/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "sherlock/sherlock.h" #include "sherlock/tattoo/drivers/tattoo_mididriver.h" #include "common/file.h" #include "common/system.h" #include "common/textconsole.h" #include "audio/fmopl.h" #include "audio/softsynth/emumidi.h" namespace Sherlock { // Miles Audio supported the following things: // regular AdLib OPL card // Dual-OPL2 <-- we don't do this atm // OPL3 <-- we do support this, but there is no support for 4-op voices atm #define MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX 20 #define MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX 18 #define MILES_ADLIB_PERCUSSION_BANK 127 #define MILES_ADLIB_STEREO_PANNING_THRESHOLD_LEFT 27 #define MILES_ADLIB_STEREO_PANNING_THRESHOLD_RIGHT 100 enum kMilesAdLibUpdateFlags { kMilesAdLibUpdateFlags_None = 0, kMilesAdLibUpdateFlags_Reg_20 = 1 << 0, kMilesAdLibUpdateFlags_Reg_40 = 1 << 1, kMilesAdLibUpdateFlags_Reg_60 = 1 << 2, // register 0x6x + 0x8x kMilesAdLibUpdateFlags_Reg_C0 = 1 << 3, kMilesAdLibUpdateFlags_Reg_E0 = 1 << 4, kMilesAdLibUpdateFlags_Reg_A0 = 1 << 5, // register 0xAx + 0xBx kMilesAdLibUpdateFlags_Reg_All = 0x3F }; uint16 milesAdLibOperator1Register[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = { 0x0000, 0x0001, 0x0002, 0x0008, 0x0009, 0x000A, 0x0010, 0x0011, 0x0012, 0x0100, 0x0101, 0x0102, 0x0108, 0x0109, 0x010A, 0x0110, 0x0111, 0x0112 }; uint16 milesAdLibOperator2Register[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = { 0x0003, 0x0004, 0x0005, 0x000B, 0x000C, 0x000D, 0x0013, 0x0014, 0x0015, 0x0103, 0x0104, 0x0105, 0x010B, 0x010C, 0x010D, 0x0113, 0x0114, 0x0115 }; uint16 milesAdLibChannelRegister[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX] = { 0x0000, 0x0001, 0x0002, 0x0003, 0x0004, 0x0005, 0x0006, 0x0007, 0x0008, 0x0100, 0x0101, 0x0102, 0x0103, 0x0104, 0x0105, 0x0106, 0x0107, 0x0108 }; struct InstrumentEntry { byte bankId; byte patchId; int16 transposition; byte reg20op1; byte reg40op1; byte reg60op1; byte reg80op1; byte regE0op1; byte reg20op2; byte reg40op2; byte reg60op2; byte reg80op2; byte regE0op2; byte regC0; }; // hardcoded, dumped from ADLIB.MDI uint16 milesAdLibFrequencyLookUpTable[] = { 0x02B2, 0x02B4, 0x02B7, 0x02B9, 0x02BC, 0x02BE, 0x02C1, 0x02C3, 0x02C6, 0x02C9, 0x02CB, 0x02CE, 0x02D0, 0x02D3, 0x02D6, 0x02D8, 0x02DB, 0x02DD, 0x02E0, 0x02E3, 0x02E5, 0x02E8, 0x02EB, 0x02ED, 0x02F0, 0x02F3, 0x02F6, 0x02F8, 0x02FB, 0x02FE, 0x0301, 0x0303, 0x0306, 0x0309, 0x030C, 0x030F, 0x0311, 0x0314, 0x0317, 0x031A, 0x031D, 0x0320, 0x0323, 0x0326, 0x0329, 0x032B, 0x032E, 0x0331, 0x0334, 0x0337, 0x033A, 0x033D, 0x0340, 0x0343, 0x0346, 0x0349, 0x034C, 0x034F, 0x0352, 0x0356, 0x0359, 0x035C, 0x035F, 0x0362, 0x0365, 0x0368, 0x036B, 0x036F, 0x0372, 0x0375, 0x0378, 0x037B, 0x037F, 0x0382, 0x0385, 0x0388, 0x038C, 0x038F, 0x0392, 0x0395, 0x0399, 0x039C, 0x039F, 0x03A3, 0x03A6, 0x03A9, 0x03AD, 0x03B0, 0x03B4, 0x03B7, 0x03BB, 0x03BE, 0x03C1, 0x03C5, 0x03C8, 0x03CC, 0x03CF, 0x03D3, 0x03D7, 0x03DA, 0x03DE, 0x03E1, 0x03E5, 0x03E8, 0x03EC, 0x03F0, 0x03F3, 0x03F7, 0x03FB, 0x03FE, 0xFE01, 0xFE03, 0xFE05, 0xFE07, 0xFE08, 0xFE0A, 0xFE0C, 0xFE0E, 0xFE10, 0xFE12, 0xFE14, 0xFE16, 0xFE18, 0xFE1A, 0xFE1C, 0xFE1E, 0xFE20, 0xFE21, 0xFE23, 0xFE25, 0xFE27, 0xFE29, 0xFE2B, 0xFE2D, 0xFE2F, 0xFE31, 0xFE34, 0xFE36, 0xFE38, 0xFE3A, 0xFE3C, 0xFE3E, 0xFE40, 0xFE42, 0xFE44, 0xFE46, 0xFE48, 0xFE4A, 0xFE4C, 0xFE4F, 0xFE51, 0xFE53, 0xFE55, 0xFE57, 0xFE59, 0xFE5C, 0xFE5E, 0xFE60, 0xFE62, 0xFE64, 0xFE67, 0xFE69, 0xFE6B, 0xFE6D, 0xFE6F, 0xFE72, 0xFE74, 0xFE76, 0xFE79, 0xFE7B, 0xFE7D, 0xFE7F, 0xFE82, 0xFE84, 0xFE86, 0xFE89, 0xFE8B, 0xFE8D, 0xFE90, 0xFE92, 0xFE95, 0xFE97, 0xFE99, 0xFE9C, 0xFE9E, 0xFEA1, 0xFEA3, 0xFEA5, 0xFEA8, 0xFEAA, 0xFEAD, 0xFEAF }; // hardcoded, dumped from ADLIB.MDI uint16 milesAdLibVolumeSensitivityTable[] = { 82, 85, 88, 91, 94, 97, 100, 103, 106, 109, 112, 115, 118, 121, 124, 127 }; class MidiDriver_Miles_AdLib : public MidiDriver_Emulated { public: MidiDriver_Miles_AdLib(Audio::Mixer *mixer, InstrumentEntry *instrumentTablePtr, uint16 instrumentTableCount); virtual ~MidiDriver_Miles_AdLib(); // MidiDriver int open(); void close(); void send(uint32 b); MidiChannel *allocateChannel() { return NULL; } MidiChannel *getPercussionChannel() { return NULL; } // AudioStream bool isStereo() const { return _modeStereo; } int