/* ScummVM - Scumm Interpreter * Copyright (C) 2001 Ludvig Strigeus * Copyright (C) 2001-2006 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/stdafx.h" #include "scumm/scumm.h" #include "scumm/actor.h" #include "scumm/boxes.h" #include "scumm/intern.h" #include "scumm/util.h" #include "common/util.h" namespace Scumm { #include "common/pack-start.h" // START STRUCT PACKING struct Box { /* Internal walkbox file format */ union { struct { byte x1; byte x2; byte y1; byte y2; byte mask; } c64; struct { byte uy; byte ly; byte ulx; byte urx; byte llx; byte lrx; byte mask; byte flags; } v2; struct { int16 ulx, uly; int16 urx, ury; int16 lrx, lry; int16 llx, lly; byte mask; byte flags; uint16 scale; } old; struct { int32 ulx, uly; int32 urx, ury; int32 lrx, lry; int32 llx, lly; uint32 mask; uint32 flags; uint32 scaleSlot; uint32 scale; uint32 unk2; uint32 unk3; } v8; }; }; #include "common/pack-end.h" // END STRUCT PACKING #define BOX_MATRIX_SIZE 2000 #define BOX_DEBUG 0 static void getGates(const BoxCoords &box1, const BoxCoords &box2, Common::Point gateA[2], Common::Point gateB[2]); static bool compareSlope(const Common::Point &p1, const Common::Point &p2, const Common::Point &p3) { return (p2.y - p1.y) * (p3.x - p1.x) <= (p3.y - p1.y) * (p2.x - p1.x); } /** * Find the point on a line segment which is closest to a given point. * * @param lineStart the start of the line segment * @param lineEnd the end of the line segment * @param p the point which we want to 'project' on the line segment * @return the point on the line segment closest to the given point */ static Common::Point closestPtOnLine(const Common::Point &lineStart, const Common::Point &lineEnd, const Common::Point &p) { Common::Point result; const int lxdiff = lineEnd.x - lineStart.x; const int lydiff = lineEnd.y - lineStart.y; if (lineEnd.x == lineStart.x) { // Vertical line? result.x = lineStart.x; result.y = p.y; } else if (lineEnd.y == lineStart.y) { // Horizontal line? result.x = p.x; result.y = lineStart.y; } else { const int dist = lxdiff * lxdiff + lydiff * lydiff; int a, b, c; if (ABS(lxdiff) > ABS(lydiff)) { a = lineStart.x * lydiff / lxdiff; b = p.x * lxdiff / lydiff; c = (a + b - lineStart.y + p.y) * lydiff * lxdiff / dist; result.x = c; result.y = c * lydiff / lxdiff - a + lineStart.y; } else { a = lineStart.y * lxdiff / lydiff; b = p.y * lydiff / lxdiff; c = (a + b - lineStart.x + p.x) * lydiff * lxdiff / dist; result.x = c * lxdiff / lydiff - a + lineStart.x; result.y = c; } } if (ABS(lydiff) < ABS(lxdiff)) { if (lxdiff > 0) { if (result.x < lineStart.x) result = lineStart; else if (result.x > lineEnd.x) result = lineEnd; } else { if (result.x > lineStart.x) result = lineStart; else if (result.x < lineEnd.x) result = lineEnd; } } else { if (lydiff > 0) { if (result.y < lineStart.y) result = lineStart; else if (result.y > lineEnd.y) result = lineEnd; } else { if (result.y > lineStart.y) result = lineStart; else if (result.y < lineEnd.y) result = lineEnd; } } return result; } byte ScummEngine::getMaskFromBox(int box) { // WORKAROUND for bug #740244 and #755863. This appears to have been a // long standing bug in the original engine? if (_game.version <= 3 && box == 255) return 1; Box *ptr = getBoxBaseAddr(box); if (!ptr) return 0; // WORKAROUND for bug #847827: This is a bug in the data files, as it also // occurs with the original engine. We work around it here anyway. if (_game.id == GID_INDY4 && _currentRoom == 225 && _roomResource == 94 && box == 8) return 0; if (_game.version == 8) return (byte) FROM_LE_32(ptr->v8.mask); else if (_game.version == 0) return ptr->c64.mask; else if (_game.version <= 2) return ptr->v2.mask; else return ptr->old.mask; } void ScummEngine::setBoxFlags(int box, int val) { debug(2, "setBoxFlags(%d, 0x%02x)", box, val); /* SCUMM7+ stuff */ if (val & 0xC000) { assert(box >= 0 && box < 65); _extraBoxFlags[box] = val; } else { Box *ptr = getBoxBaseAddr(box); if (!ptr) return; if (_game.version == 8) ptr->v8.flags = TO_LE_32(val); else if (_game.version <= 2) ptr->v2.flags = val; else ptr->old.flags = val; } } byte ScummEngine::getBoxFlags(int box) { Box *ptr = getBoxBaseAddr(box); if (!ptr) return 0; if (_game.version == 8) return (byte) FROM_LE_32(ptr->v8.flags); else if (_game.version == 0) return 0; else if (_game.version <= 2) return ptr->v2.flags; else return ptr->old.flags; } void ScummEngine::setBoxScale(int box, int scale) { Box *ptr = getBoxBaseAddr(box); assert(ptr); if (_game.version == 8) ptr->v8.scale = TO_LE_32(scale); else if (_game.version <= 2) error("This should not ever be called!"); else ptr->old.scale = TO_LE_16(scale); } void ScummEngine::setBoxScaleSlot(int box, int slot) { Box *ptr = getBoxBaseAddr(box); assert(ptr); ptr->v8.scaleSlot = TO_LE_32(slot); } int ScummEngine::getScale(int box, int x, int y) { if (_game.version <= 3) return 255; Box *ptr = getBoxBaseAddr(box); if (!ptr) return 255; int slot = 0; int scale; if (_game.version == 8) { // COMI has a separate field for the scale slot... slot = FROM_LE_32(ptr->v8.scaleSlot); scale = FROM_LE_32(ptr->v8.scale); } else { scale = READ_LE_UINT16(&ptr->old.scale); if (scale & 0x8000) slot = (scale & 0x7FFF) + 1; } // Was a scale slot specified? If so, we compute the effective scale // from it, ignoring the box scale. if (slot) scale = getScaleFromSlot(slot, x, y); return scale; } int ScummEngine::getScaleFromSlot(int slot, int x, int y) { assert(1 <= slot && slot <= ARRAYSIZE(_scaleSlots)); int scale; int scaleX = 0, scaleY = 0; ScaleSlot &s = _scaleSlots[slot-1]; if (s.y1 == s.y2 && s.x1 == s.x2) error("Invalid scale slot %d", slot); if (s.y1 != s.y2) { if (y < 0) y = 0; scaleY = (s.scale2 - s.scale1) * (y - s.y1) / (s.y2 - s.y1) + s.scale1; } if (s.x1 == s.x2) { scale = scaleY; } else { scaleX = (s.scale2 - s.scale1) * (x - s.x1) / (s.x2 - s.x1) + s.scale1; if (s.y1 == s.y2) { scale = scaleX; } else { scale = (scaleX + scaleY) / 2; } } // Clip the scale to range 1-255 if (scale < 1) scale = 1; else if (scale > 255) scale = 255; return scale; } int ScummEngine::getBoxScale(int box) { if (_game.version <= 3) return 255; Box *ptr = getBoxBaseAddr(box); if (!ptr) return 255; if (_game.version == 8) return FROM_LE_32(ptr->v8.scale); else return READ_LE_UINT16(&ptr->old.scale); } /** * Convert a rtScaleTable resource to a corresponding scale slot entry. * * At some point, we discovered that the old scale items (stored in rtScaleTable * resources) are in fact the same as (or rather, a predecessor of) the * scale slots used in COMI. While not being precomputed (and thus slightly * slower), scale slots are more flexible, and most importantly, can cope with * rooms higher than 200 pixels. That's an essential feature for DIG and FT * and in fact the lack of it caused various bugs in the past. * * Hence, we decided to switch all games to use the more powerful scale slots. * To accomodate old savegames, we attempt here to convert rtScaleTable * resources to scale slots. */ void ScummEngine::convertScaleTableToScaleSlot(int slot) { assert(1 <= slot && slot <= ARRAYSIZE(_scaleSlots)); byte *resptr = getResourceAddress(rtScaleTable, slot); int lowerIdx, upperIdx; float m, oldM; // Do nothing if the given scale table doesn't exist if (resptr == 0) return; if (resptr[0] == resptr[199]) { // The scale is constant. This usually means we encountered one of the // "broken" cases. We set pseudo scale item values which lead to a // constant scale of 255. setScaleSlot(slot, 0, 0, 255, 0, 199, 255); return; } /* * Essentially, what we are doing here is some kind of "line fitting" * algorithm. The data in the scale table represents a linear graph. What * we want to find is the slope and (vertical) offset of this line. Things * are complicated by the fact that the line is cut of vertically at 1 and * 255. We have to be careful in handling this and some border cases. * * Some