/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #ifdef ENABLE_HE #include "scumm/he/intern_he.h" #include "scumm/he/logic_he.h" namespace Scumm { LogicHE::LogicHE(ScummEngine_v90he *vm) : _vm(vm) { } LogicHE::~LogicHE() { } LogicHErace::LogicHErace(ScummEngine_v90he *vm) : LogicHE(vm) { // Originally it used 0x930 and stored both floats and doubles inside _userData = (float *)calloc(550, sizeof(float)); _userDataD = (double *)calloc(30, sizeof(double)); // FIXME: of the 550 entries in _userData, only 516 till 532 are used // FIXME: similarly, in _userDataD only 9 till 17 are used for computations // (some of the other entries are also set, but never read, hence useless). } LogicHErace::~LogicHErace() { free(_userData); free(_userDataD); } void LogicHE::writeScummVar(int var, int32 value) { _vm->writeVar(var, value); } static int32 scumm_round(double arg) { return (int32)(arg + 0.5); } int LogicHE::versionID() { return 1; } int LogicHE::getFromArray(int arg0, int idx2, int idx1) { _vm->VAR(_vm->VAR_U32_ARRAY_UNK) = arg0; return _vm->readArray(116, idx2, idx1); } void LogicHE::putInArray(int arg0, int idx2, int idx1, int val) { _vm->VAR(_vm->VAR_U32_ARRAY_UNK) = arg0; _vm->writeArray(116, idx2, idx1, val); } int32 LogicHE::dispatch(int op, int numArgs, int32 *args) { #if 1 Common::String str; str = Common::String::format("LogicHE::dispatch(%d, %d, [", op, numArgs); if (numArgs > 0) str += Common::String::format("%d", args[0]); for (int i = 1; i < numArgs; i++) { str += Common::String::format(", %d", args[i]); } str += "])"; debug(0, "%s", str.c_str()); #else // Used for parallel trace utility for (int i = 0; i < numArgs; i++) debug(0, "args[%d] = %d;", i, args[i]); debug(0, "dispatch(%d, %d, args);", op, numArgs); #endif return 1; } /*********************** * Putt-Putt Joins the Race * */ int LogicHErace::versionID() { return 1; } int32 LogicHErace::dispatch(int op, int numArgs, int32 *args) { int32 res; switch (op) { case 1003: res = op_1003(args); break; case 1004: res = op_1004(args); break; case 1100: res = op_1100(args); break; case 1101: res = op_1101(args); break; case 1102: res = op_1102(args); break; case 1103: res = op_1103(args); break; case 1110: res = op_1110(); break; case 1120: res = op_1120(args); break; case 1130: res = op_1130(args); break; case 1140: res = op_1140(args); break; default: res = 0; break; } return res; } #define RAD2DEG (180 / M_PI) #define DEG2RAD (M_PI / 180) int32 LogicHErace::op_1003(int32 *args) { int value = args[2] ? args[2] : 1; writeScummVar(108, (int32)(atan2((double)args[0], (double)args[1]) * RAD2DEG * value)); return 1; } int32 LogicHErace::op_1004(int32 *args) { int value = args[1] ? args[1] : 1; writeScummVar(108, (int32)(sqrt((float)args[0]) * value)); return 1; } int32 LogicHErace::op_1100(int32 *args) { // _userData 516,517,518 describe a 3D translation? _userData[516] = (float)args[0] / args[10]; _userData[517] = (float)args[1] / args[10]; _userData[518] = (float)args[2] / args[10]; // _userData 519,520,521 describe rotation angles around the x,y,z axes? _userData[519] = (float)args[3] / args[10]; _userData[520] = (float)args[4] / args[10]; _userData[521] = (float)args[5] / args[10]; op_sub1(_userData[520]); op_sub2(_userData[521]); // _userData[532] seems to be some kind of global scale factor _userData[532] = (float)args[10]; _userData[524] = (float)args[8]; // not used _userData[525] = (float)args[9]; // not used _userData[522] = (float)args[6] / args[10]; // not used _userData[523] = (float)args[7] / args[10]; // only