getRate() const { return _mixer->getOutputRate(); } int getPolyphony() const { return _modePhysicalFmVoicesCount; } bool hasRhythmChannel() const { return false; } // MidiDriver_Emulated void generateSamples(int16 *buf, int len); void setVolume(byte volume); virtual uint32 property(int prop, uint32 param); private: bool _modeOPL3; byte _modePhysicalFmVoicesCount; byte _modeVirtualFmVoicesCount; bool _modeStereo; // Structure to hold information about current status of MIDI Channels struct MidiChannelEntry { byte currentPatchBank; const InstrumentEntry *currentInstrumentPtr; uint16 currentPitchBender; byte currentPitchRange; byte currentVoiceProtection; byte currentVolume; byte currentVolumeExpression; byte currentPanning; byte currentModulation; byte currentSustain; byte currentActiveVoicesCount; MidiChannelEntry() : currentPatchBank(0), currentInstrumentPtr(NULL), currentPitchBender(MILES_PITCHBENDER_DEFAULT), currentVoiceProtection(0), currentVolume(0), currentVolumeExpression(0), currentPanning(0), currentModulation(0), currentSustain(0), currentActiveVoicesCount(0) { } }; // Structure to hold information about current status of virtual FM Voices struct VirtualFmVoiceEntry { bool inUse; byte actualMidiChannel; const InstrumentEntry *currentInstrumentPtr; bool isPhysical; byte physicalFmVoice; uint16 currentPriority; byte currentOriginalMidiNote; byte currentNote; int16 currentTransposition; byte currentVelocity; bool sustained; VirtualFmVoiceEntry(): inUse(false), actualMidiChannel(0), currentInstrumentPtr(NULL), isPhysical(false), physicalFmVoice(0), currentPriority(0), currentOriginalMidiNote(0), currentNote(0), currentTransposition(0), currentVelocity(0), sustained(false) { } }; // Structure to hold information about current status of physical FM Voices struct PhysicalFmVoiceEntry { bool inUse; byte virtualFmVoice; byte currentB0hReg; PhysicalFmVoiceEntry(): inUse(false), virtualFmVoice(0), currentB0hReg(0) { } }; OPL::OPL *_opl; int _masterVolume; // stores information about all MIDI channels (not the actual OPL FM voice channels!) MidiChannelEntry _midiChannels[MILES_MIDI_CHANNEL_COUNT]; // stores information about all virtual OPL FM voices VirtualFmVoiceEntry _virtualFmVoices[MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX]; // stores information about all physical OPL FM voices PhysicalFmVoiceEntry _physicalFmVoices[MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX]; // holds all instruments InstrumentEntry *_instrumentTablePtr; uint16 _instrumentTableCount; bool circularPhysicalAssignment; byte circularPhysicalAssignmentFmVoice; protected: void onTimer(); private: void resetData(); void resetAdLib(); void resetAdLibOperatorRegisters(byte baseRegister, byte value); void resetAdLibFMVoiceChannelRegisters(byte baseRegister, byte value); void setRegister(int reg, int value); int16 searchFreeVirtualFmVoiceChannel(); int16 searchFreePhysicalFmVoiceChannel(); void noteOn(byte midiChannel, byte note, byte velocity); void noteOff(byte midiChannel, byte note); void prioritySort(); void releaseFmVoice(byte virtualFmVoice); void updatePhysicalFmVoice(byte virtualFmVoice, bool keyOn, uint16 registerUpdateFlags); void controlChange(byte midiChannel, byte controllerNumber, byte controllerValue); void programChange(byte midiChannel, byte patchId); const InstrumentEntry *searchInstrument(byte bankId, byte patchId); void pitchBendChange(byte MIDIchannel, byte parameter1, byte parameter2); }; MidiDriver_Miles_AdLib::MidiDriver_Miles_AdLib(Audio::Mixer *mixer, InstrumentEntry *instrumentTablePtr, uint16 instrumentTableCount) : MidiDriver_Emulated(mixer), _masterVolume(15), _opl(0) { _instrumentTablePtr = instrumentTablePtr; _instrumentTableCount = instrumentTableCount; // Set up for OPL3, we will downgrade in case we can't create OPL3 emulator // regular AdLib (OPL2) card _modeOPL3 = true; _modeVirtualFmVoicesCount = 20; _modePhysicalFmVoicesCount = 18; _modeStereo = true; // Older Miles Audio drivers did not do a circular assign for physical FM-voices // Sherlock Holmes 2 used the circular assign circularPhysicalAssignment = true; // this way the first circular physical FM-voice search will start at FM-voice 0 circularPhysicalAssignmentFmVoice = MILES_ADLIB_PHYSICAL_FMVOICES_COUNT_MAX; resetData(); } MidiDriver_Miles_AdLib::~MidiDriver_Miles_AdLib() { delete[] _instrumentTablePtr; // is created in factory MidiDriver_Miles_AdLib_create() } int MidiDriver_Miles_AdLib::open() { int rate = _mixer->getOutputRate(); if (_modeOPL3) { // Try to create OPL3 first _opl = OPL::Config::create(OPL::Config::kOpl3); } if (!