typical graphs look like these: * --- _-- --- * / _-- \ * ___/ _-- \___ * * The method used here is to compute the slope of secants fixed at the * left and right end. For most cases this detects the cut-over points * quite accurately. */ // Search for the bend on the left side m = (resptr[199] - resptr[0]) / 199.0; for (lowerIdx = 0; lowerIdx < 199 && (resptr[lowerIdx] == 1 || resptr[lowerIdx] == 255); lowerIdx++) { oldM = m; m = (resptr[199] - resptr[lowerIdx+1]) / (float)(199 - (lowerIdx+1)); if (m > 0) { if (m <= oldM) break; } else { if (m >= oldM) break; } } // Search for the bend on the right side m = (resptr[199] - resptr[0]) / 199.0; for (upperIdx = 199; upperIdx > 1 && (resptr[upperIdx] == 1 || resptr[upperIdx] == 255); upperIdx--) { oldM = m; m = (resptr[upperIdx-1] - resptr[0]) / (float)(upperIdx-1); if (m > 0) { if (m <= oldM) break; } else { if (m >= oldM) break; } } // If lowerIdx and upperIdx are equal, we assume that there // was no bend at all, and go for the maximum range. if (lowerIdx == upperIdx) { lowerIdx = 0; upperIdx = 199; } // The values of y1 and y2, as well as the scale, can now easily be computed setScaleSlot(slot, 0, lowerIdx, resptr[lowerIdx], 0, upperIdx, resptr[upperIdx]); #if 0 // Compute the variance, for debugging. It shouldn't exceed 1 ScaleSlot &s = _scaleSlots[slot-1]; int y; int sum = 0; int scale; float variance; for (y = 0; y < 200; y++) { scale = (s.scale2 - s.scale1) * (y - s.y1) / (s.y2 - s.y1) + s.scale1; if (scale < 1) scale = 1; else if (scale > 255) scale = 255; sum += (resptr[y] - scale) * (resptr[y] - scale); } variance = sum / (200.0 - 1.0); if (variance > 1) debug(1, "scale item %d, variance %f exceeds 1 (room %d)", slot, variance, _currentRoom); #endif } void ScummEngine::setScaleSlot(int slot, int x1, int y1, int scale1, int x2, int y2, int scale2) { assert(1 <= slot && slot <= ARRAYSIZE(_scaleSlots)); ScaleSlot &s = _scaleSlots[slot-1]; s.x2 = x2; s.y2 = y2; s.scale2 = scale2; s.x1 = x1; s.y1 = y1; s.scale1 = scale1; } byte ScummEngine::getNumBoxes() { byte *ptr = getResourceAddress(rtMatrix, 2); if (!ptr) return 0; if (_game.version == 8) return (byte) READ_LE_UINT32(ptr); else return ptr[0]; } Box *ScummEngine::getBoxBaseAddr(int box) { byte *ptr = getResourceAddress(rtMatrix, 2); if (!ptr || box == 255) return NULL; // WORKAROUND: The NES version of Maniac Mansion attempts to set flags for boxes 2-4 // when there are only three boxes (0-2) when walking out to the garage. if ((_game.id == GID_MANIAC) && (_game.platform == Common::kPlatformNES) && (box >= ptr[0])) return NULL; // WORKAROUND: In "pass to adventure", the loom demo, when bobbin enters // the tent to the elders, box = 2, but ptr[0] = 2 -> errors out. // Also happens in Indy3EGA (see bug #770351) and ZakEGA (see bug #771803). // // This *might* mean that we have a bug in our box implementation // OTOH, the original engine, unlike ScummVM, performed no bound // checking at all. All the problems so far have been cases where // the value was exactly one more than what we consider the maximum. // So it seems to be most likely that all of these are script errors. // // As a workaround, we simply use the last box if the last+1 box is requested. // Note that this may cause different behavior than the original game // engine exhibited! To faithfully reproduce the behavior of the original // engine, we would have to know the data coming *after* the walkbox table. if (_game.version <= 4 && ptr[0] == box) box--; assertRange(0, box, ptr[0] - 1, "box"); if (_game.version == 0) return (Box *)(ptr + box * SIZEOF_BOX_C64 + 1); else if (_game.version <= 2) return (Box *)(ptr + box * SIZEOF_BOX_V2 + 1); else if (_game.version == 3) return (Box *)(ptr + box * SIZEOF_BOX_V3 + 1); else if (_game.features & GF_SMALL_HEADER) return (Box *)(ptr + box * SIZEOF_BOX + 1); else if (_game.version == 8) return (Box *)(ptr + box * SIZEOF_BOX_V8 + 4); else return (Box *)(ptr + box * SIZEOF_BOX + 2); } int ScummEngine_v6::getSpecialBox(int x, int y) { int i; int numOfBoxes; byte flag; numOfBoxes = getNumBoxes() - 1; for (i = numOfBoxes; i >= 0; i--) { flag = getBoxFlags(i); if (!