/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * aint32 with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #ifndef DISABLE_NES_APU #include "engines/engine.h" #include "scumm/player_nes.h" #include "scumm/scumm.h" #include "audio/mixer.h" namespace Scumm { static const byte channelMask[4] = {1, 2, 4, 8}; static const uint16 freqTable[64] = { 0x07F0, 0x077E, 0x0712, 0x06AE, 0x064E, 0x05F3, 0x059E, 0x054D, 0x0501, 0x04B9, 0x0475, 0x0435, 0x03F8, 0x03BF, 0x0389, 0x0357, 0x0327, 0x02F9, 0x02CF, 0x02A6, 0x0280, 0x025C, 0x023A, 0x021A, 0x01FC, 0x01DF, 0x01C4, 0x01AB, 0x0193, 0x017C, 0x0167, 0x0152, 0x013F, 0x012D, 0x011C, 0x010C, 0x00FD, 0x00EE, 0x00E1, 0x00D4, 0x00C8, 0x00BD, 0x00B2, 0x00A8, 0x009F, 0x0096, 0x008D, 0x0085, 0x007E, 0x0076, 0x0070, 0x0069, 0x0063, 0x005E, 0x0058, 0x0053, 0x004F, 0x004A, 0x0046, 0x0042, 0x003E, 0x003A, 0x0037, 0x0034 }; static const byte instChannel[16] = { 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 1, 3, 3, 3 }; static const byte startCmd[16] = { 0x05, 0x03, 0x06, 0x08, 0x0B, 0x01, 0x01, 0x1A, 0x16, 0x06, 0x04, 0x17, 0x02, 0x10, 0x0E, 0x0D }; static const byte releaseCmd[16] = { 0x0F, 0x00, 0x00, 0x09, 0x00, 0x14, 0x15, 0x00, 0x00, 0x00, 0x1B, 0x1B, 0x0F, 0x0F, 0x0F, 0x0F }; static const byte nextCmd[28] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x17, 0xFF, 0x07, 0xFF, 0xFF, 0x0A, 0x09, 0x0C, 0x00, 0x00, 0x00, 0x00, 0x11, 0x12, 0x11, 0x03, 0xFF, 0xFF, 0x18, 0x00, 0x19, 0x00, 0x00, 0x00 }; static const byte nextDelay[28] = { 0x00, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x05, 0x08, 0x03, 0x00, 0x00, 0x00, 0x00, 0x02, 0x02, 0x02, 0x00, 0x00, 0x00, 0x03, 0x00, 0x03, 0x00, 0x00, 0x00 }; namespace APUe { static const byte LengthCounts[32] = { 0x0A,0xFE, 0x14,0x02, 0x28,0x04, 0x50,0x06, 0xA0,0x08, 0x3C,0x0A, 0x0E,0x0C, 0x1A,0x0E, 0x0C,0x10, 0x18,0x12, 0x30,0x14, 0x60,0x16, 0xC0,0x18, 0x48,0x1A, 0x10,0x1C, 0x20,0x1E }; class SoundGen { protected: byte wavehold; uint32 freq; // short uint32 CurD; public: byte Timer; int32 Pos; uint32 Cycles; // short inline byte GetTimer() const { return Timer; } }; class Square : public SoundGen { protected: byte volume, envelope, duty, swpspeed, swpdir, swpstep, swpenab; byte Vol; byte EnvCtr, Envelope, BendCtr; bool Enabled, ValidFreq, Active; bool EnvClk, SwpClk; void CheckActive(); public: void Reset(); void Write(int Reg, byte Val); void Run(); void QuarterFrame(); void HalfFrame(); }; static const int8 Duties[4][8] = { {-4,+4,-4,-4,-4,-4,-4,-4}, {-4,+4,+4,-4,-4,-4,-4,-4}, {-4,+4,+4,+4,+4,-4,-4,-4}, {+4,-4,-4,+4,+4,+4,+4,+4} }; void Square::Reset() { memset(this, 0, sizeof(*this)); Cycles = 1; EnvCtr = 1; BendCtr = 1; } void Square::CheckActive() { ValidFreq = (freq >= 0x8) && ((swpdir) || !