/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "scumm/he/intern_he.h" #include "scumm/he/logic_he.h" namespace Scumm { /** * Logic code for: * Putt-Putt Enters the Race */ class LogicHErace : public LogicHE { private: float *_userData; double *_userDataD; public: LogicHErace(ScummEngine_v90he *vm); ~LogicHErace(); int versionID(); int32 dispatch(int op, int numArgs, int32 *args); private: int32 op_1003(int32 *args); int32 op_1004(int32 *args); int32 op_1100(int32 *args); int32 op_1101(int32 *args); int32 op_1102(int32 *args); int32 op_1103(int32 *args); int32 op_1110(); int32 op_1120(int32 *args); int32 op_1130(int32 *args); int32 op_1140(int32 *args); void op_sub1(float arg); void op_sub2(float arg); void op_sub3(float arg); }; LogicHErace::LogicHErace(ScummEngine_v90he *vm) : LogicHE(vm) { // Originally it used 0x930 and stored both floats and doubles inside _userData = (float *)calloc(550, sizeof(float)); _userDataD = (double *)calloc(30, sizeof(double)); // FIXME: of the 550 entries in _userData, only 516 till 532 are used // FIXME: similarly, in _userDataD only 9 till 17 are used for computations // (some of the other entries are also set, but never read, hence useless). } LogicHErace::~LogicHErace() { free(_userData); free(_userDataD); } int LogicHErace::versionID() { return 1; } int32 LogicHErace::dispatch(int op, int numArgs, int32 *args) { int32 res; switch (op) { case 1003: res = op_1003(args); break; case 1004: res = op_1004(args); break; case 1100: res = op_1100(args); break; case 1101: res = op_1101(args); break; case 1102: res = op_1102(args); break; case 1103: res = op_1103(args); break; case 1110: res = op_1110(); break; case 1120: res = op_1120(args); break; case 1130: res = op_1130(args); break; case 1140: res = op_1140(args); break; default: res = 0; break; } return res; } #define RAD2DEG (180 / M_PI) #define DEG2RAD (M_PI / 180) int32 LogicHErace::op_1003(int32 *args) { int value = args[2] ? args[2] : 1; writeScummVar(108, (int32)(atan2((double)args[0], (double)args[1]) * RAD2DEG * value)); return 1; } int32 LogicHErace::op_1004(int32 *args) { int value = args[1] ? args[1] : 1; writeScummVar(108, (int32)(sqrt((float)args[0]) * value)); return 1; } int32 LogicHErace::op_1100(int32 *args) { // _userData 516,517,518 describe a 3D translation? _userData[516] = (float)args[0] / args[10]; _userData[517] = (float)args[1] / args[10]; _userData[518] = (float)args[2] / args[10]; // _userData 519,520,521 describe rotation angles around the x,y,z axes? _userData[519] = (float)args[3] / args[10]; _userData[520] = (float)args[4] / args[10]; _userData[521] = (float)args[5] / args[10]; op_sub1(_userData[520]); op_sub2(_userData[521]); // _userData[532] seems to be some kind of global scale factor _userData[532] = (float)args[10]; _userData[524] = (float)args[8]; // not used _userData[525] = (float)args[9]; // not used _userData[522] = (float)args[6] / args[10]; // not used _userData[523] = (float)args[7] / args[10]; // only used to compute 528 and 529 // The following two are some kind of scale factors _userData[526] = (float)args[6] / args[8] / args[10]; _userData[527] = (float)args[7] / args[9] / args[10]; // Set var 108 and 109 -- the value set here corresponds to the values // set by op_1110! writeScummVar(108, (int32)((float)args[6] / args[8] * args[10])); writeScummVar(109, (int32)((float)args[7] / args[9] * args[10])); _userData[528] = (float)(_userData[519] - _userData[523] * 0.5); _userData[529] = (float)(_userData[519] + _userData[523] * 0.5); writeScummVar(110, (int32)(_userData[528] * args[10])); writeScummVar(111, (int32)(_userData[529] * args[10])); // 530 and 531 are only used to set vars 112 and 113, so no need // to store them permanently _userData[530] = (float)(_userData[517] / tan(_userData[529] * DEG2RAD)); _userData[531] = (float)(_userData[517] / tan(_userData[528] * DEG2RAD)); writeScummVar(112, (int32)(_userData[530] * args[10])); writeScummVar(113, (int32)(_userData[531] * args[10])); return 1; } int32 LogicHErace::op_1101(int32 *args) { // Update rotation params? int32 retval; float temp; temp = args[0] / _userData[532]; if (_userData[519] != temp) { _userData[519] = temp; op_sub3(temp); retval = 1; } else { retval = (int32)temp; } temp = args[1] / _userData[532]; if (_userData[520] != temp) { _userData[520] = temp; op_sub1(temp); retval = 1; } temp = args[2] / _userData[532]; if (_userData[521] != temp) { _userData[521] = temp; op_sub2(temp); retval = 1; } return retval; } int32 LogicHErace::op_1102(int32 *args) { // Update translation params? int32 retval; float temp; temp = args[0] / _userData[532]; if (_userData[516] != temp) { _userData[516] = temp; retval = 1; } else { retval = (int32)_userData[532]; } temp = args[1] / _userData[532]; if (_userData[517] != temp) { _userData[517] = temp; retval = 1; } temp = args[2] / _userData[532]; if (_userData[518] != temp) { _userData[518] = temp; retval = 1; } return retval; } int32 LogicHErace::op_1103(int32 *args) { double angle = args[0] / args[1] * DEG2RAD; writeScummVar(108, (int32)(sin(angle) * args[2])); writeScummVar(109, (int32)(cos(angle) * args[2])); return 1; } int32 LogicHErace::op_1110() { writeScummVar(108, (int32)(_userData[526] * _userData[532] * _userData[532])); writeScummVar(109, (int32)(_userData[527] * _userData[532] * _userData[532])); writeScummVar(110, (int32)(_userData[532])); return 1; } int32 LogicHErace::op_1120(int32 *args) { double a0, a1, a2; double b0, b1, b2; double res1, res2; a0 = args[0] / _userData[532] - _userData[516]; a1 = args[1] / _userData[532] - _userData[517]; a2 = args[2] / _userData[532] - _userData[518]; // Perform matrix multiplication (multiplying by a rotation matrix) b2 = a2 * _userDataD[17] + a1 * _userDataD[14] + a0 * _userDataD[11]; b1 = a2 * _userDataD[16] + a1 * _userDataD[13] + a0 * _userDataD[10]; b0 = a2 * _userDataD[15] + a1 * _userDataD[12] + a0 * _userDataD[9]; res1 = (atan2(b0, b2) * RAD2DEG) / _userData[526]; res2 = (atan2(b1, b2) * RAD2DEG - _userData[528]) / _userData[527]; writeScummVar(108, (int32)res1); writeScummVar(109, (int32)res2); return 1; } int32 LogicHErace::op_1130(int32 *args) { double cs = cos(args[0] / _userData[532] * DEG2RAD); double sn = sin(args[0] / _userData[532] * DEG2RAD); writeScummVar(108, (int32)(cs * args[1] + sn * args[2])); writeScummVar(109, (int32)(cs * args[2] - sn * args[1])); return 1; } int32 LogicHErace::op_1140(int32 *args) { // This functions seems to perform some kind of projection: We project // the vector (arg2,arg3) onto the vector (arg0,arg1), but also apply // some kind of distortion factor ?!? double x = args[2], y = args[3]; // We start by normalizing the vector described by arg2 and arg3. // So compute its length and divide the x and y coordinates const double sq = sqrt(x*x + y*y); x /= sq; y /= sq; // Compute the scalar product of the vectors (arg0,arg1) and (x,y) const double scalarProduct = x * args[0] + y * args[1]; // Finally compute the projection of (arg2,arg3) onto (arg0,arg1) double projX = args[0] - 2 * scalarProduct * x; double projY = args[1] - 2 * scalarProduct * y; projX = projX * 20.0 / 23.0; // FIXME: Why is this here? writeScummVar(108, (int32)projX); if (args[3] >= 0) // FIXME: Why is this here? projY = projY * 5.0 / 6.0; writeScummVar(109, (int32)projY); return 1; } void LogicHErace::op_sub1(float arg) { // Setup a rotation matrix _userDataD[10] = _userDataD[12] = _userDataD[14] = _userDataD[16] = 0; _userDataD[13] = 1; _userDataD[9] = cos(arg * DEG2RAD); _userDataD[15] = sin(arg * DEG2RAD); _userDataD[11] = -_userDataD[15]; _userDataD[17] = _userDataD[9]; } void LogicHErace::op_sub2(float arg) { // Setup a rotation matrix -- but it is NEVER USED! _userDataD[20] = _userDataD[21] = _userDataD[24] = _userDataD[25] = 0; _userDataD[26] = 1; _userDataD[19] = sin(arg * DEG2RAD); _userDataD[18] = cos(arg * DEG2RAD); _userDataD[21] = -_userDataD[19]; _userDataD[22] = _userDataD[18]; } void LogicHErace::op_sub3(float arg) { // Setup a rotation matrix -- but it is NEVER USED! _userDataD[1] = _userDataD[2] = _userDataD[3] = _userDataD[6] = 0; _userDataD[0] = 1; _userDataD[4] = cos(arg * DEG2RAD); _userDataD[5] = sin(arg * DEG2RAD); _userDataD[7] = -_userDataD[5]; _userDataD[8] = _userDataD[4]; } LogicHE *makeLogicHErace(ScummEngine_v90he *vm) { return new LogicHErace(vm); } } // End of namespace Scumm