/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "sound/softsynth/emumidi.h" #include "sci/sound/drivers/mididriver.h" #include "sci/resource.h" #include "common/file.h" #include "common/frac.h" #include "common/util.h" namespace Sci { /* #define DEBUG */ class MidiDriver_AmigaMac : public MidiDriver_Emulated { public: enum { kVoices = 4 }; MidiDriver_AmigaMac(Audio::Mixer *mixer) : MidiDriver_Emulated(mixer), _playSwitch(true), _masterVolume(15) { } virtual ~MidiDriver_AmigaMac() { } // MidiDriver int open(); void close(); void send(uint32 b); MidiChannel *allocateChannel() { return NULL; } MidiChannel *getPercussionChannel() { return NULL; } // AudioStream bool isStereo() const { return true; } int getRate() const { return _mixer->getOutputRate(); } // MidiDriver_Emulated void generateSamples(int16 *buf, int len); void setVolume(byte volume); void playSwitch(bool play); virtual uint32 property(int prop, uint32 param); private: enum { kModeLoop = 1 << 0, // Instrument looping flag kModePitch = 1 << 1 // Instrument pitch changes flag }; enum { kChannels = 10, kBaseFreq = 20000, // Samplerate of the instrument bank kPanLeft = 91, kPanRight = 164 }; struct Channel { int instrument; int volume; int pan; uint16 pitch; }; struct Envelope { int length; // Phase period length in samples int delta; // Velocity delta per period int target; // Target velocity }; struct Voice { int instrument; int note; int note_velocity; int velocity; int envelope; int envelope_samples; // Number of samples till next envelope event int decay; int looping; int hw_channel; frac_t offset; frac_t rate; }; struct InstrumentSample { char name[30]; int mode; int size; // Size of non-looping part in bytes int loop_size; // Starting offset and size of loop in bytes int transpose; // Transpose value in semitones Envelope envelope[4]; // Envelope int8 *samples; int8 *loop; int16 startNote; int16 endNote; bool isUnsigned; uint16 baseFreq; uint16 baseNote; int16 fixedNote; }; class Instrument : public Common::Array { public: char name[30]; }; struct Bank { char name[30]; uint size; Common::Array instruments; }; bool _isSci1; bool _playSwitch; int _masterVolume; int _frequency; Envelope _envDecay; Bank _bank; // Instrument bank double _freqTable[48]; Channel _channels[MIDI_CHANNELS]; /* Internal channels */ Voice _voices[kChannels]; void setEnvelope(Voice *channel, Envelope *envelope, int phase); void setOutputFrac(int voice); int interpolate(int8 *samples, frac_t offset, bool isUnsigned); void playInstrument(int16 *dest, Voice *channel, int count); void changeInstrument(int channel, int instrument); void stopChannel(int ch); void stopNote(int ch, int note); void startNote(int ch, int note, int velocity); InstrumentSample *findInstrument(int instrument, int note); void pitchWheel(int ch, uint16 pitch); bool loadInstrumentsSCI0(Common::File &file); bool loadInstrumentsSCI0Mac(Common::SeekableReadStream &file); InstrumentSample *readInstrumentSCI0(Common::SeekableReadStream &file, int *id); bool loadInstrumentsSCI1(Common::SeekableReadStream &file); }; void MidiDriver_AmigaMac::setEnvelope(Voice *channel, Envelope *envelope, int phase) { channel->envelope = phase; channel->envelope_samples = envelope[phase].length; if (phase == 0) channel->velocity = channel->note_velocity / 2; else channel->velocity = envelope[phase - 1].target; } int MidiDriver_AmigaMac::interpolate(int8 *samples, frac_t offset, bool isUnsigned) { int x = fracToInt(offset); if (isUnsigned) { int s1 = (byte)samples[x] - 0x80; int s2 = (byte)samples[x + 1] - 0x80; int diff = (s2 - s1) << 8; return (s1 << 8) + fracToInt(diff * (offset & FRAC_LO_MASK)); } int diff = (samples[x + 1] - samples[x]) << 8; return (samples[x] << 8) + fracToInt(diff * (offset & FRAC_LO_MASK)); } void MidiDriver_AmigaMac::playInstrument(int16 *dest, Voice *channel, int count) { int index = 0; int vol = _channels[channel->hw_channel].volume; InstrumentSample *instrument = findInstrument(channel->instrument, channel->note); while (1) { /* Available source samples until end of segment */ frac_t lin_avail; uint32 seg_end, rem, i, amount; int8 *samples; if (channel->looping && instrument->loop) { samples = instrument->loop; seg_end = instrument->loop_size; } else { samples = instrument->samples; seg_end = instrument->size; } lin_avail = intToFrac(seg_end) - channel->offset; rem = count - index; /* Amount of destination samples that we will compute this iteration */ amount = lin_avail / channel->rate; if (lin_avail % channel->rate) amount++; if (amount > rem) amount = rem; /* Stop at next envelope event */ if ((channel->envelope_samples != -1) && (amount > (uint32)channel->envelope_samples)) amount = channel->envelope_samples; for (i = 0; i < amount; i++) { dest[index++] = interpolate(samples, channel->offset, instrument->isUnsigned) * channel->velocity / 64 * channel->note_velocity * vol / (127 * 127); channel->offset += channel->rate; } if (channel->envelope_samples != -1) channel->envelope_samples -= amount; if (channel->envelope_samples == 0) { Envelope *envelope; int delta, target, velocity; if (channel->decay) envelope = &_envDecay; else envelope = &instrument->envelope[channel->envelope]; delta = envelope->delta; target = envelope->target; velocity = channel->velocity - envelope->delta; /* Check whether we have reached the velocity target for the current phase */ if ((delta >= 0 && velocity <= target) || (delta < 0 && velocity >= target)) { channel->velocity = target; /* Stop note after velocity has dropped to 0 */ if (target == 0) { channel->note = -1; break; } else switch (channel->envelope) { case 0: case 2: /* Go to next phase */ setEnvelope(channel, instrument->envelope, channel->envelope + 1); break; case 1: case 3: /* Stop envelope */ channel->envelope_samples = -1; break; } } else { /* We haven't reached the target yet */ channel->envelope_samples = envelope->length; channel->velocity = velocity; } } if (index == count) break; if ((uint32)fracToInt(channel->offset) >= seg_end) { if (instrument->mode & kModeLoop) { /* Loop the samples */ channel->offset -= intToFrac(seg_end); channel->looping = 1; } else { /* All samples have been played */ channel->note = -1; break; } } } } void MidiDriver_AmigaMac::changeInstrument(int channel, int instrument) { #ifdef DEBUG if (_bank.instruments[instrument][0]) printf("[sfx:seq:amiga] Setting channel %i to \"%s\" (%i)\n", channel, _bank.instruments[instrument]->name, instrument); else warning("[sfx:seq:amiga] instrument %i does not exist (channel %i)", instrument, channel); #endif _channels[channel].instrument = instrument; } void MidiDriver_AmigaMac::stopChannel(int ch) { int i; /* Start decay phase for note on this hw channel, if any */ for (i = 0; i < kChannels; i++) if (_voices[i].note != -1 && _voices[i].hw_channel == ch && !