_opl) { // not created yet, downgrade to OPL2 _modeOPL3 = false; _modeVirtualFmVoicesCount = 16; _modePhysicalFmVoicesCount = 9; _modeStereo = false; _opl = OPL::Config::create(OPL::Config::kOpl2); } if (!_opl) { // We still got nothing -> can't do anything anymore return -1; } _opl->init(rate); MidiDriver_Emulated::open(); _mixer->playStream(Audio::Mixer::kPlainSoundType, &_mixerSoundHandle, this, -1, _mixer->kMaxChannelVolume, 0, DisposeAfterUse::NO); resetAdLib(); return 0; } void MidiDriver_Miles_AdLib::close() { _mixer->stopHandle(_mixerSoundHandle); delete _opl; } void MidiDriver_Miles_AdLib::setVolume(byte volume) { _masterVolume = volume; //renewNotes(-1, true); } void MidiDriver_Miles_AdLib::onTimer() { } void MidiDriver_Miles_AdLib::resetData() { memset(_midiChannels, 0, sizeof(_midiChannels)); memset(_virtualFmVoices, 0, sizeof(_virtualFmVoices)); memset(_physicalFmVoices, 0, sizeof(_physicalFmVoices)); for (byte midiChannel = 0; midiChannel < MILES_MIDI_CHANNEL_COUNT; midiChannel++) { _midiChannels[midiChannel].currentPitchBender = MILES_PITCHBENDER_DEFAULT; _midiChannels[midiChannel].currentPitchRange = 12; // Miles Audio 2: hardcoded pitch range as a global (not channel specific), set to 12 // Miles Audio 3: pitch range per MIDI channel _midiChannels[midiChannel].currentVolumeExpression = 127; } } void MidiDriver_Miles_AdLib::resetAdLib() { if (_modeOPL3) { setRegister(0x105, 1); // enable OPL3 setRegister(0x104, 0); // activate 18 2-operator FM-voices } setRegister(0x01, 0x20); // enable waveform control on both operators setRegister(0x04, 0xE0); // Timer control setRegister(0x08, 0); // select FM music mode setRegister(0xBD, 0); // disable Rhythm // reset FM voice instrument data resetAdLibOperatorRegisters(0x20, 0); resetAdLibOperatorRegisters(0x60, 0); resetAdLibOperatorRegisters(0x80, 0); resetAdLibFMVoiceChannelRegisters(0xA0, 0); resetAdLibFMVoiceChannelRegisters(0xB0, 0); resetAdLibFMVoiceChannelRegisters(0xC0, 0); resetAdLibOperatorRegisters(0xE0, 0); resetAdLibOperatorRegisters(0x40, 0x3F); } void MidiDriver_Miles_AdLib::resetAdLibOperatorRegisters(byte baseRegister, byte value) { byte physicalFmVoice = 0; for (physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) { setRegister(baseRegister + milesAdLibOperator1Register[physicalFmVoice], value); setRegister(baseRegister + milesAdLibOperator2Register[physicalFmVoice], value); } } void MidiDriver_Miles_AdLib::resetAdLibFMVoiceChannelRegisters(byte baseRegister, byte value) { byte physicalFmVoice = 0; for (physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) { setRegister(baseRegister + milesAdLibChannelRegister[physicalFmVoice], value); } } // MIDI messages can be found at http://www.midi.org/techspecs/midimessages.php void MidiDriver_Miles_AdLib::send(uint32 b) { byte command = b & 0xf0; byte channel = b & 0xf; byte op1 = (b >> 8) & 0xff; byte op2 = (b >> 16) & 0xff; switch (command) { case 0x80: noteOff(channel, op1); break; case 0x90: noteOn(channel, op1, op2); break; case 0xb0: // Control change controlChange(channel, op1, op2); break; case 0xc0: // Program Change programChange(channel, op1); break; case 0xa0: // Polyphonic key pressure (aftertouch) case 0xd0: // Channel pressure (aftertouch) // Aftertouch doesn't seem to be implemented in the Sherlock Holmes adlib driver break; case 0xe0: pitchBendChange(channel, op1, op2); break; case 0xf0: // SysEx warning("MILES-ADLIB: SysEx: %x", b); break; default: warning("MILES-ADLIB: Unknown event %02x", command); } } void MidiDriver_Miles_AdLib::generateSamples(int16 *data, int len) { if (_modeStereo) len *= 2; _opl->readBuffer(data, len); } int16 MidiDriver_Miles_AdLib::searchFreeVirtualFmVoiceChannel() { for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (!_virtualFmVoices[virtualFmVoice].inUse) return virtualFmVoice; } return -1; } int16 MidiDriver_Miles_AdLib::searchFreePhysicalFmVoiceChannel() { if (!circularPhysicalAssignment) { // Older assign logic for (byte physicalFmVoice = 0; physicalFmVoice < _modePhysicalFmVoicesCount; physicalFmVoice++) { if (!