used to compute 528 and 529 // The following two are some kind of scale factors _userData[526] = (float)args[6] / args[8] / args[10]; _userData[527] = (float)args[7] / args[9] / args[10]; // Set var 108 and 109 -- the value set here corresponds to the values // set by op_1110! writeScummVar(108, (int32)((float)args[6] / args[8] * args[10])); writeScummVar(109, (int32)((float)args[7] / args[9] * args[10])); _userData[528] = (float)(_userData[519] - _userData[523] * 0.5); _userData[529] = (float)(_userData[519] + _userData[523] * 0.5); writeScummVar(110, (int32)(_userData[528] * args[10])); writeScummVar(111, (int32)(_userData[529] * args[10])); // 530 and 531 are only used to set vars 112 and 113, so no need // to store them permanently _userData[530] = (float)(_userData[517] / tan(_userData[529] * DEG2RAD)); _userData[531] = (float)(_userData[517] / tan(_userData[528] * DEG2RAD)); writeScummVar(112, (int32)(_userData[530] * args[10])); writeScummVar(113, (int32)(_userData[531] * args[10])); return 1; } int32 LogicHErace::op_1101(int32 *args) { // Update rotation params? int32 retval; float temp; temp = args[0] / _userData[532]; if (_userData[519] != temp) { _userData[519] = temp; op_sub3(temp); retval = 1; } else { retval = (int32)temp; } temp = args[1] / _userData[532]; if (_userData[520] != temp) { _userData[520] = temp; op_sub1(temp); retval = 1; } temp = args[2] / _userData[532]; if (_userData[521] != temp) { _userData[521] = temp; op_sub2(temp); retval = 1; } return retval; } int32 LogicHErace::op_1102(int32 *args) { // Update translation params? int32 retval; float temp; temp = args[0] / _userData[532]; if (_userData[516] != temp) { _userData[516] = temp; retval = 1; } else { retval = (int32)_userData[532]; } temp = args[1] / _userData[532]; if (_userData[517] != temp) { _userData[517] = temp; retval = 1; } temp = args[2] / _userData[532]; if (_userData[518] != temp) { _userData[518] = temp; retval = 1; } return retval; } int32 LogicHErace::op_1103(int32 *args) { double angle = args[0] / args[1] * DEG2RAD; writeScummVar(108, (int32)(sin(angle) * args[2])); writeScummVar(109, (int32)(cos(angle) * args[2])); return 1; } int32 LogicHErace::op_1110() { writeScummVar(108, (int32)(_userData[526] * _userData[532] * _userData[532])); writeScummVar(109, (int32)(_userData[527] * _userData[532] * _userData[532])); writeScummVar(110, (int32)(_userData[532])); return 1; } int32 LogicHErace::op_1120(int32 *args) { double a0, a1, a2; double b0, b1, b2; double res1, res2; a0 = args[0] / _userData[532] - _userData[516]; a1 = args[1] / _userData[532] - _userData[517]; a2 = args[2] / _userData[532] - _userData[518]; // Perform matrix multiplication (multiplying by a rotation matrix) b2 = a2 * _userDataD[17] + a1 * _userDataD[14] + a0 * _userDataD[11]; b1 = a2 * _userDataD[16] + a1 * _userDataD[13] + a0 * _userDataD[10]; b0 = a2 * _userDataD[15] + a1 * _userDataD[12] + a0 * _userDataD[9]; res1 = (atan2(b0, b2) * RAD2DEG) / _userData[526]; res2 = (atan2(b1, b2) * RAD2DEG - _userData[528]) / _userData[527]; writeScummVar(108, (int32)res1); writeScummVar(109, (int32)res2); return 1; } int32 LogicHErace::op_1130(int32 *args) { double cs = cos(args[0] / _userData[532] * DEG2RAD); double sn = sin(args[0] / _userData[532] * DEG2RAD); writeScummVar(108, (int32)(cs * args[1] + sn * args[2])); writeScummVar(109, (int32)(cs * args[2] - sn * args[1])); return 1; } int32 LogicHErace::op_1140(int32 *args) { // This functions seems to perform some kind of projection: We project // the vector (arg2,arg3) onto the vector (arg0,arg1), but also apply // some kind of distortion factor ?!? double x = args[2], y = args[3]; // We start by normalizing the vector described by arg2 and arg3. // So compute its length and divide the x and y coordinates const double sq = sqrt(x*x + y*y); x /= sq; y /= sq; // Compute the scalar product of the vectors (arg0,arg1) and (x,y) const double scalarProduct = x * args[0] + y * args[1]; // Finally compute the projection of (arg2,arg3) onto (arg0,arg1) double projX = args[0] - 2 * scalarProduct * x; double projY = args[1] - 2 * scalarProduct * y; projX = projX * 20.0 / 23.0; // FIXME: Why is this here? writeScummVar(108, (int32)projX); if (args[3] >= 0) // FIXME: Why is this here? projY = projY * 5.0 / 6.0; writeScummVar(109, (int32)projY); return 1; } void LogicHErace::op_sub1(float arg) { // Setup a rotation matrix _userDataD[10] = _userDataD[12] = _userDataD[14] = _userDataD[16] = 0; _userDataD[13] = 1; _userDataD[9] = cos(arg * DEG2RAD); _userDataD[15] = sin(arg * DEG2RAD); _userDataD[11] = -_userDataD[15]; _userDataD[17] = _userDataD[9]; } void LogicHErace::op_sub2(float arg) { // Setup a rotation matrix -- but it is NEVER USED! _userDataD[20] = _userDataD[21] = _userDataD[24] = _userDataD[25] = 0; _userDataD[26] = 1; _userDataD[19] = sin(arg * DEG2RAD); _userDataD[18] = cos(arg * DEG2RAD); _userDataD[21] = -_userDataD[19]; _userDataD[22] = _userDataD[18]; } void LogicHErace::op_sub3(float arg) { // Setup a rotation matrix -- but it is NEVER USED! _userDataD[1] = _userDataD[2] = _userDataD[3] = _userDataD[6] = 0; _userDataD[0] = 1; _userDataD[4] = cos(arg * DEG2RAD); _userDataD[5] = sin(arg * DEG2RAD); _userDataD[7] = -_userDataD[5]; _userDataD[8] = _userDataD[4]; } /*********************** * Freddi Fish's One-Stop Fun Shop * Pajama Sam's One-Stop Fun Shop * Putt-Putt's One-Stop Fun Shop * */ int LogicHEfunshop::versionID() { return 1; } int32 LogicHEfunshop::dispatch(int op, int numArgs, int32 *args) { switch (op) { case 1004: op_1004(args); break; case 1005: op_1005(args); break; default: break; } return 0; } void LogicHEfunshop::op_1004(int32 *args) { double data[8], at, sq; int32 x, y; int i=0; for (i = 0; i <= 6; i += 2) { data[i] = getFromArray(args[0], 0, 519 + i); data[i + 1] = getFromArray(args[0], 0, 519 + i + 1); } int s = checkShape((int32)data[0], (int32)data[1], (int32)data[4], (int32)data[5], (int32)data[2], (int32)data[3], (int32)data[6], (int32)data[7], &x, &y); if (s != 1) { error("LogicHEfunshop::op_1004: Your shape has defied the laws of physics"); return; } for (i = 0; i <= 6; i += 2) { data[i] -= (double)x; data[i + 1] -= (double)y; } double a1 = (double)args[1] * DEG2RAD; for (i = 0; i <= 6; i += 2) { at = atan2(data[i + 1], data[i]); sq = sqrt(data[i + 1] * data[i + 1] + data[i] * data[i]); if (at <= 0) at += 2 * M_PI; data[i] = cos(at + a1) * sq; data[i + 1] = sin(at + a1) * sq; } double minx = data[0]; double miny = data[1]; for (i = 0; i <= 6; i += 2) { if (data[i] < minx) minx = data[i]; if (data[i + 1] < miny) miny = data[i + 1]; } for (i = 0; i <= 6; i += 2) { data[i] -= minx; data[i + 1] -= miny; putInArray(args[0], 0, 519 + i, scumm_round(data[i])); putInArray(args[0], 0, 519 + i + 1, scumm_round(data[i + 1])); } } void LogicHEfunshop::op_1005(int32 *args) { double data[8]; double args1, args2; int i; for (i = 520; i <= 526; i += 2) { data[i - 520] = getFromArray(args[0], 0, i - 1); data[i - 520 + 1] = getFromArray(args[0], 0, i); } args1 = (double)args[1] * 0.01 + 1; args2 = (double)args[2] * 