/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ // Main vocabulary support functions and word lookup #include "sci/vocabulary.h" #include "sci/resource.h" #include "sci/engine/state.h" #include "sci/engine/kernel.h" #include "sci/console.h" namespace Sci { #if 0 #define VOCAB_RESOURCE_CLASSES 996 /** * Vocabulary class names. * These strange names were taken from an SCI01 interpreter. */ const char *class_names[] = {"", "", "conj", // conjunction "ass", // ? "pos", // preposition ? "art", // article "adj", // adjective "pron", // pronoun "noun", // noun "auxv", // auxillary verb "adv", // adverb "verb", // verb "", "", "", "" }; int *vocab_get_classes(ResourceManager *resMan, int* count) { Resource* r; int *c; unsigned int i; if ((r = resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_CLASSES), 0)) == NULL) return 0; c = (int *)malloc(sizeof(int) * r->size / 2); for (i = 2; i < r->size; i += 4) { c[i/4] = READ_LE_UINT16(r->data + i); } *count = r->size / 4; return c; } int vocab_get_class_count(ResourceManager *resMan) { Resource* r; if ((r = resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_CLASSES), 0)) == 0) return 0; return r->size / 4; } #endif Vocabulary::Vocabulary(ResourceManager *resMan) : _resMan(resMan) { _parserRules = NULL; _vocabVersion = kVocabularySCI0; memset(_parserNodes, 0, sizeof(_parserNodes)); // Mark parse tree as unused _parserNodes[0].type = kParseTreeLeafNode; _parserNodes[0].content.value = 0; _synonyms.clear(); // No synonyms debug(2, "Initializing vocabulary"); if (getSciVersion() <= SCI_VERSION_1_EGA && loadParserWords()) { loadSuffixes(); if (loadBranches()) // Now build a GNF grammar out of this _parserRules = buildGNF(); } else { debug(2, "Assuming that this game does not use a parser."); _parserRules = NULL; } } Vocabulary::~Vocabulary() { freeRuleList(_parserRules); freeSuffixes(); } bool Vocabulary::loadParserWords() { char currentword[256] = ""; // They're not going to use words longer than 255 ;-) int currentwordpos = 0; // First try to load the SCI0 vocab resource. Resource *resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI0_MAIN_VOCAB), 0); if (!resource) { warning("SCI0: Could not find a main vocabulary, trying SCI01"); resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI1_MAIN_VOCAB), 0); _vocabVersion = kVocabularySCI1; } if (!resource) { warning("SCI1: Could not find a main vocabulary"); return false; // NOT critical: SCI1 games and some demos don't have one! } unsigned int seeker; if (_vocabVersion == kVocabularySCI1) seeker = 255 * 2; // vocab.900 starts with 255 16-bit pointers which we don't use else seeker = 26 * 2; // vocab.000 starts with 26 16-bit pointers which we don't use if (resource->size < seeker) { warning("Invalid main vocabulary encountered: Too small"); return false; // Now this ought to be critical, but it'll just cause parse() and said() not to work } _parserWords.clear(); while (seeker < resource->size) { byte c; currentwordpos = resource->data[seeker++]; // Parts of previous words may be re-used if (_vocabVersion == kVocabularySCI1) { c = 1; while (seeker < resource->size && currentwordpos < 255 && c) { c = resource->data[seeker++]; currentword[currentwordpos++] = c; } if (seeker == resource->size) { warning("SCI1: Vocabulary not usable, disabling"); _parserWords.clear(); return false; } } else { do { c = resource->data[seeker++]; currentword[currentwordpos++] = c & 0x7f; // 0x80 is used to terminate the string } while (c < 0x80); } currentword[currentwordpos] = 0; // Now decode class and group: c = resource->data[seeker + 1]; ResultWord newWord; newWord._class = ((resource->data[seeker]) << 4) | ((c & 