_physicalFmVoices[physicalFmVoice].inUse) return physicalFmVoice; } } else { // Newer one // Remembers last physical FM-voice and searches from that spot byte physicalFmVoice = circularPhysicalAssignmentFmVoice; for (byte physicalFmVoiceCount = 0; physicalFmVoiceCount < _modePhysicalFmVoicesCount; physicalFmVoiceCount++) { physicalFmVoice++; if (physicalFmVoice >= _modePhysicalFmVoicesCount) physicalFmVoice = 0; if (!_physicalFmVoices[physicalFmVoice].inUse) { circularPhysicalAssignmentFmVoice = physicalFmVoice; return physicalFmVoice; } } } return -1; } void MidiDriver_Miles_AdLib::noteOn(byte midiChannel, byte note, byte velocity) { const InstrumentEntry *instrumentPtr = NULL; if (velocity == 0) { noteOff(midiChannel, note); return; } if (midiChannel == 9) { // percussion channel // search for instrument according to given note instrumentPtr = searchInstrument(MILES_ADLIB_PERCUSSION_BANK, note); } else { // directly get instrument of channel instrumentPtr = _midiChannels[midiChannel].currentInstrumentPtr; } if (!instrumentPtr) { warning("MILES-ADLIB: noteOn: invalid instrument"); return; } //warning("Note On: channel %d, note %d, velocity %d, instrument %d/%d", midiChannel, note, velocity, instrumentPtr->bankId, instrumentPtr->patchId); // look for free virtual FM voice int16 virtualFmVoice = searchFreeVirtualFmVoiceChannel(); if (virtualFmVoice == -1) { // Out of virtual voices, can't do anything about it return; } // Scale back velocity velocity = (velocity & 0x7F) >> 3; velocity = milesAdLibVolumeSensitivityTable[velocity]; if (midiChannel != 9) { _virtualFmVoices[virtualFmVoice].currentNote = note; _virtualFmVoices[virtualFmVoice].currentTransposition = instrumentPtr->transposition; } else { // Percussion channel _virtualFmVoices[virtualFmVoice].currentNote = instrumentPtr->transposition; _virtualFmVoices[virtualFmVoice].currentTransposition = 0; } _virtualFmVoices[virtualFmVoice].inUse = true; _virtualFmVoices[virtualFmVoice].actualMidiChannel = midiChannel; _virtualFmVoices[virtualFmVoice].currentOriginalMidiNote = note; _virtualFmVoices[virtualFmVoice].currentInstrumentPtr = instrumentPtr; _virtualFmVoices[virtualFmVoice].currentVelocity = velocity; _virtualFmVoices[virtualFmVoice].isPhysical = false; _virtualFmVoices[virtualFmVoice].sustained = false; _virtualFmVoices[virtualFmVoice].currentPriority = 32767; int16 physicalFmVoice = searchFreePhysicalFmVoiceChannel(); if (physicalFmVoice == -1) { // None found // go through priorities and reshuffle voices prioritySort(); return; } // Another voice active on this MIDI channel _midiChannels[midiChannel].currentActiveVoicesCount++; // Mark virtual FM-Voice as being connected to physical FM-Voice _virtualFmVoices[virtualFmVoice].isPhysical = true; _virtualFmVoices[virtualFmVoice].physicalFmVoice = physicalFmVoice; // Mark physical FM-Voice as being connected to virtual FM-Voice _physicalFmVoices[physicalFmVoice].inUse = true; _physicalFmVoices[physicalFmVoice].virtualFmVoice = virtualFmVoice; // Update the physical FM-Voice updatePhysicalFmVoice(virtualFmVoice, true, kMilesAdLibUpdateFlags_Reg_All); } void MidiDriver_Miles_AdLib::noteOff(byte midiChannel, byte note) { //warning("Note Off: channel %d, note %d", midiChannel, note); // Search through all virtual FM-Voices for current midiChannel + note for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (_virtualFmVoices[virtualFmVoice].inUse) { if ((_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) && (_virtualFmVoices[virtualFmVoice].currentOriginalMidiNote == note)) { // found one if (_midiChannels[midiChannel].currentSustain >= 64) { _virtualFmVoices[virtualFmVoice].sustained = true; continue; } // releaseFmVoice(virtualFmVoice); } } } } void MidiDriver_Miles_AdLib::prioritySort() { byte virtualFmVoice = 0; uint16 virtualPriority = 0; uint16 virtualPriorities[MILES_ADLIB_VIRTUAL_FMVOICES_COUNT_MAX]; uint16 virtualFmVoicesCount = 0; byte midiChannel = 0; memset(&virtualPriorities, 0, sizeof(virtualPriorities)); //warning("prioritysort"); // First calculate priorities for all virtual FM voices, that are in use for (virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (_virtualFmVoices[virtualFmVoice].inUse) { virtualFmVoicesCount++; midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel; if (_midiChannels[midiChannel].currentVoiceProtection >= 64) { // Voice protection enabled virtualPriority = 0xFFFF; } else { virtualPriority = _virtualFmVoices[virtualFmVoice].currentPriority; } byte currentActiveVoicesCount = _midiChannels[midiChannel].currentActiveVoicesCount; if (virtualPriority >= currentActiveVoicesCount) { virtualPriority -= _midiChannels[midiChannel].currentActiveVoicesCount; } else { virtualPriority = 0; // overflow, should never happen } virtualPriorities[virtualFmVoice] = virtualPriority; } } // while (virtualFmVoicesCount) { uint16 unvoicedHighestPriority = 0; byte unvoicedHighestFmVoice = 0; uint16 voicedLowestPriority = 65535; byte voicedLowestFmVoice = 0; for (virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (_virtualFmVoices[virtualFmVoice].inUse) { virtualPriority = virtualPriorities[virtualFmVoice]; if (!_virtualFmVoices[virtualFmVoice].isPhysical) { // currently not physical, so unvoiced if (virtualPriority >= unvoicedHighestPriority) { unvoicedHighestPriority = virtualPriority; unvoicedHighestFmVoice = virtualFmVoice; } } else { // currently physical, so voiced if (virtualPriority <= voicedLowestPriority) { voicedLowestPriority = virtualPriority; voicedLowestFmVoice = virtualFmVoice; } } } } if (unvoicedHighestPriority < voicedLowestPriority) break; // We are done if (unvoicedHighestPriority == 0) break; // Safety checks assert(_virtualFmVoices[voicedLowestFmVoice].isPhysical); assert(!_virtualFmVoices[unvoicedHighestFmVoice].isPhysical); // Steal this physical voice byte physicalFmVoice = _virtualFmVoices[voicedLowestFmVoice].physicalFmVoice; //warning("MILES-ADLIB: stealing physical FM-Voice %d from virtual FM-Voice %d for virtual FM-Voice %d", physicalFmVoice, voicedLowestFmVoice, unvoicedHighestFmVoice); //warning("priority old %d, priority new %d", unvoicedHighestPriority, voicedLowestPriority); releaseFmVoice(voicedLowestFmVoice); // Get some data of the unvoiced highest priority virtual FM Voice midiChannel = _virtualFmVoices[unvoicedHighestFmVoice].actualMidiChannel; // Another voice active on this MIDI channel _midiChannels[midiChannel].currentActiveVoicesCount++; // Mark virtual FM-Voice as being connected to physical FM-Voice _virtualFmVoices[unvoicedHighestFmVoice].isPhysical = true; _virtualFmVoices[unvoicedHighestFmVoice].physicalFmVoice = physicalFmVoice; // Mark physical FM-Voice as being connected to virtual FM-Voice _physicalFmVoices[physicalFmVoice].inUse = true; _physicalFmVoices[physicalFmVoice].virtualFmVoice = unvoicedHighestFmVoice; // Update the physical FM-Voice updatePhysicalFmVoice(unvoicedHighestFmVoice, true, kMilesAdLibUpdateFlags_Reg_All); virtualFmVoicesCount--; } } void MidiDriver_Miles_AdLib::releaseFmVoice(byte virtualFmVoice) { // virtual Voice not actually played? -> exit if (!_virtualFmVoices[virtualFmVoice].isPhysical) { _virtualFmVoices[virtualFmVoice].inUse = false; return; } byte midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel; byte physicalFmVoice = _virtualFmVoices[virtualFmVoice].physicalFmVoice; // stop note from playing updatePhysicalFmVoice(virtualFmVoice, false, kMilesAdLibUpdateFlags_Reg_A0); // this virtual FM voice isn't physical anymore _virtualFmVoices[virtualFmVoice].isPhysical = false; _virtualFmVoices[virtualFmVoice].inUse = false; // Remove physical FM-Voice from being active _physicalFmVoices[physicalFmVoice].inUse = false; // One less voice active on this MIDI channel assert(_midiChannels[midiChannel].currentActiveVoicesCount); _midiChannels[midiChannel].currentActiveVoicesCount--; } void MidiDriver_Miles_AdLib::updatePhysicalFmVoice(byte virtualFmVoice, bool keyOn, uint16 registerUpdateFlags) { byte midiChannel = _virtualFmVoices[virtualFmVoice].actualMidiChannel; if (!