/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "audio/audiostream.h" #include "audio/decoders/raw.h" #include "audio/mixer.h" #include "audio/mods/protracker.h" #include "common/memstream.h" #include "common/system.h" #include "graphics/cursorman.h" #include "graphics/palette.h" #include "supernova/graphics.h" #include "supernova/resman.h" #include "supernova/screen.h" #include "supernova/supernova.h" namespace Supernova { struct AudioInfo { int _filenumber; int _offsetStart; int _offsetEnd; }; static Common::MemoryReadStream *convertToMod(const char *filename, int version = 1); static const AudioInfo audioInfo1[] = { {44, 0, -1}, {45, 0, -1}, {46, 0, 2510}, {46, 2510, 4020}, {46, 4020, -1}, {47, 0, 24010}, {47, 24010, -1}, {48, 0, 2510}, {48, 2510, 10520}, {48, 10520, 13530}, {48, 13530, -1}, {50, 0, 12786}, {50, 12786, -1}, {51, 0, -1}, {53, 0, -1}, {54, 0, 8010}, {54, 8010, 24020}, {54, 24020, 30030}, {54, 30030, 31040}, {54, 31040, -1}, }; static const AudioInfo audioInfo2[] = { {55, 18230, -1}, {47, 0, 16010}, {47, 16010, 17020}, {49, 8010, -1}, {49, 0, 8010}, {53, 30020, -1}, {55, 7010, 17020}, {55, 0, 7010}, {53, 5010, 30020}, {55, 18230, -1}, {55, 17020, 18230}, {53, 0, 5010}, {47, 17020, -1}, {51, 9020, -1}, {51, 0, 6010}, {50, 0, -1}, {51, 6010, 9020}, {54, 0, -1}, {48, 0, -1} }; static const byte mouseNormal[64] = { 0xff,0x3f,0xff,0x1f,0xff,0x0f,0xff,0x07, 0xff,0x03,0xff,0x01,0xff,0x00,0x7f,0x00, 0x3f,0x00,0x1f,0x00,0x0f,0x00,0x0f,0x00, 0xff,0x00,0x7f,0x18,0x7f,0x38,0x7f,0xfc, 0x00,0x00,0x00,0x40,0x00,0x60,0x00,0x70, 0x00,0x78,0x00,0x7c,0x00,0x7e,0x00,0x7f, 0x80,0x7f,0xc0,0x7f,0xe0,0x7f,0x00,0x7e, 0x00,0x66,0x00,0x43,0x00,0x03,0x00,0x00 }; static const byte mouseWait[64] = { 0x00,0x00,0x00,0x00,0x00,0x00,0x01,0x80, 0x01,0x80,0x01,0x80,0x11,0x88,0x31,0x8c, 0x31,0x8c,0x11,0x88,0x01,0x80,0x01,0x80, 0x01,0x80,0x00,0x00,0x00,0x00,0x00,0x00, 0x00,0x00,0xfe,0x7f,0xf4,0x2f,0xf4,0x2f, 0x14,0x28,0x24,0x24,0x44,0x22,0x84,0x21, 0x84,0x21,0xc4,0x23,0xe4,0x27,0x74,0x2e, 0x34,0x2c,0x14,0x28,0xfe,0x7f,0x00,0x00 }; ResourceManager::ResourceManager(int MSPart) : _audioRate(11931) , _MSPart(MSPart) { if (MSPart == 1) initSoundFiles1(); else if (MSPart == 2) initSoundFiles2(); initGraphics(); } ResourceManager::~ResourceManager() { if (_MSPart == 1) { for (int i = 0; i < 44; i++) delete _images[i]; } if (_MSPart == 2) { for (int i = 0; i < 47; i++) delete _images[i]; } delete[] _soundSamples; } void ResourceManager::initSoundFiles1() { // Sound // Note: // - samples start with a header of 6 bytes: 01 SS SS 00 AD 00 // where SS SS (LE uint16) is the size of the sound sample + 2 // - samples end with a footer of 4 bytes: 00 00 // Skip those in the buffer _soundSamples = new Common::ScopedPtr[kAudioNumSamples1]; Common::File file; for (int i = 0; i < kAudioNumSamples1; ++i) { if (!file.open(Common::String::format("msn_data.%03d", audioInfo1[i]._filenumber))) { error("File %s could not be read!", file.getName()); } int length = 0; byte *buffer = nullptr; if (audioInfo1[i]._offsetEnd == -1) { file.seek(0, SEEK_END); length = file.pos() - audioInfo1[i]._offsetStart - 10; } else { length = audioInfo1[i]._offsetEnd - audioInfo1[i]._offsetStart - 10; } buffer = new byte[length]; file.seek(audioInfo1[i]._offsetStart + 6); file.read(buffer, length); file.close(); byte streamFlag = Audio::FLAG_UNSIGNED | Audio::FLAG_LITTLE_ENDIAN; _soundSamples[i].reset(Audio::makeRawStream(buffer, length, _audioRate, streamFlag, DisposeAfterUse::YES)); } _musicIntroBuffer.reset(convertToMod("msn_data.052")); _musicOutroBuffer.reset(convertToMod("msn_data.049")); } void ResourceManager::initSoundFiles2() { // Sound // Note: // - samples start with a header of 6 bytes: 01 SS SS 00 AD 00 // where SS SS (LE uint16) is the size of the sound sample + 2 // - samples end with a footer of 4 bytes: 00 00 // Skip those in the buffer _soundSamples = new Common::ScopedPtr[kAudioNumSamples2]; Common::File file; for (int i = 0; i < kAudioNumSamples2; ++i) { if (!file.open(Common::String::format("ms2_data.%03d", audioInfo2[i]._filenumber))) { error("File %s could not be read!", file.getName()); } int length = 0; byte *buffer = nullptr; if (audioInfo2[i]._offsetEnd == -1) { file.seek(0, SEEK_END); length = file.pos() - audioInfo2[i]._offsetStart - 10; } else { length = audioInfo2[i]._offsetEnd - audioInfo2[i]._offsetStart - 10; } buffer = new byte[length]; file.seek(audioInfo2[i]._offsetStart + 6); file.read(buffer, length); file.close(); byte streamFlag = Audio::FLAG_UNSIGNED | Audio::FLAG_LITTLE_ENDIAN; _soundSamples[i].reset(Audio::makeRawStream(buffer, length, _audioRate, streamFlag, DisposeAfterUse::YES)); } initSiren(); _musicIntroBuffer.reset(convertToMod("ms2_data.052", 2)); _musicOutroBuffer.reset(convertToMod("ms2_data.056", 2)); } void ResourceManager::initGraphics() { Screen::initPalette(); initCursorGraphics(); if (_MSPart == 1) initImages1(); else if (_MSPart == 2) initImages2(); } void ResourceManager::initCursorGraphics() { const uint16 *bufferNormal = reinterpret_cast(mouseNormal); const uint16 *bufferWait = reinterpret_cast(mouseWait); for (uint i = 0; i < sizeof(mouseNormal) / 4; ++i) { for (uint bit = 0; bit < 16; ++bit) { uint mask = 0x8000 >> bit; uint bitIndex = i * 16 + bit; _cursorNormal[bitIndex] = (READ_LE_UINT16(bufferNormal + i) & mask) ? kColorCursorTransparent : kColorBlack; if (READ_LE_UINT16(bufferNormal + i + 16) & mask) _cursorNormal[bitIndex] = kColorLightRed; _cursorWait[bitIndex] = (READ_LE_UINT16(bufferWait + i) & mask) ? kColorCursorTransparent : kColorBlack; if (READ_LE_UINT16(bufferWait + i + 16) & mask) _cursorWait[bitIndex] = kColorLightRed; } } } void ResourceManager::initImages1() { for (int i = 0; i < 44; ++i) { _images[i] = new MSNImage(_MSPart); if (!_images[i]->init(i)) error("Failed reading image file msn_data.%03d", i); } _images[44] = new MSNImage(_MSPart); if (!_images[44]->init(55)) error("Failed reading image file msn_data.055"); } void ResourceManager::initImages2() { for (int i = 0; i < 47; ++i) { _images[i] = new MSNImage(_MSPart); if (!_images[i]->init(i)) error("Failed reading image file ms2_data.%03d", i); } } Audio::SeekableAudioStream *ResourceManager::getSoundStream(AudioId index) { Audio::SeekableAudioStream *stream; stream = _soundSamples[index].get(); stream->rewind(); return stream; } Audio::AudioStream *ResourceManager::getSoundStream(MusicId index) { switch (index) { case kMusicIntro: _musicIntro.reset(Audio::makeProtrackerStream(_musicIntroBuffer.get())); return _musicIntro.get(); case kMusicMadMonkeys: // fall through case kMusicOutro: _musicOutro.reset(Audio::makeProtrackerStream(_musicOutroBuffer.get())); return _musicOutro.get(); default: error("Invalid music constant in playAudio()"); } } Audio::AudioStream *ResourceManager::getSirenStream() { return _sirenStream.get(); } MSNImage *ResourceManager::getImage(int