0xf0) >> 4); newWord._group = (resource->data[seeker + 2]) | ((c & 0x0f) << 8); // Add the word to the list _parserWords[currentword] = newWord; seeker += 3; } return true; } const char *Vocabulary::getAnyWordFromGroup(int group) { if (group == VOCAB_MAGIC_NUMBER_GROUP) return "{number}"; for (WordMap::const_iterator i = _parserWords.begin(); i != _parserWords.end(); ++i) if (i->_value._group == group) return i->_key.c_str(); return "{invalid}"; } bool Vocabulary::loadSuffixes() { // Determine if we can find a SCI1 suffix vocabulary first Resource* resource = NULL; if (_vocabVersion == kVocabularySCI0) resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI0_SUFFIX_VOCAB), 1); else resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI1_SUFFIX_VOCAB), 1); if (!resource) return false; // No vocabulary found unsigned int seeker = 1; while ((seeker < resource->size - 1) && (resource->data[seeker + 1] != 0xff)) { suffix_t suffix; suffix.alt_suffix = (const char *)resource->data + seeker; suffix.alt_suffix_length = strlen(suffix.alt_suffix); seeker += suffix.alt_suffix_length + 1; // Hit end of string suffix.class_mask = (int16)READ_BE_UINT16(resource->data + seeker); seeker += 2; // Beginning of next string - skip leading '*' seeker++; suffix.word_suffix = (const char *)resource->data + seeker; suffix.word_suffix_length = strlen(suffix.word_suffix); seeker += suffix.word_suffix_length + 1; suffix.result_class = (int16)READ_BE_UINT16(resource->data + seeker); seeker += 3; // Next entry _parserSuffixes.push_back(suffix); } return true; } void Vocabulary::freeSuffixes() { Resource* resource = NULL; if (_vocabVersion == kVocabularySCI0) resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI0_SUFFIX_VOCAB), 0); else resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI1_SUFFIX_VOCAB), 0); if (resource) _resMan->unlockResource(resource); _parserSuffixes.clear(); } bool Vocabulary::loadBranches() { Resource *resource = NULL; if (_vocabVersion == kVocabularySCI0) resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI0_PARSE_TREE_BRANCHES), 0); else resource = _resMan->findResource(ResourceId(kResourceTypeVocab, VOCAB_RESOURCE_SCI1_PARSE_TREE_BRANCHES), 0); _parserBranches.clear(); if (!resource) return false; // No parser tree data found int branches_nr = resource->size / 20; if (branches_nr == 0) { warning("Parser tree data is empty"); return false; } _parserBranches.resize(branches_nr); for (int i = 0; i < branches_nr; i++) { byte *base = resource->data + i * 20; _parserBranches[i].id = (int16)READ_LE_UINT16(base); for (int k = 0; k < 9; k++) _parserBranches[i].data[k] = READ_LE_UINT16(base + 2 + 2 * k); _parserBranches[i].data[9] = 0; // Always terminate } if (!_parserBranches[branches_nr - 1].id) // branch lists may be terminated by empty rules _parserBranches.remove_at(branches_nr - 1); return true; } ResultWord Vocabulary::lookupWord(const char *word, int word_len) { Common::String tempword(word, word_len); // Remove all dashes from tempword for (uint i = 0; i < tempword.size(); ) { if (tempword[i] == '-') tempword.deleteChar(i); else ++i; } // Look it up: WordMap::iterator dict_word = _parserWords.find(tempword); // Match found? Return it! if (dict_word != _parserWords.end()) { return dict_word->_value; } // Now try all suffixes for (SuffixList::const_iterator suffix = _parserSuffixes.begin(); suffix != _parserSuffixes.end(); ++suffix) if (suffix->alt_suffix_length <= word_len) { int suff_index = word_len - suffix->alt_suffix_length; // Offset of the start of the suffix if (scumm_strnicmp(suffix->alt_suffix, word + suff_index, suffix->alt_suffix_length) == 0) { // Suffix matched! // Terminate word