channel.loop); if (channelSamplesWritten > maxSamplesWritten) { maxSamplesWritten = channelSamplesWritten; } } } _inAudioThread = false; return maxSamplesWritten; } #pragma mark - #pragma mark Channel management int16 Audio32::findChannelByArgs(int argc, const reg_t *argv, const int startIndex, const reg_t soundNode) const { // NOTE: argc/argv are already reduced by one in our engine because // this call is always made from a subop, so no reduction for the // subop is made in this function. SSCI takes extra steps to skip // the subop argument. argc -= startIndex; if (argc <= 0) { return kAllChannels; } Common::StackLock lock(_mutex); if (_numActiveChannels == 0) { return kNoExistingChannel; } ResourceId searchId; if (argc < 5) { searchId = ResourceId(kResourceTypeAudio, argv[startIndex].toUint16()); } else { searchId = ResourceId( kResourceTypeAudio36, argv[startIndex].toUint16(), argv[startIndex + 1].toUint16(), argv[startIndex + 2].toUint16(), argv[startIndex + 3].toUint16(), argv[startIndex + 4].toUint16() ); } return findChannelById(searchId, soundNode); } int16 Audio32::findChannelById(const ResourceId resourceId, const reg_t soundNode) const { Common::StackLock lock(_mutex); if (_numActiveChannels == 0) { return kNoExistingChannel; } if (resourceId.getType() == kResourceTypeAudio) { for (int16 i = 0; i < _numActiveChannels; ++i) { const AudioChannel channel = _channels[i]; if ( channel.id == resourceId && (soundNode.isNull() || soundNode == channel.soundNode) ) { return i; } } } else if (resourceId.getType() == kResourceTypeAudio36) { for (int16 i = 0; i < _numActiveChannels; ++i) { const AudioChannel &candidate = getChannel(i); if (!candidate.robot && candidate.id == resourceId) { return i; } } } else { error("Audio32::findChannelById: Unknown resource type %d", resourceId.getType()); } return kNoExistingChannel; } void Audio32::freeUnusedChannels() { Common::StackLock lock(_mutex); for (int channelIndex = 0; channelIndex < _numActiveChannels; ++channelIndex) { const AudioChannel &channel = getChannel(channelIndex); if (!channel.robot && channel.stream->endOfStream()) { if (channel.loop) { Audio::SeekableAudioStream *stream = dynamic_cast(channel.stream); if (stream == nullptr) { error("[Audio32::freeUnusedChannels]: Unable to cast stream for resource %s", channel.id.toString().c_str()); } stream->rewind(); } else { stop(channelIndex--); } } } if (!_inAudioThread) { unlockResources(); } } void Audio32::freeChannel(const int16 channelIndex) { // The original engine did this: // 1. Unlock memory-cached resource, if one existed // 2. Close patched audio file descriptor, if one existed // 3. Free decompression memory buffer, if one existed // 4. Clear monitored memory buffer, if one existed Common::StackLock lock(_mutex); AudioChannel &channel = getChannel(channelIndex); // Robots have no corresponding resource to free if (channel.robot) { delete channel.stream; channel.stream = nullptr; channel.robot = false; } else { // We cannot unlock resources from the audio thread // because ResourceManager is not thread-safe; instead, // we just record that the resource needs unlocking and // unlock it whenever we are on the main thread again if (_inAudioThread) { _resourcesToUnlock.push_back(channel.resource); } else { _resMan->unlockResource(channel.resource); } channel.resource = nullptr; delete channel.stream; channel.stream = nullptr; delete channel.resourceStream; channel.resourceStream = nullptr; } delete channel.converter; channel.converter = nullptr; if (_monitoredChannelIndex == channelIndex) { _monitoredChannelIndex = -1; } } void Audio32::unlockResources() { Common::StackLock lock(_mutex); assert(!