_virtualFmVoices[virtualFmVoice].isPhysical) { // virtual FM-Voice has no physical FM-Voice assigned? -> ignore return; } byte physicalFmVoice = _virtualFmVoices[virtualFmVoice].physicalFmVoice; const InstrumentEntry *instrumentPtr = _virtualFmVoices[virtualFmVoice].currentInstrumentPtr; uint16 op1Reg = milesAdLibOperator1Register[physicalFmVoice]; uint16 op2Reg = milesAdLibOperator2Register[physicalFmVoice]; uint16 channelReg = milesAdLibChannelRegister[physicalFmVoice]; uint16 compositeVolume = 0; if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_40) { // Calculate new volume byte midiVolume = _midiChannels[midiChannel].currentVolume; byte midiVolumeExpression = _midiChannels[midiChannel].currentVolumeExpression; compositeVolume = midiVolume * midiVolumeExpression * 2; compositeVolume = compositeVolume >> 8; // get upmost 8 bits if (compositeVolume) compositeVolume++; // round up in case result wasn't 0 compositeVolume = compositeVolume * _virtualFmVoices[virtualFmVoice].currentVelocity * 2; compositeVolume = compositeVolume >> 8; // get upmost 8 bits if (compositeVolume) compositeVolume++; // round up in case result wasn't 0 } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_20) { // Amplitude Modulation / Vibrato / Envelope Generator Type / Keyboard Scaling Rate / Modulator Frequency Multiple byte reg20op1 = instrumentPtr->reg20op1; byte reg20op2 = instrumentPtr->reg20op2; if (_midiChannels[midiChannel].currentModulation >= 64) { // set bit 6 (Vibrato) reg20op1 |= 0x40; reg20op2 |= 0x40; } setRegister(0x20 + op1Reg, reg20op1); setRegister(0x20 + op2Reg, reg20op2); } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_40) { // Volume (Level Key Scaling / Total Level) byte reg40op1 = instrumentPtr->reg40op1; byte reg40op2 = instrumentPtr->reg40op2; uint16 volumeOp1 = (~reg40op1) & 0x3F; uint16 volumeOp2 = (~reg40op2) & 0x3F; if (instrumentPtr->regC0 & 1) { // operator 2 enabled // scale volume factor volumeOp1 = (volumeOp1 * compositeVolume) / 127; // 2nd operator always scaled } volumeOp2 = (volumeOp2 * compositeVolume) / 127; volumeOp1 = (~volumeOp1) & 0x3F; // negate it, so we get the proper value for the register volumeOp2 = (~volumeOp2) & 0x3F; // ditto reg40op1 = (reg40op1 & 0xC0) | volumeOp1; // keep "scaling level" and merge in our volume reg40op2 = (reg40op2 & 0xC0) | volumeOp2; setRegister(0x40 + op1Reg, reg40op1); setRegister(0x40 + op2Reg, reg40op2); } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_60) { // Attack Rate / Decay Rate // Sustain Level / Release Rate byte reg60op1 = instrumentPtr->reg60op1; byte reg60op2 = instrumentPtr->reg60op2; byte reg80op1 = instrumentPtr->reg80op1; byte reg80op2 = instrumentPtr->reg80op2; setRegister(0x60 + op1Reg, reg60op1); setRegister(0x60 + op2Reg, reg60op2); setRegister(0x80 + op1Reg, reg80op1); setRegister(0x80 + op2Reg, reg80op2); } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_E0) { // Waveform Select byte regE0op1 = instrumentPtr->regE0op1; byte regE0op2 = instrumentPtr->regE0op2; setRegister(0xE0 + op1Reg, regE0op1); setRegister(0xE0 + op2Reg, regE0op2); } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_C0) { // Feedback / Algorithm byte regC0 = instrumentPtr->regC0; if (_modeOPL3) { // Panning for OPL3 byte panning = _midiChannels[midiChannel].currentPanning; if (panning <= MILES_ADLIB_STEREO_PANNING_THRESHOLD_LEFT) { regC0 |= 0x10; // left speaker only } else if (panning >= MILES_ADLIB_STEREO_PANNING_THRESHOLD_RIGHT) { regC0 |= 0x20; // right speaker only } else { regC0 |= 0x30; // center } } setRegister(0xC0 + channelReg, regC0); } if (registerUpdateFlags & kMilesAdLibUpdateFlags_Reg_A0) { // Frequency / Key-On // Octave / F-Number / Key-On if (!keyOn) { // turn off note byte regB0 = _physicalFmVoices[physicalFmVoice].currentB0hReg & 0x1F; // remove bit 5 "key on" setRegister(0xB0 + channelReg, regB0); } else { // turn on note, calculate frequency, octave... int16 pitchBender = _midiChannels[midiChannel].currentPitchBender; byte pitchRange = _midiChannels[midiChannel].currentPitchRange; int16 currentNote = _virtualFmVoices[virtualFmVoice].currentNote; int16 physicalNote = 0; int16 halfTone = 0; uint16 frequency = 0; uint16 frequencyIdx = 0; byte octave = 0; pitchBender -= 0x2000; pitchBender = pitchBender >> 5; // divide by 32 pitchBender = pitchBender * pitchRange; // pitchrange 12: now +0x0C00 to -0xC00 // difference between Miles Audio 2 + 3 // Miles Audio 2 used a pitch range of 12, which was basically hardcoded // Miles Audio 3 used an array, which got set by control change events currentNote += _virtualFmVoices->currentTransposition; // Normalize note currentNote -= 24; do { currentNote += 12; } while (currentNote < 0); currentNote += 12; do { currentNote -= 12; } while (currentNote > 95); // combine note + pitchbender, also adjust by 8 for rounding currentNote = (currentNote << 8) + pitchBender + 8; currentNote = currentNote >> 4; // get actual note // Normalize currentNote -= (12 * 16); do { currentNote += (12 * 16); } while (currentNote < 0); currentNote += (12 * 16); do { currentNote -= (12 * 16); } while (currentNote > ((96 * 16) - 1)); physicalNote = currentNote >> 4; halfTone = physicalNote % 12; // remainder of physicalNote / 12 frequencyIdx = (halfTone << 4) + (currentNote & 0x0F); assert(frequencyIdx < sizeof(milesAdLibFrequencyLookUpTable)); frequency = milesAdLibFrequencyLookUpTable[frequencyIdx]; octave = (physicalNote / 12) - 1; if (frequency & 0x8000) octave++; if (octave & 0x80) { octave++; frequency = frequency >> 1; } byte regA0 = frequency & 0xFF; byte regB0 = ((frequency >> 8) & 0x03) | (octave << 2) | 0x20; setRegister(0xA0 + channelReg, regA0); setRegister(0xB0 + channelReg, regB0); _physicalFmVoices[physicalFmVoice].currentB0hReg = regB0; } } //warning("end of update voice"); } void MidiDriver_Miles_AdLib::controlChange(byte midiChannel, byte controllerNumber, byte controllerValue) { uint16 registerUpdateFlags = kMilesAdLibUpdateFlags_None; switch (controllerNumber) { case MILES_CONTROLLER_SELECT_PATCH_BANK: _midiChannels[midiChannel].currentPatchBank = controllerValue; break; case MILES_CONTROLLER_PROTECT_VOICE: _midiChannels[midiChannel].currentVoiceProtection = controllerValue; break; case MILES_CONTROLLER_PROTECT_TIMBRE: // It seems that this can get ignored, because we don't cache timbres at all break; case MILES_CONTROLLER_MODULATION: _midiChannels[midiChannel].currentModulation = controllerValue; registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_20; break; case MILES_CONTROLLER_VOLUME: _midiChannels[midiChannel].currentVolume = controllerValue; registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_40; break; case MILES_CONTROLLER_EXPRESSION: _midiChannels[midiChannel].currentVolumeExpression = controllerValue; registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_40; break; case MILES_CONTROLLER_PANNING: _midiChannels[midiChannel].currentPanning = controllerValue; if (_modeStereo) { // Update register only in case we are in stereo mode registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_C0; } break; case MILES_CONTROLLER_SUSTAIN: _midiChannels[midiChannel].currentSustain = controllerValue; if (controllerValue < 64) { // release sustain TODO } break; case MILES_CONTROLLER_PITCH_RANGE: // Miles Audio 3 feature _midiChannels[midiChannel].currentPitchRange = controllerValue; break; case MILES_CONTROLLER_RESET_ALL: _midiChannels[midiChannel].currentSustain = 0; // release sustain TODO _midiChannels[midiChannel].currentModulation = 0; _midiChannels[midiChannel].currentVolumeExpression = 127; _midiChannels[midiChannel].currentPitchBender = MILES_PITCHBENDER_DEFAULT; registerUpdateFlags = kMilesAdLibUpdateFlags_Reg_20 | kMilesAdLibUpdateFlags_Reg_40 | kMilesAdLibUpdateFlags_Reg_A0; break; case MILES_CONTROLLER_ALL_NOTES_OFF: for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (_virtualFmVoices[virtualFmVoice].inUse) { // used if (_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) { // by our current MIDI channel -> noteOff noteOff(midiChannel, _virtualFmVoices[virtualFmVoice].currentNote); } } } break; default: //warning("MILES-ADLIB: Unsupported control change %d", controllerNumber); break; } if (registerUpdateFlags) { for (byte virtualFmVoice = 0; virtualFmVoice < _modeVirtualFmVoicesCount; virtualFmVoice++) { if (_virtualFmVoices[virtualFmVoice].inUse) { // used if (_virtualFmVoices[virtualFmVoice].actualMidiChannel == midiChannel) { // by our current MIDI channel -> update updatePhysicalFmVoice(virtualFmVoice, true, registerUpdateFlags); } } } } } void MidiDriver_Miles_AdLib::programChange(byte midiChannel, byte patchId) { const InstrumentEntry *instrumentPtr = NULL; byte patchBank = _midiChannels[midiChannel].currentPatchBank; // we check, if we actually have data for the requested instrument... instrumentPtr = searchInstrument(patchBank, patchId); if (!instrumentPtr) { warning("MILES-ADLIB: unknown instrument requested (%d, %d)", patchBank, patchId); return; } // and remember it in that case for the current MIDI-channel _midiChannels[midiChannel].currentInstrumentPtr = instrumentPtr; } const InstrumentEntry *MidiDriver_Miles_AdLib::searchInstrument(byte bankId, byte patchId) { const