(flag & kBoxInvisible) && (flag & kBoxPlayerOnly)) return (-1); if (checkXYInBoxBounds(i, x, y)) return (i); } return (-1); } bool ScummEngine::checkXYInBoxBounds(int boxnum, int x, int y) { // Since this method is called by many other methods that take params // from e.g. script opcodes, but do not validate the boxnum, we // make a check here to filter out invalid boxes. // See also bug #1599113. if (boxnum < 0 || boxnum == Actor::kInvalidBox) return false; BoxCoords box = getBoxCoordinates(boxnum); const Common::Point p(x, y); // Quick check: If the x (resp. y) coordinate of the point is // strictly smaller (bigger) than the x (y) coordinates of all // corners of the quadrangle, then it certainly is *not* contained // inside the quadrangle. if (x < box.ul.x && x < box.ur.x && x < box.lr.x && x < box.ll.x) return false; if (x > box.ul.x && x > box.ur.x && x > box.lr.x && x > box.ll.x) return false; if (y < box.ul.y && y < box.ur.y && y < box.lr.y && y < box.ll.y) return false; if (y > box.ul.y && y > box.ur.y && y > box.lr.y && y > box.ll.y) return false; // Corner case: If the box is a simple line segment, we consider the // point to be contained "in" (or rather, lying on) the line if it // is very close to its projection to the line segment. if (box.ul == box.ur && box.lr == box.ll || box.ul == box.ll && box.ur == box.lr) { Common::Point tmp; tmp = closestPtOnLine(box.ul, box.lr, p); if (p.sqrDist(tmp) <= 4) return true; } // Finally, fall back to the classic algorithm to compute containment // in a convex polygon: For each (oriented) side of the polygon // (quadrangle in this case), compute whether p is "left" or "right" // from it. if (!compareSlope(box.ul, box.ur, p)) return false; if (!compareSlope(box.ur, box.lr, p)) return false; if (!compareSlope(box.lr, box.ll, p)) return false; if (!compareSlope(box.ll, box.ul, p)) return false; return true; } BoxCoords ScummEngine::getBoxCoordinates(int boxnum) { BoxCoords tmp, *box = &tmp; Box *bp = getBoxBaseAddr(boxnum); assert(bp); if (_game.version == 8) { box->ul.x = (short)FROM_LE_32(bp->v8.ulx); box->ul.y = (short)FROM_LE_32(bp->v8.uly); box->ur.x = (short)FROM_LE_32(bp->v8.urx); box->ur.y = (short)FROM_LE_32(bp->v8.ury); box->ll.x = (short)FROM_LE_32(bp->v8.llx); box->ll.y = (short)FROM_LE_32(bp->v8.lly); box->lr.x = (short)FROM_LE_32(bp->v8.lrx); box->lr.y = (short)FROM_LE_32(bp->v8.lry); // WORKAROUND (see patch #684732): Some walkboxes in CMI appear // to have been flipped, in the sense that for instance the // lower boundary is above the upper one. We work around this // by simply flipping them back. if (box->ul.y > box->ll.y && box->ur.y > box->lr.y) { SWAP(box->ul, box->ll); SWAP(box->ur, box->lr); } if (box->ul.x > box->ur.x && box->ll.x > box->lr.x) { SWAP(box->ul, box->ur); SWAP(box->ll, box->lr); } } else if (_game.version == 0) { box->ul.x = bp->c64.x1; box->ul.y = bp->c64.y1; box->ur.x = bp->c64.x2; box->ur.y = bp->c64.y1; box->ll.x = bp->c64.x1; box->ll.y = bp->c64.y2; box->lr.x = bp->c64.x2; box->lr.y = bp->c64.y2; } else if (_game.version <= 2) { box->ul.x = bp->v2.ulx; box->ul.y = bp->v2.uy; box->ur.x = bp->v2.urx; box->ur.y = bp->v2.uy; box->ll.x = bp->v2.llx; box->ll.y = bp->v2.ly; box->lr.x = bp->v2.lrx; box->lr.y = bp->v2.ly; } else { box->ul.x = (int16)READ_LE_UINT16(&bp->old.ulx); box->ul.y = (int16)READ_LE_UINT16(&bp->old.uly); box->ur.x = (int16)READ_LE_UINT16(&bp->old.urx); box->ur.y = (int16)READ_LE_UINT16(&bp->old.ury); box->ll.x = (int16)READ_LE_UINT16(&bp->old.llx); box->ll.y = (int16)READ_LE_UINT16(&bp->old.lly); box->lr.x = (int16)READ_LE_UINT16(&bp->old.lrx); box->lr.y = (int16)READ_LE_UINT16(&bp->old.lry); } return *box; } int getClosestPtOnBox(const BoxCoords &box, int x, int y, int16& outX, int16& outY) { const Common::Point p(x, y); Common::Point tmp; uint dist; uint bestdist = 0xFFFFFF; tmp = closestPtOnLine(box.ul, box.ur, p); dist = p.sqrDist(tmp); if (dist < bestdist) { bestdist = dist; outX = tmp.x; outY = tmp.y; } tmp = closestPtOnLine(box.ur, box.lr, p); dist = p.sqrDist(tmp); if (dist < bestdist) { bestdist = dist; outX = tmp.x; outY = tmp.y; } tmp = closestPtOnLine(box.lr, box.ll, p); dist = p.sqrDist(tmp); if (dist < bestdist) { bestdist = dist; outX = tmp.x; outY = tmp.y; } tmp = closestPtOnLine(box.ll, box.ul, p); dist = p.sqrDist(tmp); if (dist < bestdist) { bestdist = dist; outX = tmp.x; outY = tmp.y; } return bestdist; } byte *ScummEngine::getBoxMatrixBaseAddr() { byte *ptr = getResourceAddress(rtMatrix, 1); assert(ptr); if (*ptr == 0xFF) ptr++; return ptr; } /** * Compute if there is a way that connects box 'from' with box 'to'. * Returns the number of a box adjacent to 'from' that is the next on the * way to 'to' (this can be 'to' itself or a third box). * If there is no connection -1 is return. */ int ScummEngine::getPathToDestBox(byte from, byte to) { const byte *boxm; byte i; const int numOfBoxes = getNumBoxes(); int dest = -1; if (from == to) return to; if (to == Actor::kInvalidBox) return -1; if (from == Actor::kInvalidBox) return to; assert(from < numOfBoxes); assert(to < numOfBoxes); boxm = getBoxMatrixBaseAddr(); if (_game.version == 0) { // Skip up to the matrix data for box 'from' for (i = 0; i < from; i++) { while (*boxm != 0xFF) boxm++; boxm++; } // Now search for the entry for box 'to' while (boxm[0] != 0xFF) { if (boxm[0] == to) dest = (int8)boxm[0]; boxm++; } return dest; } else if (_game.version <= 2) { // The v2 box matrix is a real matrix with numOfBoxes rows and columns. // The first numOfBoxes bytes contain indices to the start of the corresponding // row (although that seems unnecessary to me - the value is easily computable. boxm += numOfBoxes + boxm[from]; return (int8)boxm[to]; } // WORKAROUND #1: It seems that in some cases, the box matrix is corrupt // (more precisely, is too short) in the datafiles already. In // particular this seems to be the case in room 46 of Indy3 EGA (see // also bug #770690). This didn't cause problems in the original // engine, because there, the memory layout is different. After the // walkbox would follow the rest of the room file, thus the program // always behaved the same (and by chance, correct). Not so for us, // since random data may follow after the resource in ScummVM. // // As a workaround, we add a check for the end of the box matrix // resource, and abort the search once we reach the end. const byte *end = boxm + getResourceSize(rtMatrix, 1); // WORKAROUND #2: In addition to the above, we have to add this special // case to fix the scene in Indy3 where Indy meets Hitler in Berlin. // See bug #770690 and also bug #774783. if ((_game.id == GID_INDY3) && _roomResource == 46 && from == 1 && to == 0) return 0; // Skip up to the matrix data for box 'from' for (i = 0; i < from && boxm < end; i++) { while (boxm < end && *boxm != 0xFF) boxm += 3; boxm++; } // Now search for the entry for box 'to' while (boxm < end && boxm[0] != 0xFF) { if (boxm[0] <= to && to <= boxm[1]) dest = (int8)boxm[2]; boxm += 3; } if (boxm >= end) debug(0, "The box matrix apparently is truncated (room %d)", _roomResource); return dest; } /* * Computes the next point actor a has to walk towards in a straight * line in order to get from box1 to box3 via box2. */ bool Actor::findPathTowards(byte box1nr, byte box2nr, byte box3nr, Common::Point &foundPath) { assert(_vm->_game.version >= 3); BoxCoords box1 = _vm->getBoxCoordinates(box1nr); BoxCoords box2 = _vm->getBoxCoordinates(box2nr); Common::Point tmp; int i, j; int flag; int q, pos; for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (box1.ul.x == box1.ur.x && box1.ul.x == box2.ul.x && box1.ul.x == box2.ur.x) { flag = 0; if (box1.ul.y > box1.ur.y) { SWAP(box1.ul.y, box1.ur.y); flag |= 1; } if (box2.ul.y > box2.ur.y) { SWAP(box2.ul.y, box2.ur.y); flag |= 2; } if (box1.ul.y > box2.ur.y || box2.ul.y > box1.ur.y || (box1.ur.y == box2.ul.y || box2.ur.y == box1.ul.y) && box1.ul.y != box1.ur.y && box2.ul.y != box2.ur.y) { if (flag & 1) SWAP(box1.ul.y, box1.ur.y); if (flag & 2) SWAP(box2.ul.y, box2.ur.y); } else { pos = _pos.y; if (box2nr == box3nr) { int diffX = _walkdata.dest.x - _pos.x; int diffY = _walkdata.dest.y - _pos.y; int boxDiffX = box1.ul.x - _pos.x; if (diffX != 0) { int t; diffY *= boxDiffX; t = diffY / diffX; if (t == 0 && (diffY <= 0 || diffX <= 0) && (diffY >= 0 || diffX >= 0)) t = -1; pos = _pos.y + t; } } q = pos; if (q < box2.ul.y) q = box2.ul.y; if (q > box2.ur.y) q = box2.ur.y; if (q < box1.ul.y) q = box1.ul.y; if (q > box1.ur.y) q = box1.ur.y; if (q == pos && box2nr == box3nr) return true; foundPath.y = q; foundPath.x = box1.ul.x; return false; } } if (box1.ul.y == box1.ur.y && box1.ul.y == box2.ul.y && box1.ul.y == box2.ur.y) { flag = 0; if (box1.ul.x > box1.ur.x) { SWAP(box1.ul.x, box1.ur.x); flag |= 1; } if (box2.ul.x > box2.ur.x) { SWAP(box2.ul.x, box2.ur.x); flag |= 2; } if (box1.ul.x > box2.ur.x || box2.ul.x > box1.ur.x || (box1.ur.x == box2.ul.x || box2.ur.x == box1.ul.x) && box1.ul.x != box1.ur.x && box2.ul.x != box2.ur.x) { if (flag & 1) SWAP(box1.ul.x, box1.ur.x); if (flag & 2) SWAP(box2.ul.x, box2.ur.x); } else { if (box2nr == box3nr) { int diffX = _walkdata.dest.x - _pos.x; int diffY = _walkdata.dest.y - _pos.y; int boxDiffY = box1.ul.y - _pos.y; pos = _pos.x; if (diffY != 0) { pos += diffX * boxDiffY / diffY; } } else { pos = _pos.x; } q = pos; if (q < box2.ul.x) q = box2.ul.x; if (q > box2.ur.x) q = box2.ur.x; if (q < box1.ul.x) q = box1.ul.x; if (q > box1.ur.x) q = box1.ur.x; if (q == pos && box2nr == box3nr) return true; foundPath.x = q; foundPath.y = box1.ul.y; return false; } } tmp = box1.ul; box1.ul = box1.ur; box1.ur = box1.lr; box1.lr = box1.ll; box1.ll = tmp; } tmp = box2.ul; box2.ul = box2.ur; box2.ur = box2.lr; box2.lr = box2.ll; box2.ll = tmp; } return false; } #if BOX_DEBUG static void printMatrix(byte *boxm, int num) { int i; for (i = 0; i < num; i++) { printf("%d: ", i); while (*boxm != 0xFF) { printf("%d, ", *boxm); boxm++; } boxm++; printf("\n"); } } static void printMatrix2(byte *matrix, int num) { int i, j; printf(" "); for (i = 0; i < num; i++) printf("%2d ", i); printf("\n"); for (i = 0; i < num; i++) { printf("%2d: ", i); for (j = 0; j < num; j++) { int val = matrix[i * 64 + j]; if (val == Actor::kInvalidBox) printf(" ? "); else printf("%2d ", val); } printf("\n"); } } #endif void ScummEngine::createBoxMatrix() { int num, i, j, k; byte *adjacentMatrix, *itineraryMatrix; // The total number of boxes num = getNumBoxes(); assert(num <= 64); // Allocate the adjacent & itinerary matrices adjacentMatrix = (byte *)malloc(64 * 64); itineraryMatrix = (byte *)malloc(64 * 64); // Initialise the adjacent matrix: each box has distance 0 to itself, // and distance 1 to its direct neighbors. Initially, it has distance // 255 (= infinity) to all other boxes. for (i = 0; i < num; i++) { for (j = 0; j < num; j++) { if (i == j) { adjacentMatrix[i * 64 + j] = 0; itineraryMatrix[i * 64 + j] = j; } else if (areBoxesNeighbours(i, j)) { adjacentMatrix[i * 64 + j] = 1; itineraryMatrix[i * 64 + j] = j; } else { adjacentMatrix[i * 64 + j] = 255; itineraryMatrix[i * 64 + j] = Actor::kInvalidBox; } } } // Compute the shortest routes between boxes via Kleene's algorithm. // The original code used some kind of mangled Dijkstra's algorithm; // while that might in theory be slightly faster, it was // a) extremly obfuscated // b) incorrect: it didn't always find the shortest paths // c) not any faster in reality for our sparse & small adjacent matrices for (k = 0; k < num; k++) { for (i = 0; i < num; i++) { for (j = 0; j < num; j++) { if (i == j) continue; byte