_voices[i].decay) { /* Trigger fast decay envelope */ _voices[i].decay = 1; _voices[i].envelope_samples = _envDecay.length; break; } } void MidiDriver_AmigaMac::pitchWheel(int ch, uint16 pitch) { _channels[ch].pitch = pitch; for (int i = 0; i < kChannels; i++) if (_voices[i].note != -1 && _voices[i].hw_channel == ch) setOutputFrac(i); } void MidiDriver_AmigaMac::stopNote(int ch, int note) { int channel; for (channel = 0; channel < kChannels; channel++) if (_voices[channel].note == note && _voices[channel].hw_channel == ch && !_voices[channel].decay) break; if (channel == kChannels) { #ifdef DEBUG warning("[sfx:seq:amiga] cannot stop note %i on channel %i", note, ch); #endif return; } InstrumentSample *instrument = findInstrument(_voices[channel].instrument, note); // FIXME: SCI1 envelope support is not perfect yet /* Start the envelope phases for note-off if looping is on and envelope is enabled */ if ((instrument->mode & kModeLoop) && (instrument->envelope[0].length != 0)) setEnvelope(&_voices[channel], instrument->envelope, 2); } MidiDriver_AmigaMac::InstrumentSample *MidiDriver_AmigaMac::findInstrument(int instrument, int note) { if ((uint)instrument >= _bank.instruments.size()) return 0; for (uint32 i = 0; i < _bank.instruments[instrument].size(); i++) { InstrumentSample *sample = _bank.instruments[instrument][i]; if (note >= sample->startNote && note <= sample->endNote) return sample; } return 0; } void MidiDriver_AmigaMac::setOutputFrac(int voice) { InstrumentSample *instrument = findInstrument(_voices[voice].instrument, _voices[voice].note); int fnote = 0; if (instrument->fixedNote == -1) { fnote = _voices[voice].note; // Handle SCI0-style transposing here if (!_isSci1) fnote += instrument->transpose; if (fnote < 0 || fnote > 127) { warning("[sfx:seq:amiga] illegal note %i", fnote); return; } } else fnote = instrument->fixedNote; // Compute rate for note int mulFact = 1, divFact = 1; fnote -= instrument->baseNote; fnote *= 4; // FIXME: check how SSCI maps this fnote += (_channels[_voices[voice].hw_channel].pitch - 0x2000) / 169; while (fnote < 0) { divFact *= 2; fnote += 12 * 4; } while (fnote >= 12 * 4) { mulFact *= 2; fnote -= 12 * 4; } double freq = _freqTable[fnote] * instrument->baseFreq * mulFact / divFact; // Handle SCI1-style transposing here if (instrument->transpose && _isSci1) freq = freq + ((_freqTable[4] - 1.0) * freq * (double)instrument->transpose / (double)16); _voices[voice].rate = doubleToFrac(freq / _frequency); } void MidiDriver_AmigaMac::startNote(int ch, int note, int velocity) { int channel; if (_channels[ch].instrument < 0 || _channels[ch].instrument > 255) { warning("[sfx:seq:amiga] invalid instrument %i on channel %i", _channels[ch].instrument, ch); return; } InstrumentSample *instrument = findInstrument(_channels[ch].instrument, note); if (!instrument) { warning("[sfx:seq:amiga] instrument %i does not exist", _channels[ch].instrument); return; } for (channel = 0; channel < kChannels; channel++) if (_voices[channel].note == -1) break; if (channel == kChannels) { warning("[sfx:seq:amiga] could not find a free channel"); return; } stopChannel(ch); _voices[channel].instrument = _channels[ch].instrument; _voices[channel].note = note; _voices[channel].note_velocity = velocity; if ((instrument->mode & kModeLoop) && (instrument->envelope[0].length != 0)) setEnvelope(&_voices[channel], instrument->envelope, 0); else { _voices[channel].velocity = 64; _voices[channel].envelope_samples = -1; } _voices[channel].offset = 0; _voices[channel].hw_channel = ch; _voices[channel].decay = 