((freq + (freq >> swpstep)) & 0x800)); Active = Timer && ValidFreq; Pos = Active ? (Duties[duty][CurD] * Vol) : 0; } void Square::Write(int Reg, byte Val) { switch (Reg) { case 0: volume = Val & 0xF; envelope = Val & 0x10; wavehold = Val & 0x20; duty = (Val >> 6) & 0x3; Vol = envelope ? volume : Envelope; break; case 1: swpstep = Val & 0x07; swpdir = Val & 0x08; swpspeed = (Val >> 4) & 0x7; swpenab = Val & 0x80; SwpClk = true; break; case 2: freq &= 0x700; freq |= Val; break; case 3: freq &= 0xFF; freq |= (Val & 0x7) << 8; if (Enabled) Timer = LengthCounts[(Val >> 3) & 0x1F]; CurD = 0; EnvClk = true; break; case 4: Enabled = (Val != 0); if (!Enabled) Timer = 0; break; } CheckActive(); } void Square::Run() { Cycles = (freq + 1) << 1; CurD = (CurD + 1) & 0x7; if (Active) Pos = Duties[duty][CurD] * Vol; } void Square::QuarterFrame() { if (EnvClk) { EnvClk = false; Envelope = 0xF; EnvCtr = volume + 1; } else if (!--EnvCtr) { EnvCtr = volume + 1; if (Envelope) Envelope--; else Envelope = wavehold ? 0xF : 0x0; } Vol = envelope ? volume : Envelope; CheckActive(); } void Square::HalfFrame() { if (!--BendCtr) { BendCtr = swpspeed + 1; if (swpenab && swpstep && ValidFreq) { int sweep = freq >> swpstep; // FIXME: Is -sweep or ~sweep correct??? freq += swpdir ? -sweep : sweep; } } if (SwpClk) { SwpClk = false; BendCtr = swpspeed + 1; } if (Timer && !wavehold) Timer--; CheckActive(); } class Triangle : public SoundGen { protected: byte linear; byte LinCtr; bool Enabled, Active; bool LinClk; void CheckActive(); public: void Reset(); void Write(int Reg, byte Val); void Run(); void QuarterFrame(); void HalfFrame(); }; static const int8 TriDuty[32] = { -8,-7,-6,-5,-4,-3,-2,-1, +0,+1,+2,+3,+4,+5,+6,+7, +7,+6,+5,+4,+3,+2,+1,+0, -1,-2,-3,-4,-5,-6,-7,-8 }; void Triangle::Reset() { memset(this, 0, sizeof(*this)); Cycles = 1; } void Triangle::CheckActive() { Active = Timer && LinCtr; if (freq < 4) Pos = 0; // beyond hearing range else Pos = TriDuty[CurD] * 8; } void Triangle::Write(int Reg, byte Val) { switch (Reg) { case 0: linear = Val & 0x7F; wavehold = (Val >> 7) & 0x1; break; case 2: freq &= 0x700; freq |= Val; break; case 3: freq &= 0xFF; freq |= (Val & 0x7) << 8; if (Enabled) Timer = LengthCounts[(Val >> 3) & 0x1F]; LinClk = true; break; case 4: Enabled = (Val != 0); if (!Enabled) Timer = 0; break; } CheckActive(); } void Triangle::Run() { Cycles = freq + 1; if (Active) { CurD++; CurD &= 0x1F; if (freq < 4) Pos = 0; // beyond hearing range else Pos = TriDuty[CurD] * 8; } } void Triangle::QuarterFrame() { if (LinClk) LinCtr = linear; else if (LinCtr) LinCtr--; if (!wavehold) LinClk = false; CheckActive(); } void Triangle::HalfFrame() { if (Timer && !wavehold) Timer--; CheckActive(); } class Noise : public SoundGen { protected: byte volume, envelope, datatype; byte Vol; byte EnvCtr, Envelope; bool Enabled; bool EnvClk; void CheckActive(); public: void Reset(); void Write(int Reg, byte Val); void Run(); void QuarterFrame(); void HalfFrame(); }; static const uint32 NoiseFreq[16] = { 0x004,0x008,0x010,0x020,0x040,0x060,0x080,0x0A0, 0x0CA,0x0FE,0x17C,0x1FC,0x2FA,0x3F8,0x7F2,0xFE4 }; void Noise::Reset() { memset(this, 0, sizeof(*this)); CurD = 1; Cycles = 1; EnvCtr = 1; } void Noise::Write(int Reg, byte Val) { switch (Reg) { case 0: volume = Val & 