distIK = adjacentMatrix[64 * i + k]; byte distKJ = adjacentMatrix[64 * k + j]; if (adjacentMatrix[64 * i + j] > distIK + distKJ) { adjacentMatrix[64 * i + j] = distIK + distKJ; itineraryMatrix[64 * i + j] = itineraryMatrix[64 * i + k]; } } } } // "Compress" the distance matrix into the box matrix format used // by the engine. The format is like this: // For each box (from 0 to num) there is first a byte with value 0xFF, // followed by an arbitrary number of byte triples; the end is marked // again by the lead 0xFF for the next "row". The meaning of the // byte triples is as follows: the first two bytes define a range // of box numbers (e.g. 7-11), while the third byte defines an // itineray box. Assuming we are in the 5th "row" and encounter // the triplet 7,11,15: this means to get from box 5 to any of // the boxes 7,8,9,10,11 the shortest way is to go via box 15. // See also getPathToDestBox. byte *matrixStart = _res->createResource(rtMatrix, 1, BOX_MATRIX_SIZE); const byte *matrixEnd = matrixStart + BOX_MATRIX_SIZE; #define addToMatrix(b) do { *matrixStart++ = (b); assert(matrixStart < matrixEnd); } while (0) for (i = 0; i < num; i++) { addToMatrix(0xFF); for (j = 0; j < num; j++) { byte itinerary = itineraryMatrix[64 * i + j]; if (itinerary != Actor::kInvalidBox) { addToMatrix(j); while (j < num - 1 && itinerary == itineraryMatrix[64 * i + (j + 1)]) j++; addToMatrix(j); addToMatrix(itinerary); } } } addToMatrix(0xFF); #if BOX_DEBUG printf("Itinerary matrix:\n"); printMatrix2(itineraryMatrix, num); printf("compressed matrix:\n"); printMatrix(getBoxMatrixBaseAddr(), num); #endif free(adjacentMatrix); free(itineraryMatrix); } /** Check if two boxes are neighbours. */ bool ScummEngine::areBoxesNeighbours(int box1nr, int box2nr) { Common::Point tmp; BoxCoords box; BoxCoords box2; if (getBoxFlags(box1nr) & kBoxInvisible || getBoxFlags(box2nr) & kBoxInvisible) return false; assert(_game.version >= 3); box2 = getBoxCoordinates(box1nr); box = getBoxCoordinates(box2nr); // Roughly, the idea of this algorithm is to search for sies of the given // boxes that touch each other. // In order to keep te code simple, we only match the upper sides; // then, we "rotate" the box coordinates four times each, for a total // of 16 comparisions. for (int j = 0; j < 4; j++) { for (int k = 0; k < 4; k++) { // Are the "upper" sides of the boxes on a single vertical line // (i.e. all share one x value) ? if (box2.ur.x == box2.ul.x && box.ul.x == box2.ul.x && box.ur.x == box2.ul.x) { bool swappedBox2 = false, swappedBox1 = false; if (box2.ur.y < box2.ul.y) { swappedBox2 = true; SWAP(box2.ur.y, box2.ul.y); } if (box.ur.y < box.ul.y) { swappedBox1 = true; SWAP(box.ur.y, box.ul.y); } if (box.ur.y < box2.ul.y || box.ul.y > box2.ur.y || (box.ul.y == box2.ur.y || box.ur.y == box2.ul.y) && box2.ur.y != box2.ul.y && box.ul.y != box.ur.y) { } else { return true; } // Swap back if necessary if (swappedBox2) { SWAP(box2.ur.y, box2.ul.y); } if (swappedBox1) { SWAP(box.ur.y, box.ul.y); } } // Are the "upper" sides of the boxes on a single horizontal line // (i.e. all share one y value) ? if (box2.ur.y == box2.ul.y && box.ul.y == box2.ul.y && box.ur.y == box2.ul.y) { bool swappedBox2 = false, swappedBox1 = false; if (box2.ur.x < box2.ul.x) { swappedBox2 = true; SWAP(box2.ur.x, box2.ul.x); } if (box.ur.x < box.ul.x) { swappedBox1 = true; SWAP(box.ur.x, box.ul.x); } if (box.ur.x < box2.ul.x || box.ul.x > box2.ur.x || (box.ul.x == box2.ur.x || box.ur.x == box2.ul.x) && box2.ur.x != box2.ul.x && box.ul.x != box.ur.x) { } else { return true; } // Swap back if necessary if (swappedBox2) { SWAP(box2.ur.x, box2.ul.x); } if (swappedBox1) { SWAP(box.ur.x, box.ul.x); } } // "Rotate" the box coordinates tmp = box2.ul; box2.ul = box2.ur; box2.ur = box2.lr; box2.lr = box2.ll; box2.ll = tmp; } // "Rotate" the box coordinates tmp = box.ul; box.ul = box.ur; box.ur = box.lr; box.lr = box.ll; box.ll = tmp; } return