_inAudioThread); for (UnlockList::const_iterator it = _resourcesToUnlock.begin(); it != _resourcesToUnlock.end(); ++it) { _resMan->unlockResource(*it); } _resourcesToUnlock.clear(); } #pragma mark - #pragma mark Script compatibility void Audio32::setSampleRate(uint16 rate) { if (rate > _maxAllowedSampleRate) { rate = _maxAllowedSampleRate; } _globalSampleRate = rate; } void Audio32::setBitDepth(uint8 depth) { if (depth > _maxAllowedBitDepth) { depth = _maxAllowedBitDepth; } _globalBitDepth = depth; } void Audio32::setNumOutputChannels(int16 numChannels) { if (numChannels > _maxAllowedOutputChannels) { numChannels = _maxAllowedOutputChannels; } _globalNumOutputChannels = numChannels; } #pragma mark - #pragma mark Robot int16 Audio32::findRobotChannel() const { Common::StackLock lock(_mutex); for (int16 i = 0; i < _numActiveChannels; ++i) { if (_channels[i].robot) { return i; } } return kNoExistingChannel; } bool Audio32::playRobotAudio(const RobotAudioStream::RobotAudioPacket &packet) { // Stop immediately if (packet.dataSize == 0) { warning("Stopping robot stream by zero-length packet"); return stopRobotAudio(); } // Flush and then stop if (packet.dataSize == -1) { warning("Stopping robot stream by negative-length packet"); return finishRobotAudio(); } Common::StackLock lock(_mutex); int16 channelIndex = findRobotChannel(); bool isNewChannel = false; if (channelIndex == kNoExistingChannel) { if (_numActiveChannels == _channels.size()) { return false; } channelIndex = _numActiveChannels++; isNewChannel = true; } AudioChannel &channel = getChannel(channelIndex); if (isNewChannel) { channel.id = ResourceId(); channel.resource = nullptr; channel.loop = false; channel.robot = true; channel.fadeStartTick = 0; channel.pausedAtTick = 0; channel.soundNode = NULL_REG; channel.volume = kMaxVolume; // TODO: SCI3 introduces stereo audio channel.pan = -1; channel.converter = Audio::makeRateConverter(RobotAudioStream::kRobotSampleRate, getRate(), false); // The RobotAudioStream buffer size is // ((bytesPerSample * channels * sampleRate * 2000ms) / 1000ms) & ~3 // where bytesPerSample = 2, channels = 1, and sampleRate = 22050 channel.stream = new RobotAudioStream(88200); _robotAudioPaused = false; if (_numActiveChannels == 1) { _startedAtTick = g_sci->getTickCount(); } } return static_cast(channel.stream)->addPacket(packet); } bool Audio32::queryRobotAudio(RobotAudioStream::StreamState &status) const { Common::StackLock lock(_mutex); const int16 channelIndex = findRobotChannel(); if (channelIndex == kNoExistingChannel) { status.bytesPlaying = 0; return false; } status = static_cast(getChannel(channelIndex).stream)->getStatus(); return true; } bool Audio32::finishRobotAudio() { Common::StackLock lock(_mutex); const int16 channelIndex = findRobotChannel(); if (channelIndex == kNoExistingChannel) { return false; } static_cast(getChannel(channelIndex).stream)->finish(); return true; } bool Audio32::stopRobotAudio() { Common::StackLock lock(_mutex); const int16 channelIndex = findRobotChannel(); if (channelIndex == kNoExistingChannel) { return false; } stop(channelIndex); return true; } #pragma mark - #pragma mark Playback uint16 Audio32::play(int16 channelIndex, const ResourceId resourceId, const bool autoPlay, const bool loop, const int16 volume, const reg_t soundNode, const bool monitor) { Common::StackLock lock(_mutex); freeUnusedChannels(); if (channelIndex != kNoExistingChannel) { AudioChannel &channel = getChannel(channelIndex); Audio::SeekableAudioStream *stream = dynamic_cast(channel.stream); if (stream == nullptr) { error("[Audio32::play]: Unable to cast stream for resource %s", resourceId.toString().c_str()); } if (channel.pausedAtTick) { resume(channelIndex); return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000); } warning("Tried to resume channel %s that was not paused", channel.id.toString().c_str()); return MIN(65534, 1 + stream->getLength().msecs() * 60 / 1000); } if (_numActiveChannels == _channels.size()) { warning("Audio mixer is full when trying to play %s", resourceId.toString().c_str()); return 0; } // NOTE: SCI engine itself normally searches in this order: // // For Audio36: // // 1. First, request a FD using Audio36 name