0.01 + 1; for (i = 0; i < 4; i++) { data[2 * i] *= args1; data[2 * i + 1] *= args2; } for (i = 520; i <= 526; i += 2) { putInArray(args[0], 0, i - 1, scumm_round(data[i - 520])); putInArray(args[0], 0, i, scumm_round(data[i - 520 + 1])); } } int LogicHEfunshop::checkShape(int32 data0, int32 data1, int32 data4, int32 data5, int32 data2, int32 data3, int32 data6, int32 data7, int32 *x, int32 *y) { int32 diff5_1, diff0_4, diff7_3, diff2_6; int32 diff1, diff2; int32 delta, delta2; int32 sum1, sum2; diff0_4 = data0 - data4; diff5_1 = data5 - data1; diff1 = data1 * data4 - data0 * data5; sum1 = diff0_4 * data3 + diff1 + diff5_1 * data2; sum2 = diff0_4 * data7 + diff1 + diff5_1 * data6; if (sum1 != 0 && sum2 != 0) { sum2 ^= sum1; if (sum2 >= 0) return 0; } diff2_6 = data2 - data6; diff7_3 = data7 - data3; diff2 = data3 * data6 - data2 * data7; sum1 = diff2_6 * data1 + diff2 + diff7_3 * data0; sum2 = diff2_6 * data5 + diff2 + diff7_3 * data4; if (sum1 != 0 && sum2 != 0) { sum2 ^= sum1; if (sum2 >= 0) return 0; } delta = diff2_6 * diff5_1 - diff0_4 * diff7_3; if (delta == 0) { return 2; } if (delta < 0) { data7 = -((delta + 1) >> 1); } else { data7 = delta >> 1; } delta2 = diff2 * diff0_4 - diff1 * diff2_6; if (delta2 < 0) { delta2 -= data7; } else { delta2 += data7; } *x = delta2 / delta; delta2 = diff1 * diff7_3 - diff2 * diff5_1; if (delta2 < 0) { delta2 -= data7; } else { delta2 += data7; } *y = delta2 / delta; return 1; } /*********************** * Backyard Football * Backyard Football 2002 * Backyard Football Demo * */ int LogicHEfootball::versionID() { return 1; } int32 LogicHEfootball::dispatch(int op, int numArgs, int32 *args) { int res = 0; switch (op) { case 1004: res = op_1004(args); break; case 1006: res = op_1006(args); break; case 1007: res = op_1007(args); break; case 1010: res = op_1010(args); break; case 1022: res = op_1022(args); break; case 1023: res = op_1023(args); break; case 1024: res = op_1024(args); break; case 8221968: // Someone had a fun and used his birthday as opcode number res = getFromArray(args[0], args[1], args[2]); break; case 1492: case 1493: case 1494: case 1495: case 1496: case 1497: case 1498: case 1499: case 1500: case 1501: case 1502: case 1503: case 1504: case 1505: case 1506: case 1507: case 1508: case 1509: case 1510: case 1511: case 1512: case 1513: case 1514: case 1555: // DirectPlay-related // 1513: initialize // 1555: set fake lag break; case 2200: case 2201: case 2202: case 2203: case 2204: case 2205: case 2206: case 2207: case 2208: case 2209: case 2210: case 2211: case 2212: case 2213: case 2214: case 2215: case 2216: case 2217: case 2218: case 2219: case 2220: case 2221: case 2222: case 2223: case 2224: case 2225: case 2226: case 2227: case 2228: // Boneyards-related break; case 3000: case 3001: case 3002: case 3003: case 3004: // Internet-related // 3000: check for updates // 3001: check network status // 3002: autoupdate // 3003: close connection break; default: LogicHE::dispatch(op, numArgs, args); warning("Tell sev how to reproduce it (%d)", op); } return res; } int LogicHEfootball::op_1004(int32 *args) { // Identical to LogicHEsoccer::op_1004 double res, a2, a4, a5; a5 = ((double)args[4] - (double)args[1]) / ((double)args[5] - (double)args[2]); a4 = ((double)args[3] - (double)args[0]) / ((double)args[5] - (double)args[2]); a2 = (double)args[2] - (double)args[0] * a4 - args[1] * a5; res = (double)args[6] * a4 + (double)args[7] * a5 + a2; writeScummVar(108, (int32)res); writeScummVar(109, (int32)a2); writeScummVar(110, (int32)a5); writeScummVar(111, (int32)a4); return 