0; _voices[channel].looping = 0; setOutputFrac(channel); } MidiDriver_AmigaMac::InstrumentSample *MidiDriver_AmigaMac::readInstrumentSCI0(Common::SeekableReadStream &file, int *id) { byte header[61]; if (file.read(header, 61) < 61) { warning("[sfx:seq:amiga] failed to read instrument header"); return NULL; } int seg_size[3]; seg_size[0] = READ_BE_UINT16(header + 35) * 2; seg_size[1] = READ_BE_UINT16(header + 41) * 2; seg_size[2] = READ_BE_UINT16(header + 47) * 2; InstrumentSample *instrument = new InstrumentSample; instrument->startNote = 0; instrument->endNote = 127; instrument->isUnsigned = false; instrument->baseFreq = kBaseFreq; instrument->baseNote = 101; instrument->fixedNote = 101; instrument->mode = header[33]; instrument->transpose = (int8) header[34]; for (int i = 0; i < 4; i++) { int length = (int8) header[49 + i]; if (length == 0 && i > 0) length = 256; instrument->envelope[i].length = length * _frequency / 60; instrument->envelope[i].delta = (int8)header[53 + i]; instrument->envelope[i].target = header[57 + i]; } /* Final target must be 0 */ instrument->envelope[3].target = 0; int loop_offset = READ_BE_UINT32(header + 37) & ~1; int size = seg_size[0] + seg_size[1] + seg_size[2]; *id = READ_BE_UINT16(header); strncpy(instrument->name, (char *) header + 2, 29); instrument->name[29] = 0; #ifdef DEBUG printf("[sfx:seq:amiga] Reading instrument %i: \"%s\" (%i bytes)\n", *id, instrument->name, size); printf(" Mode: %02x\n", instrument->mode); printf(" Looping: %s\n", instrument->mode & kModeLoop ? "on" : "off"); printf(" Pitch changes: %s\n", instrument->mode & kModePitch ? "on" : "off"); printf(" Segment sizes: %i %i %i\n", seg_size[0], seg_size[1], seg_size[2]); printf(" Segment offsets: 0 %i %i\n", loop_offset, read_int32(header + 43)); #endif instrument->samples = (int8 *) malloc(size + 1); if (file.read(instrument->samples, size) < (unsigned int)size) { warning("[sfx:seq:amiga] failed to read instrument samples"); free(instrument->samples); delete instrument; return NULL; } if (instrument->mode & kModePitch) instrument->fixedNote = -1; if (instrument->mode & kModeLoop) { if (loop_offset + seg_size[1] > size) { #ifdef DEBUG warning("[sfx:seq:amiga] looping samples extend %i bytes past end of sample block", loop_offset + seg_size[1] - size); #endif seg_size[1] = size - loop_offset; } if (seg_size[1] < 0) { warning("[sfx:seq:amiga] invalid looping point"); free(instrument->samples); delete instrument; return NULL; } instrument->size = seg_size[0]; instrument->loop_size = seg_size[1]; instrument->loop = (int8*)malloc(instrument->loop_size + 1); memcpy(instrument->loop, instrument->samples + loop_offset, instrument->loop_size); instrument->samples[instrument->size] = instrument->loop[0]; instrument->loop[instrument->loop_size] = instrument->loop[0]; } else { instrument->loop = NULL; instrument->loop_size = 0; instrument->size = size; instrument->samples[instrument->size] = 0; } return instrument; } uint32 MidiDriver_AmigaMac::property(int prop, uint32 param) { switch(prop) { case MIDI_PROP_MASTER_VOLUME: if (param != 0xffff) _masterVolume = param; return _masterVolume; default: break; } return 0; } int MidiDriver_AmigaMac::open() { _isSci1 = false; for (int i = 0; i < 48; i++) _freqTable[i] = pow(2, i / (double)48); _frequency = _mixer->getOutputRate(); _envDecay.length = _frequency / (32 * 64); _envDecay.delta = 1; _envDecay.target = 0; for (uint i = 0; i < kChannels; i++) { _voices[i].note = -1; _voices[i].hw_channel = 0; } for (uint i = 0; i < MIDI_CHANNELS; i++) { _channels[i].instrument = -1; _channels[i].volume = 127; _channels[i].pan = (i % 4 == 0 || i % 4 == 3 ? kPanLeft : kPanRight); _channels[i].pitch = 0x2000; } Common::File file; if (file.open("bank.001")) { if (!loadInstrumentsSCI0(file)) { file.close(); return Common::kUnknownError; } file.close(); } else { ResourceManager *resMan = g_sci->getResMan(); Resource *resource = resMan->findResource(ResourceId(kResourceTypePatch, 7), false); if (!resource) resource = resMan->findResource(ResourceId(kResourceTypePatch, 9), false); // If we have a patch by this point, it's SCI1 if (resource) _isSci1 = true; // Check for the SCI0 Mac patch if (!resource) resource = resMan->findResource(ResourceId(kResourceTypePatch, 200), false); if (!resource) { warning("Could not open patch for Amiga sound driver"); return Common::kUnknownError; } Common::MemoryReadStream stream(resource->data, resource->size); if (_isSci1) { if (!loadInstrumentsSCI1(stream)) return Common::kUnknownError; } else if (!loadInstrumentsSCI0Mac(stream)) return Common::kUnknownError; } MidiDriver_Emulated::open(); _mixer->playStream(Audio::Mixer::kPlainSoundType, &_mixerSoundHandle, this, -1, _mixer->kMaxChannelVolume, 0, DisposeAfterUse::NO); return Common::kNoError; } void MidiDriver_AmigaMac::close() { _mixer->stopHandle(_mixerSoundHandle); for (uint i = 0; i < _bank.size; i++) { for (uint32 j = 0; j < _bank.instruments[i].size(); j++) { if (_bank.instruments[i][j]) { if (_bank.instruments[i][j]->loop) free(_bank.instruments[i][j]->loop); free(_bank.instruments[i][j]->samples); delete _bank.instruments[i][j]; } } } } void MidiDriver_AmigaMac::playSwitch(bool play) { _playSwitch = play; } void MidiDriver_AmigaMac::setVolume(byte volume_) { _masterVolume = volume_; } void MidiDriver_AmigaMac::send(uint32 b) { byte command = b & 0xf0; byte channel = b & 0xf; byte op1 = (b >> 8) & 0xff; byte op2 = (b >> 16) & 0xff; switch (command) { case 0x80: stopNote(channel, op1); break; case 0x90: if (op2 > 0) startNote(channel, op1, op2); else stopNote(channel, op1); break; case 0xb0: switch (op1) { case 0x07: _channels[channel].volume = op2; break; case 0x0a: #ifdef DEBUG warning("[sfx:seq:amiga] ignoring pan 0x%02x event for channel %i", op2, channel); #endif break; case 0x7b: stopChannel(channel); break; default: warning("[sfx:seq:amiga] unknown control event 0x%02x", op1); } break; case 0xc0: changeInstrument(channel, op1); break; case 0xe0: pitchWheel(channel, (op2 << 7) | op1); break; default: warning("[sfx:seq:amiga] unknown event %02x", command); } } void MidiDriver_AmigaMac::generateSamples(int16 *data, int len) { if (len == 0) return; int16 *buffers = (int16*)malloc(len * 2 * kChannels); memset(buffers, 0, len * 2 * kChannels); /* Generate samples for all notes */ for (int i = 0; i < kChannels; i++) if (_voices[i].note >= 0) playInstrument(buffers + i * len, &_voices[i], len); if (isStereo()) { for (int j = 0; j < len; j++) { int mixedl = 0, mixedr = 0; /* Mix and pan */ for (int i = 0; i < kChannels; i++) { mixedl += buffers[i * len + j] * (256 - _channels[_voices[i].hw_channel].pan); mixedr += buffers[i * len + j] * _channels[_voices[i].hw_channel].pan; } /* Adjust volume */ data[2 * j] = mixedl * _masterVolume >> 13; data[2 * j + 1] = mixedr * _masterVolume >> 13; } } else { for (int j = 0; j < len; j++) { int mixed = 0; /* Mix */ for (int i = 0; i < kChannels; i++) mixed += buffers[i * len + j]; /* Adjust volume */ data[j] = mixed * _masterVolume >> 6; } } free(buffers); } bool MidiDriver_AmigaMac::loadInstrumentsSCI0(Common::File &file) { _isSci1 = false; byte header[40]; if (file.read(header, 40) < 40) { warning("[sfx:seq:amiga] failed to read header of file bank.001"); return false; } _bank.size = READ_BE_UINT16(header + 38); strncpy(_bank.name, (char *) header + 8, 29); _bank.name[29] = 0; #ifdef DEBUG printf("[sfx:seq:amiga] Reading %i instruments from bank \"%s\"\n", _bank.size, _bank.name); #endif for (uint i = 0; i < _bank.size; i++) { int id; InstrumentSample *instrument = readInstrumentSCI0(file, &id); if (!instrument) { warning("[sfx:seq:amiga] failed to read bank.001"); return false; } if (id < 0 || id > 255) { warning("[sfx:seq:amiga] Error: instrument ID out of bounds"); return false; } if ((uint)id >= _bank.instruments.size()) _bank.instruments.resize(id + 1); _bank.instruments[id].push_back(instrument); memcpy(_bank.instruments[id].name, instrument->name, sizeof(instrument->name)); } return true; } bool MidiDriver_AmigaMac::loadInstrumentsSCI0Mac(Common::SeekableReadStream &file) { byte header[40]; if (file.read(header, 40) < 40) { warning("[sfx:seq:amiga] failed to read header of file patch.200"); return false; } _bank.size = 128; strncpy(_bank.name, (char *) header + 8, 29); _bank.name[29] = 0; #ifdef DEBUG printf("[sfx:seq:amiga] Reading %i instruments from bank \"%s\"\n", _bank.size, _bank.name); #endif Common::Array instrumentOffsets; instrumentOffsets.resize(_bank.size); _bank.instruments.resize(_bank.size); for (uint32 i = 0; i < _bank.size; i++) instrumentOffsets[i] = file.readUint32BE(); for (uint i = 0; i < _bank.size; i++) { // 0 signifies it doesn't exist if (instrumentOffsets[i] == 0) continue; file.seek(instrumentOffsets[i]); uint16 id = file.readUint16BE(); if (id != i) error("Instrument number mismatch"); InstrumentSample *instrument = new InstrumentSample; instrument->startNote = 0; instrument->endNote = 127; instrument->isUnsigned = true; instrument->baseFreq = kBaseFreq; instrument->baseNote = 101; instrument->fixedNote = 101; instrument->mode = file.readUint16BE(); // Read in the offsets int32 seg_size[3]; seg_size[0] = file.readUint32BE(); seg_size[1] = file.readUint32BE(); seg_size[2] = file.readUint32BE(); instrument->transpose = file.readUint16BE(); for (byte j = 0; j < 4; j++) { int length = (int8)file.readByte(); if (length == 0 && j > 0) length = 256; instrument->envelope[j].length = length * _frequency / 60; instrument->envelope[j].delta = (int8)file.readByte(); instrument->envelope[j].target = file.readByte(); } // Final target must be 0 instrument->envelope[3].target = 0; file.read(instrument->name, 30); if (instrument->mode & kModePitch) instrument->fixedNote = -1; uint32 size = seg_size[2]; uint32 loop_offset = seg_size[0]; instrument->samples = (int8 *)malloc(size + 1); if (file.read(instrument->samples, size) < size) { warning("[sfx:seq:amiga] failed to read instrument sample"); free(instrument->samples); delete instrument; continue; } if (instrument->mode & kModeLoop) { instrument->size = seg_size[0]; instrument->loop_size = seg_size[1] - seg_size[0]; instrument->loop = (int8*)malloc(instrument->loop_size + 1); memcpy(instrument->loop, instrument->samples + loop_offset, instrument->loop_size); instrument->samples[instrument->size] = instrument->loop[0]; instrument->loop[instrument->loop_size] = instrument->loop[0]; } else { instrument->loop = NULL; instrument->loop_size = 0; instrument->size = size; instrument->samples[instrument->size] = (int8)0x80; } _bank.instruments[id].push_back(instrument); memcpy(_bank.instruments[id].name, instrument->name, sizeof(instrument->name)); } return true; } bool MidiDriver_AmigaMac::loadInstrumentsSCI1(Common::SeekableReadStream &file) { _bank.size = 128; Common::Array instrumentOffsets; instrumentOffsets.resize(_bank.size); _bank.instruments.resize(_bank.size); for (uint32 i = 0; i < _bank.size; i++) instrumentOffsets[i] = file.readUint32BE(); for (uint32 i = 0; i < _bank.size; i++) { // 0 signifies it doesn't exist if (instrumentOffsets[i] == 0) continue; file.seek(instrumentOffsets[i]); // Read in the instrument name file.read(_bank.instruments[i].name, 10); // last two bytes are always 0 for (uint32 j = 0; ; j++) { InstrumentSample *sample = new InstrumentSample; memset(sample, 0, sizeof(InstrumentSample)); sample->startNote = file.readSint16BE(); // startNote being -1 signifies we're done with this instrument if (sample->startNote == -1) { delete sample; break; } sample->endNote = file.readSint16BE(); uint32 samplePtr = file.readUint32BE(); sample->transpose = file.readSint16BE(); for (int env = 0; env < 3; env++) { sample->envelope[env].length = file.readByte() * _frequency / 60; sample->envelope[env].delta = (env == 0 ? 10 : -10); sample->envelope[env].target = file.readByte(); } sample->envelope[3].length = 0; sample->fixedNote = file.readSint16BE(); int16 loop = file.readSint16BE(); uint32 nextSamplePos = file.pos(); file.seek(samplePtr); file.read(sample->name, 8); sample->isUnsigned = file.readUint16BE() == 0; uint16 phase1Offset = file.readUint16BE(); uint16 phase1End = file.readUint16BE(); uint16 phase2Offset = file.readUint16BE(); uint16 phase2End = file.readUint16BE(); sample->baseNote = file.readUint16BE(); uint32 periodTableOffset = file.readUint32BE(); uint32 sampleDataPos = file.pos(); sample->size = phase1End - phase1Offset + 1; sample->loop_size = phase2End - phase2Offset + 1; sample->samples = (int8 *)malloc(sample->size + 1); file.seek(phase1Offset + sampleDataPos); file.read(sample->samples, sample->size); sample->samples[sample->size] = (sample->isUnsigned ? (int8)0x80 : 0); if (loop == 0 && sample->loop_size > 1) { sample->loop = (int8 *)malloc(sample->loop_size + 1); file.seek(phase2Offset + sampleDataPos); file.read(sample->loop, sample->loop_size); sample->mode |= kModeLoop; sample->samples[sample->size] = sample->loop[0]; sample->loop[sample->loop_size] = sample->loop[0]; } _bank.instruments[i].push_back(sample); file.seek(periodTableOffset + 0xe0); sample->baseFreq = file.readUint16BE(); file.seek(nextSamplePos); } } return true; } class MidiPlayer_AmigaMac : public MidiPlayer { public: MidiPlayer_AmigaMac(SciVersion version) : MidiPlayer(version) { _driver = new MidiDriver_AmigaMac(g_system->getMixer()); } byte getPlayId(); int getPolyphony() const { return MidiDriver_AmigaMac::kVoices; } bool hasRhythmChannel() const { return false; } void setVolume(byte volume) { static_cast(_driver)->setVolume(volume); } void playSwitch(bool play) { static_cast(_driver)->playSwitch(play); } void loadInstrument(int idx, byte *data); }; MidiPlayer *MidiPlayer_AmigaMac_create(SciVersion version) { return new MidiPlayer_AmigaMac(version); } byte MidiPlayer_AmigaMac::getPlayId() { if (_version > SCI_VERSION_0_LATE) return 0x06; return 0x40; } } // End of namespace Sci