and use it as the // source FD for reading the audio resource data. // 2a. If the returned FD is -1, or equals the audio map, or // equals the audio bundle, try to get the offset of the // data from the audio map, using the Audio36 name. // // If the returned offset is -1, this is not a valid resource; // return 0. Otherwise, set the read offset for the FD to the // returned offset. // 2b. Otherwise, use the FD as-is (it is a patch file), with zero // offset, and record it separately so it can be closed later. // // For plain audio: // // 1. First, request an Audio resource from the resource cache. If // one does not exist, make the same request for a Wave resource. // 2a. If an audio resource was discovered, record its memory ID // and clear the streaming FD // 2b. Otherwise, request an Audio FD. If one does not exist, make // the same request for a Wave FD. If neither exist, this is not // a valid resource; return 0. Otherwise, use the returned FD as // the streaming ID and set the memory ID to null. // // Once these steps are complete, the audio engine either has a file // descriptor + offset that it can use to read streamed audio, or it // has a memory ID that it can use to read cached audio. // // Here in ScummVM we just ask the resource manager to give us the // resource and we get a seekable stream. // TODO: This should be fixed to use streaming, which means // fixing the resource manager to allow streaming, which means // probably rewriting a bunch of the resource manager. Resource *resource = _resMan->findResource(resourceId, true); if (resource == nullptr) { return 0; } channelIndex = _numActiveChannels++; AudioChannel &channel = getChannel(channelIndex); channel.id = resourceId; channel.resource = resource; channel.loop = loop; channel.robot = false; channel.fadeStartTick = 0; channel.soundNode = soundNode; channel.volume = volume < 0 || volume > kMaxVolume ? (int)kMaxVolume : volume; // TODO: SCI3 introduces stereo audio channel.pan = -1; if (monitor) { _monitoredChannelIndex = channelIndex; } Common::SeekableReadStream *dataStream = channel.resourceStream = resource->makeStream(); if (detectSolAudio(*dataStream)) { channel.stream = makeSOLStream(dataStream, DisposeAfterUse::NO); } else if (detectWaveAudio(*dataStream)) { channel.stream = Audio::makeWAVStream(dataStream, DisposeAfterUse::NO); } else { byte flags = Audio::FLAG_LITTLE_ENDIAN; if (_globalBitDepth == 16) { flags |= Audio::FLAG_16BITS; } else { flags |= Audio::FLAG_UNSIGNED; } if (_globalNumOutputChannels == 2) { flags |= Audio::FLAG_STEREO; } channel.stream = Audio::makeRawStream(dataStream, _globalSampleRate, flags, DisposeAfterUse::NO); } channel.converter = Audio::makeRateConverter(channel.stream->getRate(), getRate(), channel.stream->isStereo(), false); // NOTE: SCI engine sets up a decompression buffer here for the audio // stream, plus writes information about the sample to the channel to // convert to the correct hardware output format, and allocates the // monitoring buffer to match the bitrate/samplerate/channels of the // original stream. We do not need to do any of these things since we // use audio streams, and allocate and fill the monitoring buffer // when reading audio data from the stream. Audio::SeekableAudioStream *stream = dynamic_cast(channel.stream); if (stream == nullptr) { error("[Audio32::play]: Unable to cast stream for resource %s", resourceId.toString().c_str()); } channel.duration = /* round up */ 1 + (stream->getLength().msecs() * 60 / 1000); const uint32 now = g_sci->getTickCount(); channel.pausedAtTick = autoPlay ? 