0x0F; envelope = Val & 0x10; wavehold = Val & 0x20; Vol = envelope ? volume : Envelope; if (Timer) Pos = ((CurD & 0x4000) ? -2 : 2) * Vol; break; case 2: freq = Val & 0xF; datatype = Val & 0x80; break; case 3: if (Enabled) Timer = LengthCounts[(Val >> 3) & 0x1F]; EnvClk = true; break; case 4: Enabled = (Val != 0); if (!Enabled) Timer = 0; break; } } void Noise::Run() { Cycles = NoiseFreq[freq]; /* no + 1 here */ if (datatype) CurD = (CurD << 1) | (((CurD >> 14) ^ (CurD >> 8)) & 0x1); else CurD = (CurD << 1) | (((CurD >> 14) ^ (CurD >> 13)) & 0x1); if (Timer) Pos = ((CurD & 0x4000) ? -2 : 2) * Vol; } void Noise::QuarterFrame() { if (EnvClk) { EnvClk = false; Envelope = 0xF; EnvCtr = volume + 1; } else if (!--EnvCtr) { EnvCtr = volume + 1; if (Envelope) Envelope--; else Envelope = wavehold ? 0xF : 0x0; } Vol = envelope ? volume : Envelope; if (Timer) Pos = ((CurD & 0x4000) ? -2 : 2) * Vol; } void Noise::HalfFrame() { if (Timer && !wavehold) Timer--; } class APU { protected: int BufPos; int SampleRate; Square _square0; Square _square1; Triangle _triangle; Noise _noise; struct { uint32 Cycles; int Num; } Frame; public: APU(int rate) : SampleRate(rate) { Reset(); } void WriteReg(int Addr, byte Val); byte Read4015(); void Reset (); int16 GetSample(); }; void APU::WriteReg(int Addr, byte Val) { switch (Addr) { case 0x000: _square0.Write(0,Val); break; case 0x001: _square0.Write(1,Val); break; case 0x002: _square0.Write(2,Val); break; case 0x003: _square0.Write(3,Val); break; case 0x004: _square1.Write(0,Val); break; case 0x005: _square1.Write(1,Val); break; case 0x006: _square1.Write(2,Val); break; case 0x007: _square1.Write(3,Val); break; case 0x008: _triangle.Write(0,Val); break; case 0x009: _triangle.Write(1,Val); break; case 0x00A: _triangle.Write(2,Val); break; case 0x00B: _triangle.Write(3,Val); break; case 0x00C: _noise.Write(0,Val); break; case 0x00D: _noise.Write(1,Val); break; case 0x00E: _noise.Write(2,Val); break; case 0x00F: _noise.Write(3,Val); break; case 0x015: _square0.Write(4,Val & 0x1); _square1.Write(4,Val & 0x2); _triangle.Write(4,Val & 0x4); _noise.Write(4,Val & 0x8); break; } } byte APU::Read4015() { byte result = (( _square0.GetTimer()) ? 0x01 : 0) | (( _square1.GetTimer()) ? 0x02 : 0) | ((_triangle.GetTimer()) ? 0x04 : 0) | (( _noise.GetTimer()) ? 0x08 : 0); return result; } void APU::Reset () { BufPos = 0; _square0.Reset(); _square1.Reset(); _triangle.Reset(); _noise.Reset(); Frame.Num = 0; Frame.Cycles = 1; } template int step(T &obj, int sampcycles, uint frame_Cycles, int frame_Num) { int samppos = 0; while (sampcycles) { // Compute the maximal amount we can step ahead before triggering // an action (i.e. compute the minimum of sampcycles, frame_Cycles // and obj.Cycles). uint max_step = sampcycles; if (max_step > frame_Cycles) max_step = frame_Cycles; if (max_step > obj.Cycles) max_step = obj.Cycles; // During all but the last of these steps, we just add the value of obj.Pos // to samppos -- so we can to that all at once with a simple