InstrumentEntry *instrumentPtr = _instrumentTablePtr; for (uint16 instrumentNr = 0; instrumentNr < _instrumentTableCount; instrumentNr++) { if ((instrumentPtr->bankId == bankId) && (instrumentPtr->patchId == patchId)) { return instrumentPtr; } instrumentPtr++; } return NULL; } void MidiDriver_Miles_AdLib::pitchBendChange(byte midiChannel, byte parameter1, byte parameter2) { // Miles Audio actually didn't shift parameter 2 1 down in here // which means in memory it used a 15-bit pitch bender, which also means the default was 0x4000 if ((parameter1 & 0x80) || (parameter2 & 0x80)) { warning("MILES-ADLIB: invalid pitch bend change"); return; } _midiChannels[midiChannel].currentPitchBender = parameter1 | (parameter2 << 7); } void MidiDriver_Miles_AdLib::setRegister(int reg, int value) { if (!(reg & 0x100)) { _opl->write(0x220, reg); _opl->write(0x221, value); //warning("OPL write %x %x (%d)", reg, value, value); } else { _opl->write(0x222, reg & 0xFF); _opl->write(0x223, value); //warning("OPL3 write %x %x (%d)", reg & 0xFF, value, value); } } uint32 MidiDriver_Miles_AdLib::property(int prop, uint32 param) { return 0; } MidiDriver *MidiDriver_Miles_AdLib_create(const Common::String instrumentDataFilename, const Common::String instrumentDataFilenameOPL3) { // Load adlib instrument data from file SAMPLE.AD (OPL3: SAMPLE.OPL) Common::File *fileStream = new Common::File(); uint32 fileSize = 0; byte *fileDataPtr = NULL; uint32 fileDataOffset = 0; uint32 fileDataLeft = 0; byte curBankId = 0; byte curPatchId = 0; InstrumentEntry *instrumentTablePtr = NULL; uint16 instrumentTableCount = 0; InstrumentEntry *instrumentPtr = NULL; uint32 instrumentOffset = 0; uint16 instrumentDataSize = 0; if (!fileStream->open(instrumentDataFilename)) error("MILES-ADLIB: could not open instrument file"); fileSize = fileStream->size(); fileDataPtr = new byte[fileSize]; if (fileStream->read(fileDataPtr, fileSize) != fileSize) error("MILES-ADLIB: error while reading instrument file"); fileStream->close(); delete fileStream; // File is like this: // [patch:BYTE] [bank:BYTE] [patchoffset:UINT32] // ... // until patch + bank are both 0xFF, which signals end of header // First we check how many entries there are fileDataOffset = 0; fileDataLeft = fileSize; while (1) { if (fileDataLeft < 6) error("MILES-ADLIB: unexpected EOF in instrument file"); curPatchId = fileDataPtr[fileDataOffset++]; curBankId = fileDataPtr[fileDataOffset++]; if ((curBankId == 0xFF) && (curPatchId == 0xFF)) break; fileDataOffset += 4; // skip over offset instrumentTableCount++; } if (instrumentTableCount == 0) error("MILES-ADLIB: no instruments in instrument file"); // Allocate space for instruments instrumentTablePtr = new InstrumentEntry[instrumentTableCount]; // Now actually read all entries instrumentPtr = instrumentTablePtr; fileDataOffset = 0; fileDataLeft = fileSize; while (1) { curPatchId = fileDataPtr[fileDataOffset++]; curBankId = fileDataPtr[fileDataOffset++]; if ((curBankId == 0xFF) && (curPatchId == 0xFF)) break; instrumentOffset = READ_LE_UINT32(fileDataPtr + fileDataOffset); fileDataOffset += 4; instrumentPtr->bankId = curBankId; instrumentPtr->patchId = curPatchId; instrumentDataSize = READ_LE_UINT16(fileDataPtr + instrumentOffset); if (instrumentDataSize != 14) error("MILES-ADLIB: unsupported instrument size"); instrumentPtr->transposition = (signed char)fileDataPtr[instrumentOffset + 2]; instrumentPtr->reg20op1 = fileDataPtr[instrumentOffset + 3]; instrumentPtr->reg40op1 = fileDataPtr[instrumentOffset + 4]; instrumentPtr->reg60op1 = fileDataPtr[instrumentOffset + 5]; instrumentPtr->reg80op1 = fileDataPtr[instrumentOffset + 6]; instrumentPtr->regE0op1 = fileDataPtr[instrumentOffset + 7]; instrumentPtr->regC0 = fileDataPtr[instrumentOffset + 8]; instrumentPtr->reg20op2 = fileDataPtr[instrumentOffset + 9]; instrumentPtr->reg40op2 = fileDataPtr[instrumentOffset + 10]; instrumentPtr->reg60op2 = fileDataPtr[instrumentOffset + 11]; instrumentPtr->reg80op2 = fileDataPtr[instrumentOffset + 12]; instrumentPtr->regE0op2 = fileDataPtr[instrumentOffset + 13]; // Instrument read, next instrument please instrumentPtr++; } // Free instrument file data delete[] fileDataPtr; return new MidiDriver_Miles_AdLib(g_system->getMixer(), instrumentTablePtr, instrumentTableCount); } } // End of namespace Sherlock