false; } void Actor_v3::findPathTowardsOld(byte box1, byte box2, byte finalBox, Common::Point &p2, Common::Point &p3) { Common::Point pt; Common::Point gateA[2]; Common::Point gateB[2]; getGates(_vm->getBoxCoordinates(box1), _vm->getBoxCoordinates(box2), gateA, gateB); p2.x = 32000; p3.x = 32000; // next box (box2) = final box? if (box2 == finalBox) { // In Indy3, the masks (= z-level) have to match, too -- needed for the // 'maze' in the zeppelin (see bug #1032964). if (_vm->_game.id != GID_INDY3 || _vm->getMaskFromBox(box1) == _vm->getMaskFromBox(box2)) { // Is the actor (x,y) between both gates? if (compareSlope(_pos, _walkdata.dest, gateA[0]) != compareSlope(_pos, _walkdata.dest, gateB[0]) && compareSlope(_pos, _walkdata.dest, gateA[1]) != compareSlope(_pos, _walkdata.dest, gateB[1])) { return; } } } p3 = pt = closestPtOnLine(gateA[1], gateB[1], _pos); if (compareSlope(_pos, p3, gateA[0]) == compareSlope(_pos, p3, gateB[0])) { closestPtOnLine(gateA[0], gateB[0], _pos); p2 = pt; // if point 2 between gates, ignore! } } /** * Compute the "gate" between two boxes. The gate is a pair of two lines which * both start on box 'box1' and end on 'box2'. For both lines, one of its * end points is the corner point of one of the two boxes. The other end point * is the point on the other box closest to the first end point. * This way the lines form the boundary of a 'corridor' between the two boxes, * through which the actor has to walk to get from box1 to box2. */ void getGates(const BoxCoords &box1, const BoxCoords &box2, Common::Point gateA[2], Common::Point gateB[2]) { int i, j; int dist[8]; int minDist[3]; int closest[3]; int box[3]; Common::Point closestPoint[8]; Common::Point boxCorner[8]; int line1, line2; // For all corner coordinates of the first box, compute the point closest // to them on the second box (and also compute the distance of these points). boxCorner[0] = box1.ul; boxCorner[1] = box1.ur; boxCorner[2] = box1.lr; boxCorner[3] = box1.ll; for (i = 0; i < 4; i++) { dist[i] = getClosestPtOnBox(box2, boxCorner[i].x, boxCorner[i].y, closestPoint[i].x, closestPoint[i].y); } // Now do the same but with the roles of the first and second box swapped. boxCorner[4] = box2.ul; boxCorner[5] = box2.ur; boxCorner[6] = box2.lr; boxCorner[7] = box2.ll; for (i = 4; i < 8; i++) { dist[i] = getClosestPtOnBox(box1, boxCorner[i].x, boxCorner[i].y, closestPoint[i].x, closestPoint[i].y); } // Find the three closest "close" points between the two boxes. for (j = 0; j < 3; j++) { minDist[j] = 0xFFFF; for (i = 0; i < 8; i++) { if (dist[i] < minDist[j]) { minDist[j] = dist[i]; closest[j] = i; } } dist[closest[j]] = 0xFFFF; minDist[j] = (int)sqrt((double)minDist[j]); box[j] = (closest[j] > 3); // Is the point on the first or on the second box? } // Finally, compute the actual "gate". if (box[0] == box[1] && ABS(minDist[0] - minDist[1]) < 4) { line1 = closest[0]; line2 = closest[1]; } else if (box[0] == box[1] && minDist[0] == minDist[1]) { // parallel line1 = closest[0]; line2 = closest[1]; } else if (box[0] == box[2] && minDist[0] == minDist[2]) { // parallel line1 = closest[0]; line2 = closest[2]; } else if (box[1] == box[2] && minDist[1] == minDist[2]) { // parallel line1 = closest[1]; line2 = closest[2]; } else if (box[0] == box[2] && ABS(minDist[0] - minDist[2]) < 4) { line1 = closest[0]; line2 = closest[2]; } else if (ABS(minDist[0] - minDist[2]) < 4) { line1 = closest[1]; line2 = closest[2]; } else if (ABS(minDist[0] - minDist[1]) < 4) { line1 = closest[0]; line2 = closest[1]; } else { line1 = closest[0]; line2 = closest[0]; } // Set the gate if (line1 < 4) { gateA[0] = boxCorner[line1]; gateA[1] = closestPoint[line1]; } else { gateA[1] = boxCorner[line1]; gateA[0] = closestPoint[line1]; } if (line2 < 4) { gateB[0] = boxCorner[line2]; gateB[1] = closestPoint[line2]; } else { gateB[1] = boxCorner[line2]; gateB[0] = closestPoint[line2]; } } } // End of namespace Scumm