at suffix start position...: Common::String tempword2(word, MIN(word_len, suff_index)); // ...and append "correct" suffix tempword2 += Common::String(suffix->word_suffix, suffix->word_suffix_length); dict_word = _parserWords.find(tempword2); if ((dict_word != _parserWords.end()) && (dict_word->_value._class & suffix->class_mask)) { // Found it? // Use suffix class ResultWord tmp = dict_word->_value; tmp._class = suffix->result_class; return tmp; } } } // No match so far? Check if it's a number. ResultWord retval = { -1, -1 }; char *tester; if ((strtol(tempword.c_str(), &tester, 10) >= 0) && (*tester == '\0')) { // Do we have a complete number here? ResultWord tmp = { VOCAB_CLASS_NUMBER, VOCAB_MAGIC_NUMBER_GROUP }; retval = tmp; } return retval; } void Vocabulary::decipherSaidBlock(byte *addr) { byte nextitem; do { nextitem = *addr++; if (nextitem < 0xf0) { nextitem = nextitem << 8 | *addr++; printf(" %s[%03x]", getAnyWordFromGroup(nextitem), nextitem); nextitem = 42; // Make sure that group 0xff doesn't abort } else switch (nextitem) { case 0xf0: printf(" ,"); break; case 0xf1: printf(" &"); break; case 0xf2: printf(" /"); break; case 0xf3: printf(" ("); break; case 0xf4: printf(" )"); break; case 0xf5: printf(" ["); break; case 0xf6: printf(" ]"); break; case 0xf7: printf(" #"); break; case 0xf8: printf(" <"); break; case 0xf9: printf(" >"); break; case 0xff: break; } } while (nextitem != 0xff); printf("\n"); } bool Vocabulary::tokenizeString(ResultWordList &retval, const char *sentence, char **error) { const char *lastword = sentence; int pos_in_sentence = 0; char c; int wordlen = 0; *error = NULL; do { c = sentence[pos_in_sentence++]; if (isalnum(c) || (c == '-' && wordlen)) ++wordlen; // Continue on this word */ // Words may contain a '-', but may not // start with one. else { if (wordlen) { // Finished a word? ResultWord lookup_result = lookupWord(lastword, wordlen); // Look it up if (lookup_result._class == -1) { // Not found? *error = (char *)calloc(wordlen + 1, 1); strncpy(*error, lastword, wordlen); // Set the offending word retval.clear(); return false; // And return with error } // Copy into list retval.push_back(lookup_result); } lastword = sentence + pos_in_sentence; wordlen = 0; } } while (c); // Until terminator is hit return true; } void Vocabulary::printSuffixes() const { char word_buf[256], alt_buf[256]; Console *con = ((SciEngine *)g_engine)->getSciDebugger(); int i = 0; for (SuffixList::const_iterator suf = _parserSuffixes.begin(); suf != _parserSuffixes.end(); ++suf) { strncpy(word_buf, suf->word_suffix, suf->word_suffix_length); word_buf[suf->word_suffix_length] = 0; strncpy(alt_buf, suf->alt_suffix, suf->alt_suffix_length); alt_buf[suf->alt_suffix_length] = 0; con->DebugPrintf("%4d: (%03x) -%12s => -%12s (%03x)\n", i, suf->class_mask, word_buf, alt_buf, suf->result_class); ++i; } } void Vocabulary::printParserWords() const { Console *con = ((SciEngine *)g_engine)->getSciDebugger(); int j = 0; for (WordMap::iterator i = _parserWords.begin(); i != _parserWords.end(); ++i) { con->DebugPrintf("%4d: %03x [%03x] %20s |", j, i->_value._class, i->_value._group, i->_key.c_str()); if (j % 3 == 0) con->DebugPrintf("\n"); j++; } con->DebugPrintf("\n"); } void _vocab_recursive_ptree_dump_treelike(parse_tree_node_t *nodes, int nr, int prevnr) { if ((nr > VOCAB_TREE_NODES)/* || (nr < prevnr)*/) { printf("Error(%04x)", nr); return; } if (nodes[nr].type == kParseTreeLeafNode) //printf("[%03x]%04x", nr, nodes[nr].content.value); printf("%x", nodes[nr].content.value); else { int lbranch = nodes[nr].content.branches[0]; int rbranch = nodes[nr].content.branches[1]; //printf("<[%03x]", nr); printf("<"); if (lbranch) _vocab_recursive_ptree_dump_treelike(nodes, lbranch, nr); else printf("NULL"); printf(","); if (rbranch) _vocab_recursive_ptree_dump_treelike(nodes, rbranch, nr); else printf("NULL"); printf(">"); } } void _vocab_recursive_ptree_dump(parse_tree_node_t *nodes, int nr, int prevnr, int blanks) { int lbranch = nodes[nr].content.branches[0]; int rbranch = nodes[nr].content.branches[1]; int i; if (nodes[nr].type == kParseTreeLeafNode) { printf("vocab_dump_parse_tree: Error: consp is nil for element %03x\n", nr); return; } if ((nr > VOCAB_TREE_NODES)/* || (nr < prevnr)*/) { printf("Error(%04x))", nr); return; } if (lbranch) { if (nodes[lbranch].type == kParseTreeBranchNode) { printf("\n"); for (i = 0; i < blanks; i++) printf(" "); printf("("); _vocab_recursive_ptree_dump(nodes, lbranch, nr, blanks + 1); printf(")\n"); for (i = 0; i < blanks; i++) printf(" "); } else printf("%x", nodes[lbranch].content.value); printf(" "); }/* else printf ("nil");*/ if (rbranch) { if (nodes[rbranch].type == kParseTreeBranchNode) _vocab_recursive_ptree_dump(nodes, rbranch, nr, blanks); else printf("%x", nodes[rbranch].content.value); }/* else printf("nil");*/ } void vocab_dump_parse_tree(const char *tree_name, parse_tree_node_t *nodes) { //_vocab_recursive_ptree_dump_treelike(nodes, 0, 0); printf("(setq %s \n'(", tree_name); _vocab_recursive_ptree_dump(nodes, 0, 0, 1); printf("))\n"); } void Vocabulary::dumpParseTree() { //_vocab_recursive_ptree_dump_treelike(nodes, 0, 0); printf("(setq parse-tree \n'("); _vocab_recursive_ptree_dump(_parserNodes, 0, 0, 1); printf("))\n"); } void Vocabulary::synonymizeTokens(ResultWordList &words) { if (_synonyms.empty()) return; // No synonyms: Nothing to check for (ResultWordList::iterator i = words.begin(); i != words.end(); ++i) for (SynonymList::const_iterator sync = _synonyms.begin(); sync != _synonyms.end(); ++sync) if (i->_group == sync->replaceant) i->_group = sync->replacement; } void Vocabulary::printParserNodes(int num) { Console *con = ((SciEngine *)g_engine)->getSciDebugger(); for (int i = 0; i < num; i++) { con->DebugPrintf(" Node %03x: ", i); if (_parserNodes[i].type == kParseTreeLeafNode) con->DebugPrintf("Leaf: %04x\n", _parserNodes[i].content.value); else con->DebugPrintf("Branch: ->%04x, ->%04x\n", _parserNodes[i].content.branches[0], _parserNodes[i].content.branches[1]); } } int Vocabulary::parseNodes(int *i, int *pos, int type, int nr, int argc, const char **argv) { int nextToken = 0, nextValue = 0, newPos = 0, oldPos = 0; Console *con = ((SciEngine *)g_engine)->getSciDebugger(); if (type == kParseNil) return 0; if (type == kParseNumber) { _parserNodes[*pos += 1].type = kParseTreeLeafNode; _parserNodes[*pos].content.value = nr; return *pos; } if (type == kParseEndOfInput) { con->DebugPrintf("Unbalanced parentheses\n"); return -1; } if (type == kParseClosingParenthesis) { con->DebugPrintf("Syntax error at token %d\n", *i); return -1; } _parserNodes[oldPos = ++(*pos)].type = kParseTreeBranchNode; for (int j = 0; j <= 1; j++) { if (*i == argc) { nextToken = kParseEndOfInput; } else { const char *token = argv[(*i)++]; if (!strcmp(token, "(")) { nextToken = kParseOpeningParenthesis; } else if (!strcmp(token, ")")) { nextToken = kParseClosingParenthesis; } else if (!strcmp(token, "nil")) { nextToken = kParseNil; } else { nextValue = strtol(token, NULL, 0); nextToken = kParseNumber; } } if ((newPos = _parserNodes[oldPos].content.branches[j] = parseNodes(i, pos, nextToken, nextValue, argc, argv)) == -1) return -1; } const char *token = argv[(*i)++]; if (strcmp(token, ")")) con->DebugPrintf("Expected ')' at token %d\n", *i); return oldPos; } } // End of namespace Sci