0 : now; channel.startedAtTick = now; if (_numActiveChannels == 1) { _startedAtTick = now; } return channel.duration; } bool Audio32::resume(const int16 channelIndex) { if (channelIndex == kNoExistingChannel) { return false; } Common::StackLock lock(_mutex); const uint32 now = g_sci->getTickCount(); if (channelIndex == kAllChannels) { // Global pause in SSCI is an extra layer over // individual channel pauses, so only unpause channels // if there was not a global pause in place if (_pausedAtTick == 0) { return false; } for (int i = 0; i < _numActiveChannels; ++i) { AudioChannel &channel = getChannel(i); if (!channel.pausedAtTick) { channel.startedAtTick += now - _pausedAtTick; } } _startedAtTick += now - _pausedAtTick; _pausedAtTick = 0; return true; } else if (channelIndex == kRobotChannel) { for (int i = 0; i < _numActiveChannels; ++i) { AudioChannel &channel = getChannel(i); if (channel.robot) { channel.startedAtTick += now - channel.pausedAtTick; channel.pausedAtTick = 0; return true; } } } else { AudioChannel &channel = getChannel(channelIndex); if (channel.pausedAtTick) { channel.startedAtTick += now - channel.pausedAtTick; channel.pausedAtTick = 0; return true; } } return false; } bool Audio32::pause(const int16 channelIndex) { if (channelIndex == kNoExistingChannel) { return false; } Common::StackLock lock(_mutex); const uint32 now = g_sci->getTickCount(); bool didPause = false; if (channelIndex == kAllChannels) { if (_pausedAtTick == 0) { _pausedAtTick = now; didPause = true; } } else if (channelIndex == kRobotChannel) { _robotAudioPaused = true; for (int16 i = 0; i < _numActiveChannels; ++i) { AudioChannel &channel = getChannel(i); if (channel.robot) { channel.pausedAtTick = now; } } // NOTE: The actual engine returns false here regardless of whether // or not channels were paused } else { AudioChannel &channel = getChannel(channelIndex); if (channel.pausedAtTick == 0) { channel.pausedAtTick = now; didPause = true; } } return didPause; } int16 Audio32::stop(const int16 channelIndex) { Common::StackLock lock(_mutex); const int16 oldNumChannels = _numActiveChannels; if (channelIndex == kNoExistingChannel || oldNumChannels == 0) { return 0; } if (channelIndex == kAllChannels) { for (int i = 0; i < oldNumChannels; ++i) { freeChannel(i); } _numActiveChannels = 0; } else { freeChannel(channelIndex); --_numActiveChannels; for (int i = channelIndex; i < oldNumChannels - 1; ++i) { _channels[i] = _channels[i + 1]; if (i + 1 == _monitoredChannelIndex) { _monitoredChannelIndex = i; } } } // NOTE: SSCI stops the DSP interrupt and frees the // global decompression buffer here if there are no // more active channels return oldNumChannels; } int16 Audio32::getPosition(const int16 channelIndex) const { Common::StackLock lock(_mutex); if (channelIndex == kNoExistingChannel || _numActiveChannels == 0) { return -1; } // NOTE: SSCI treats this as an unsigned short except for // when the value is 65535, then it treats it as signed int position = -1; const uint32 now = g_sci->getTickCount(); // NOTE: The original engine also queried the audio driver to see whether // it thought that there was audio playback occurring via driver opcode 9 if (channelIndex == kAllChannels) { if (_pausedAtTick) { position = _pausedAtTick - _startedAtTick; } else { position = now - _startedAtTick; } } else { const AudioChannel &channel = getChannel(channelIndex); if (channel.pausedAtTick) { position = channel.pausedAtTick - channel.startedAtTick; } else if (_pausedAtTick) { position = _pausedAtTick - channel.startedAtTick; } else { position = now - channel.startedAtTick; } } return MIN(position, 65534); } void Audio32::setLoop(const int16 channelIndex, const bool loop) { Common::StackLock lock(_mutex); if (channelIndex < 0 || channelIndex >= _numActiveChannels) { return; } AudioChannel &channel = getChannel(channelIndex); channel.loop = loop; } reg_t Audio32::kernelPlay(const bool autoPlay, const int argc, const reg_t *const argv) { if (argc == 0) { return make_reg(0, _numActiveChannels); } const int16 channelIndex = findChannelByArgs(argc, argv, 0, NULL_REG); ResourceId resourceId; bool loop; int16 volume; bool monitor = false; reg_t soundNode = NULL_REG; if (argc >= 5) { resourceId = ResourceId(kResourceTypeAudio36, argv[0].toUint16(), argv[1].toUint16(), argv[2].toUint16(), argv[3].toUint16(), argv[4].toUint16()); if (argc < 6 || argv[5].toSint16() == 1) { loop = false; } else { // NOTE: Uses -1 for infinite loop. Presumably the // engine was supposed to allow counter loops at one // point, but ended up only using loop as a boolean. loop = (bool)argv[5].toSint16(); } if (argc < 7 || argv[6].toSint16() < 0 || argv[6].toSint16() > Audio32::kMaxVolume) { volume = Audio32::kMaxVolume; if (argc >= 7) { monitor = true; } } else { volume = argv[6].toSint16(); } } else { resourceId = ResourceId(kResourceTypeAudio, argv[0].toUint16()); if (argc < 2 || argv[1].toSint16() == 1) { loop = false; } else { loop = (bool)argv[1].toSint16(); } // TODO: SCI3 uses the 0x80 bit as a flag to // indicate "priority channel", but the volume is clamped // in this call to 0x7F so that flag never makes it into // the audio subsystem if (argc < 3 || argv[2].toSint16() < 0 || argv[2].toSint16() > Audio32::kMaxVolume) { volume = Audio32::kMaxVolume; if (argc >= 3) { monitor = true; } } else { volume = argv[2].toSint16(); } soundNode = argc == 4 ? argv[3] : NULL_REG; } return make_reg(0, play(channelIndex, resourceId, autoPlay, loop, volume, soundNode, monitor)); } #pragma mark - #pragma mark Effects int16 Audio32::getVolume(const int16 channelIndex) const { if (channelIndex < 0 || channelIndex >= _numActiveChannels) { return (_mixer->getVolumeForSoundType(Audio::Mixer::kSFXSoundType) + 1) * kMaxVolume / Audio::Mixer::kMaxMixerVolume; } Common::StackLock lock(_mutex); return getChannel(channelIndex).volume; } void Audio32::setVolume(const int16 channelIndex, int16 volume) { volume = MIN(kMaxVolume, volume); if (channelIndex == kAllChannels) { if (!g_sci->_guestAdditions->audio32SetVolumeHook(channelIndex, volume)) { setMasterVolume(volume); } } else if (channelIndex != kNoExistingChannel) { Common::StackLock lock(_mutex); getChannel(channelIndex).volume = volume; } } bool Audio32::fadeChannel(const int16 channelIndex, const int16 targetVolume, const int16 speed, const int16 steps, const bool stopAfterFade) { Common::StackLock lock(_mutex); if (channelIndex < 0 || channelIndex >= _numActiveChannels) { return false; } AudioChannel &channel = getChannel(channelIndex); if (channel.id.getType() != kResourceTypeAudio || channel.volume == targetVolume) { return false; } if (steps && speed) { channel.fadeStartTick = g_sci->getTickCount(); channel.fadeStartVolume = channel.volume; channel.fadeTargetVolume = targetVolume; channel.fadeDuration = speed * steps; channel.stopChannelOnFade = stopAfterFade; } else { setVolume(channelIndex, targetVolume); } return true; } bool Audio32::processFade(const int16 channelIndex) { Common::StackLock lock(_mutex); AudioChannel &channel = getChannel(channelIndex); if (channel.fadeStartTick) { const uint32 fadeElapsed = g_sci->getTickCount() - channel.fadeStartTick; if (fadeElapsed > channel.fadeDuration) { channel.fadeStartTick = 0; if (channel.stopChannelOnFade) { stop(channelIndex); return true; } else { setVolume(channelIndex, channel.fadeTargetVolume); } return false; } int volume; if (channel.fadeStartVolume > channel.fadeTargetVolume) { volume = channel.fadeStartVolume - fadeElapsed * (channel.fadeStartVolume - channel.fadeTargetVolume) / channel.fadeDuration; } else { volume = channel.fadeStartVolume + fadeElapsed * (channel.fadeTargetVolume - channel.fadeStartVolume) / channel.fadeDuration; } setVolume(channelIndex, volume); return false; } return false; } #pragma mark - #pragma mark Signal monitoring bool Audio32::hasSignal() const { Common::StackLock lock(_mutex); if (_monitoredChannelIndex == -1) { return false; } const Audio::st_sample_t *buffer = _monitoredBuffer; const Audio::st_sample_t *const end = _monitoredBuffer + _numMonitoredSamples; while (buffer != end) { const Audio::st_sample_t sample = *buffer++; if (sample > 1280 || sample < -1280) { return true; } } return false; } } // End of namespace Sci