multiplication: samppos += obj.Pos * (max_step - 1); // Now step ahead... sampcycles -= max_step; frame_Cycles -= max_step; obj.Cycles -= max_step; if (!frame_Cycles) { frame_Cycles = 7457; if (frame_Num < 4) { obj.QuarterFrame(); if (frame_Num & 1) frame_Cycles++; else obj.HalfFrame(); frame_Num++; } else frame_Num = 0; } if (!obj.Cycles) obj.Run(); samppos += obj.Pos; } return samppos; } int16 APU::GetSample() { int samppos = 0; const int sampcycles = 1+(1789773-BufPos-1)/SampleRate; BufPos = BufPos + sampcycles * SampleRate - 1789773; samppos += step( _square0, sampcycles, Frame.Cycles, Frame.Num); samppos += step( _square1, sampcycles, Frame.Cycles, Frame.Num); samppos += step(_triangle, sampcycles, Frame.Cycles, Frame.Num); samppos += step( _noise, sampcycles, Frame.Cycles, Frame.Num); uint tmp = sampcycles; while (tmp >= Frame.Cycles) { tmp -= Frame.Cycles; Frame.Cycles = 7457; if (Frame.Num < 4) { if (Frame.Num & 1) Frame.Cycles++; Frame.Num++; } else Frame.Num = 0; } Frame.Cycles -= tmp; return (samppos << 6) / sampcycles; } } // End of namespace APUe Player_NES::Player_NES(ScummEngine *scumm, Audio::Mixer *mixer) { int i; _vm = scumm; _mixer = mixer; _sampleRate = _mixer->getOutputRate(); _apu = new APUe::APU(_sampleRate); _samples_per_frame = _sampleRate / 60; _current_sample = 0; for (i = 0; i < NUMSLOTS; i++) { _slot[i].id = -1; _slot[i].framesleft = 0; _slot[i].type = 0; _slot[i].offset = 0; _slot[i].data = NULL; } for (i = 0; i < NUMCHANS; i++) { _mchan[i].command = 0; _mchan[i].framedelay = 0; _mchan[i].pitch = 0; _mchan[i].volume = 0; _mchan[i].voldelta = 0; _mchan[i].envflags = 0; _mchan[i].cmdlock = 0; } isSFXplaying = wasSFXplaying = false; auxData1 = auxData2 = NULL; numNotes = 0; APU_writeControl(0); _mixer->playStream(Audio::Mixer::kPlainSoundType, &_soundHandle, this, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO, true); } Player_NES::~Player_NES() { _mixer->stopHandle(_soundHandle); delete _apu; } void Player_NES::setMusicVolume (int vol) { _maxvol = vol; } int Player_NES::readBuffer(int16 *buffer, const int numSamples) { for (int n = 0; n < numSamples; n++) { buffer[n] = _apu->GetSample() * _maxvol / 255; _current_sample++; if (_current_sample == _samples_per_frame) { _current_sample = 0; sound_play(); } } return numSamples; } void Player_NES::stopAllSounds() { for (int i = 0; i < NUMSLOTS; i++) { _slot[i].framesleft = 0; _slot[i].type = 0; _slot[i].id = -1; } isSFXplaying = 0; checkSilenceChannels(0); } void Player_NES::stopSound(int nr) { if (nr == -1) return; for (int i = 0; i < NUMSLOTS; i++) { if (_slot[i].id != nr) continue; isSFXplaying = 0; _slot[i].framesleft = 0; _slot[i].type = 0; _slot[i].id = -1; checkSilenceChannels(i); } } void Player_NES::startSound(int nr) { byte *data = _vm->getResourceAddress(rtSound, nr) + 2; assert(data); int soundType = data[1]; int chan = data[0]; if (chan == 4) { if (_slot[2].framesleft) return; chan = 0; } if (soundType < _slot[chan].type) return; _slot[chan].type = soundType; _slot[chan].id = nr; _slot[chan].data = data; _slot[chan].offset = 2; _slot[chan].framesleft = 1; checkSilenceChannels(chan); if (chan == 2) { numNotes = _slot[chan].data[2]; auxData1 = _slot[chan].data + 3; auxData2 = auxData1 + numNotes; _slot[chan].data = auxData2 + numNotes; _slot[chan].offset = 0; for (int i = 0; i < NUMCHANS; i++) _mchan[i].cmdlock = 0; } } void Player_NES::checkSilenceChannels(int chan) { for (chan--; chan >= 0; chan--) { if (_slot[chan].framesleft) return; } APU_writeControl(0); } void Player_NES::sound_play() { if (_slot[0].framesleft) playSFX(0); else if (_slot[1].framesleft) playSFX(1); playMusic(); } void Player_NES::playSFX (int nr) { if (--_slot[nr].framesleft) return; while (1) { int a = _slot[nr].data[_slot[nr].offset++]; if (a < 16) { a >>= 2; APU_writeControl(APU_readStatus() | channelMask[a]); isSFXplaying = true; APU_writeChannel(a, 0, _slot[nr].data[_slot[nr].offset++]); APU_writeChannel(a, 1, _slot[nr].data[_slot[nr].offset++]); APU_writeChannel(a, 2, _slot[nr].data[_slot[nr].offset++]); APU_writeChannel(a, 3, _slot[nr].data[_slot[nr].offset++]); } else if (a == 0xFE) { _slot[nr].offset = 2; } else if (a == 0xFF) { _slot[nr].id = -1; _slot[nr].type = 0; isSFXplaying = false; APU_writeControl(0); if (!nr && _slot[1].framesleft) { _slot[1].framesleft = 1; isSFXplaying = true; } return; } else { _slot[nr].framesleft = _slot[nr].data[_slot[nr].offset++]; return; } } } void Player_NES::playMusic() { if (!_slot[2].framesleft) return; if (wasSFXplaying && !isSFXplaying) for (int x = 1; x >= 0; x--) if (_mchan[x].cmdlock) { _mchan[x].command = _mchan[x].cmdlock; _mchan[x].framedelay = 1; } wasSFXplaying = isSFXplaying; if (!--_slot[2].framesleft) { top: int b = _slot[2].data[_slot[2].offset++]; if (b == 0xFF) { _slot[2].id = -1; _slot[2].type = 0; b = 0; } else if (b == 0xFE) { _slot[2].offset = 0; goto top; } else { if (b < numNotes) { int inst = auxData1[b]; int ch = instChannel[inst]; _mchan[ch].pitch = auxData2[b]; _mchan[ch].cmdlock = startCmd[inst]; _mchan[ch].command = startCmd[inst]; _mchan[ch].framedelay = 1; goto top; } b -= numNotes; if (b < 16) { int inst = b; int ch = instChannel[inst]; _mchan[ch].cmdlock = 0; _mchan[ch].command = releaseCmd[inst]; _mchan[ch].framedelay = 1; goto top; } b -= 16; } _slot[2].framesleft = b; } for (int x = NUMCHANS - 1; x >= 0; x--) { if (_slot[0].framesleft || _slot[1].framesleft) { _mchan[x].volume = 0; _mchan[x].framedelay = 0; continue; } if (_mchan[x].framedelay && !--_mchan[x].framedelay) { switch (_mchan[x].command) { case 0x00: case 0x13: _mchan[x].voldelta = -10; break; case 0x01: case 0x03: case 0x08: case 0x16: _mchan[x].envflags = 0x30; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x02: _mchan[x].envflags = 0xB0; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x84); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x04: _mchan[x].envflags = 0x80; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x05: _mchan[x].envflags = 0xF0; _mchan[x].volume = 0x6F; _mchan[x].voldelta = -15; APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x06: _mchan[x].pitch += 0x18; _mchan[x].envflags = 0x80; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x07: APU_writeChannel(x, 2, freqTable[_mchan[x].pitch - 0x0C] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch - 0x0C] >> 8); chainCommand(x); break; case 0x09: _mchan[x].voldelta = -2; APU_writeChannel(x, 1, 0x7F); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x0A: APU_writeChannel(x, 1, 0x86); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x0B: case 0x1A: _mchan[x].envflags = 0x70; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x0C: _mchan[x].envflags = 0xB0; chainCommand(x); break; case 0x0D: _mchan[x].envflags = 0x30; _mchan[x].volume = 0x5F; _mchan[x].voldelta = -22; APU_writeChannel(x, 0, 0x00); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, _mchan[x].pitch & 0xF); APU_writeChannel(x, 3, 0xFF); chainCommand(x); break; case 0x0E: case 0x10: _mchan[x].envflags = 0x30; _mchan[x].volume = 0x5F; _mchan[x].voldelta = -6; APU_writeChannel(x, 0, 0x00); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, _mchan[x].pitch & 0xF); APU_writeChannel(x, 3, 0xFF); chainCommand(x); break; case 0x0F: chainCommand(x); break; case 0x11: APU_writeChannel(x, 2, _mchan[x].pitch & 0xF); APU_writeChannel(x, 3, 0xFF); chainCommand(x); break; case 0x12: APU_writeChannel(x, 2, (_mchan[x].pitch + 3) & 0xF); APU_writeChannel(x, 3, 0xFF); chainCommand(x); break; case 0x14: _mchan[x].voldelta = -12; APU_writeChannel(x, 1, 0x8C); chainCommand(x); break; case 0x15: _mchan[x].voldelta = -12; APU_writeChannel(x, 1, 0x84); chainCommand(x); break; case 0x17: _mchan[x].pitch += 0x0C; _mchan[x].envflags = 0x80; _mchan[x].volume = 0x6F; _mchan[x].voldelta = 0; APU_writeChannel(x, 0, 0x00); APU_writeChannel(x, 1, 0x7F); APU_writeControl(APU_readStatus() | channelMask[x]); APU_writeChannel(x, 2, freqTable[_mchan[x].pitch] & 0xFF); APU_writeChannel(x, 3, freqTable[_mchan[x].pitch] >> 8); chainCommand(x); break; case 0x18: _mchan[x].envflags = 0x70; chainCommand(x); break; case 0x19: _mchan[x].envflags = 0xB0; chainCommand(x); break; case 0x1B: _mchan[x].envflags = 0x00; _mchan[x].voldelta = -10; break; } } _mchan[x].volume += _mchan[x].voldelta; if (_mchan[x].volume < 0) _mchan[x].volume = 0; if (_mchan[x].volume > MAXVOLUME) _mchan[x].volume = MAXVOLUME; APU_writeChannel(x, 0, (_mchan[x].volume >> 3) | _mchan[x].envflags); } } void Player_NES::chainCommand(int c) { int i = _mchan[c].command; _mchan[c].command = nextCmd[i]; _mchan[c].framedelay = nextDelay[i]; } int Player_NES::getSoundStatus(int nr) const { for (int i = 0; i < NUMSLOTS; i++) if (_slot[i].id == nr) return 1; return 0; } void Player_NES::APU_writeChannel(int chan, int offset, byte value) { _apu->WriteReg(0x000 + 4 * chan + offset, value); } void Player_NES::APU_writeControl(byte value) { _apu->WriteReg(0x015, value); } byte Player_NES::APU_readStatus() { return _apu->Read4015(); } } // End of namespace Scumm #endif // DISABLE_NES_APU