1; } int LogicHEfootball::op_1006(int32 *args) { // This seems to be more or less the inverse of op_1010 const double a1 = args[1]; double res; // 2.9411764e-4 = 1/3400 // 5.3050399e-2 = 1/18.85 = 20/377 // 1.1764706e-2 = 1/85 = 40/3400 // 1.2360656e-1 = 377/3050 res = (1.0 - a1 * 2.9411764e-4 * 5.3050399e-2) * 1.2360656e-1 * args[0] + a1 * 1.1764706e-2 + 46; // Shortened / optimized version of that formula: // res = (377.0 - a1 / 170.0) / 3050.0 * args[0] + a1 / 85.0 + 46; writeScummVar(108, (int32)res); // 1.2360656e-1 = 377/3050 // 1.1588235e-1 = 197/1700 = 394/3400 res = 640.0 - args[2] * 1.2360656e-1 - a1 * 1.1588235e-1 - 26; writeScummVar(109, (int32)res); return 1; } int LogicHEfootball::op_1007(int32 *args) { double res, temp; temp = (double)args[1] * 0.32; if (temp > 304.0) res = -args[2] * 0.142; else res = args[2] * 0.142; res += temp; writeScummVar(108, (int32)res); res = (1000.0 - args[2]) * 0.48; writeScummVar(109, (int32)res); return 1; } int LogicHEfootball::op_1010(int32 *args) { // This seems to be more or less the inverse of op_1006 double a1 = (640.0 - (double)args[1] - 26.0) / 1.1588235e-1; // 2.9411764e-4 = 1/3400 // 5.3050399e-2 = 1/18.85 = 20/377 // 1.1764706e-2 = 1/85 = 40/3400 // 1.2360656e-1 = 377/3050 double a0 = ((double)args[0] - 46 - a1 * 1.1764706e-2) / ((1.0 - a1 * 2.9411764e-4 * 5.3050399e-2) * 1.2360656e-1); writeScummVar(108, (int32)a0); writeScummVar(109, (int32)a1); return 1; } int LogicHEfootball::op_1022(int32 *args) { double res; double var10 = args[4] - args[1]; double var8 = args[5] - args[2]; double var6 = args[3] - args[0]; res = sqrt(var8 * var8 + var6 * var6 + var10 * var10); if (res >= (double)args[6]) { var8 = (double)args[6] * var8 / res; var10 = (double)args[6] * var10 / res; res = (double)args[6] * var6 / res; } writeScummVar(108, (int32)res); writeScummVar(109, (int32)var10); writeScummVar(110, (int32)var8); return 1; } int LogicHEfootball::op_1023(int32 *args) { double var10, var18, var20, var28, var30, var30_; double argf[7]; for (int i = 0; i < 7; i++) argf[i] = args[i]; var10 = (argf[3] - argf[1]) / (argf[2] - argf[0]); var28 = var10 * var10 + 1; var20 = argf[0] * var10; var18 = (argf[5] + argf[1] + var20) * argf[4] * var10 * 2 + argf[6] * argf[6] * var28 + argf[4] * argf[4] - argf[0] * argf[0] * var10 * var10 - argf[5] * argf[0] * var10 * 2 - argf[5] * argf[1] * 2 - argf[1] * argf[1] - argf[5] * argf[5]; if (var18 >= 0) { var18 = sqrt(var18); var30_ = argf[4] + argf[5] * var10 + argf[1] * var10 + argf[0] * var10 * var10; var30 = (var30_ - var18) / var28; var18 = (var30_ + var18) / var28; if ((argf[0] - var30 < 0) && (argf[0] - var18 < 0)) { var30_ = var30; var30 = var18; var18 = var30_; } var28 = var18 * var10 - var20 - argf[1]; var20 = var30 * var10 - var20 - argf[1]; } else { var18 = 0; var20 = 0; var28 = 0; var30 = 0; } writeScummVar(108, (int32)var18); writeScummVar(109, (int32)var28); writeScummVar(110, (int32)var30); writeScummVar(111, (int32)var20); return 1; } int LogicHEfootball::op_1024(int32 *args) { writeScummVar(108, 0); writeScummVar(109, 0); writeScummVar(110, 0); writeScummVar(111, 0); return 1; } /*********************** * Backyard Soccer * */ int LogicHEsoccer::versionID() { return 1; } LogicHEsoccer::LogicHEsoccer(ScummEngine_v90he *vm) : LogicHE(vm) { // Originally it used 0x1b0d bytes _userDataD = (double *)calloc(1732, sizeof(double)); } int32 LogicHEsoccer::dispatch(int op, int numArgs, int32 *args) { int res = 0; switch (op) { case 1001: res = op_1001(args); break; case 1002: res = op_1002(args); break; case 1004: res = op_1004(args); break; case 8221968: // Someone had a fun and used his birthday as opcode number res = getFromArray(args[0], args[1], args[2]); break; default: // original range is 1001 - 1021 LogicHE::dispatch(op, numArgs, args); } return res; } int LogicHEsoccer::op_1001(int32 *args) { return (int)(args[0] * sin((float)args[1])); } int LogicHEsoccer::op_1002(int32 *args) { return _vm->VAR(2) * args[0]; } int LogicHEsoccer::op_1003(int32 *args) { double data[6], out[3]; int i; for (i = 0; i < 6; i++) { data[i] = getFromArray(args[0], 0, i); } out[0] = data[1] * data[5] - data[4] * data[2]; out[1] = data[5] * data[0] - data[3] * data[2]; out[2] = data[4] * data[0] - data[3] * data[1]; for (i = 0; i < 3; i++) { putInArray(args[0], 0, i, scumm_round(out[i])); } return 1; } int LogicHEsoccer::op_1004(int32 *args) { // Identical to LogicHEfootball::op_1004 double res, a2, a4, a5; a5 = ((double)args[4] - (double)args[1]) / ((double)args[5] - (double)args[2]); a4 = ((double)args[3] - (double)args[0]) / ((double)args[5] - (double)args[2]); a2 = (double)args[2] - (double)args[0] * a4 - args[1] * a5; res = (double)args[6] * a4 + (double)args[7] * a5 + a2; writeScummVar(108, (int32)res); writeScummVar(109, (int32)a2); writeScummVar(110, (int32)a5); writeScummVar(111, (int32)a4); return 1; } int LogicHEsoccer::op_1006(int32 *args) { double a1 = args[1] * 0.01; double a2 = args[2] * 0.01; double a3 = args[3] * 0.01; double var108, var109; _userDataD[529] = args[4]; var108 = atan2(a1, a3) * _userDataD[523] - args[4]; var109 = _userDataD[526] - _userDataD[528] + (_userDataD[521] - atan2(_userDataD[524] - a2, a3)) * _userDataD[522]; writeScummVar(108, (int32)var108); writeScummVar(109, (int32)var109); return 1; } int LogicHEsoccer::op_1007(int32 *args) { // TODO: Used when the HE logo is shown return 1; } int LogicHEsoccer::op_1008(int32 *args) { // TODO: Used during a match (kicking?) return 1; } int LogicHEsoccer::op_1012(int32 *args) { // TODO: Used after op_1019 return 1; } int LogicHEsoccer::op_1014(int32 *args) { // TODO: Used many times during a match return 1; } int LogicHEsoccer::op_1019(int32 *args) { // TODO: Used at the beginning of a match return 1; } int LogicHEsoccer::op_1021(int32 *args) { // TODO: Used during a match (ball movement?) return 1; } /*********************** * Backyard Baseball 2001 * */ int LogicHEbaseball2001::versionID() { return 1; } int32 LogicHEbaseball2001::dispatch(int op, int numArgs, int32 *args) { int res = 0; switch (op) { case 3001: // Check network status break; default: LogicHE::dispatch(op, numArgs, args); } return res; } /*********************** * Backyard Basketball * */ int LogicHEbasketball::versionID() { return 1; } int32 LogicHEbasketball::dispatch(int op, int numArgs, int32 *args) { int res = 0; switch (op) { case 1001: break; case 1006: break; case 1011: break; case 1012: break; case 1035: break; case 1050: break; case 1051: break; case 1052: break; case 1056: break; case 1057: break; case 1058: break; case 1060: break; case 1064: break; case 1067: break; case 1073: break; case 1075: break; case 1076: break; case 1080: break; case 1081: break; case 1090: break; case 1091: break; case 1513: break; default: LogicHE::dispatch(op, numArgs, args); } return res; } /*********************** * Moonbase Commander * */ int LogicHEmoonbase::versionID() { if (_vm->_game.features & GF_DEMO) return -100; else return 100; } } // End of namespace Scumm #endif // ENABLE_HE