filenumber) { if (_MSPart == 1) { if (filenumber < 44) return _images[filenumber]; else if (filenumber == 55) return _images[44]; else return nullptr; } else if (_MSPart == 2) { if (filenumber < 47) return _images[filenumber]; else return nullptr; } else return nullptr; } const byte *ResourceManager::getImage(CursorId id) const { switch (id) { case kCursorNormal: return _cursorNormal; case kCursorWait: return _cursorWait; default: return nullptr; } } // Generate a tone which minimal length is the length and ends at the end // of sine period // NOTE: Size of the SineTable has to be the same as audioRate and a multiple of 4 byte *ResourceManager::generateTone(byte *buffer, int frequency, int length, int audioRate, Common::SineTable &table) { int i = 0; // Make sure length is a multiple of audioRate / frequency to end on a full sine wave and not in the middle. // Also the length we have is a minimum length, so only increase it. int r = 1 + (length - 1) * frequency / audioRate; length = (1 + 2 * r * audioRate / frequency) / 2; for(; i < length; i++) { buffer[i] = (byte) ((table.at((i * frequency) % audioRate) * 127) + 127); } return buffer + length; } // Tones with frequencies between 1500 Hz and 1800 Hz, frequencies go up and down // with a step of 10 Hz. void ResourceManager::initSiren() { int audioRate = 44000; int length = audioRate / 90; // minimal length of each tone // * 60 for the minimal length, another 20 * length as a spare, for longer tones byte *buffer = new byte[length * 80]; byte *pBuffer = buffer; Common::SineTable table(audioRate); for (int i = 0; i < 30; i++) pBuffer = generateTone(pBuffer, 1800 - i * 10, length, audioRate, table); for (int i = 0; i < 30; i++) pBuffer = generateTone(pBuffer, 1500 + i * 10, length, audioRate, table); byte streamFlag = Audio::FLAG_UNSIGNED; _sirenStream.reset(Audio::makeLoopingAudioStream( Audio::makeRawStream(buffer, pBuffer - buffer, audioRate, streamFlag, DisposeAfterUse::YES), 0)); } static Common::MemoryReadStream *convertToMod(const char *filename, int version) { // MSN format struct { uint16 seg; uint16 start; uint16 end; uint16 loopStart; uint16 loopEnd; char volume; char dummy[5]; } instr2[22]; int nbInstr2; // 22 for version1, 15 for version 2 int16 songLength; char arrangement[128]; int16 patternNumber; int32 note2[28][64][4]; nbInstr2 = ((version == 1) ? 22 : 15); Common::File msnFile; msnFile.open(filename); if (!msnFile.isOpen()) { warning("Data file '%s' not found", msnFile.getName()); return nullptr; } for (int i = 0 ; i < nbInstr2 ; ++i) { instr2[i].seg = msnFile.readUint16LE(); instr2[i].start = msnFile.readUint16LE(); instr2[i].end = msnFile.readUint16LE(); instr2[i].loopStart = msnFile.readUint16LE(); instr2[i].loopEnd = msnFile.readUint16LE(); instr2[i].volume = msnFile.readByte(); msnFile.read(instr2[i].dummy, 5); } songLength = msnFile.readSint16LE(); msnFile.read(arrangement, 128); patternNumber = msnFile.readSint16LE(); for (int p = 0 ; p < patternNumber ; ++p) { for (int n = 0 ; n < 64 ; ++n) { for (int k = 0 ; k < 4 ; ++k) { note2[p][n][k] = msnFile.readSint32LE(); } } } /* MOD format */ struct { char iname[22]; uint16 length; char finetune; char volume; uint16 loopStart; uint16 loopLength; } instr[31]; int32 note[28][64][4]; // We can't recover some MOD effects since several of them are mapped to 0. // Assume the MSN effect of value 0 is Arpeggio (MOD effect of value 0). const char invConvEff[8] = {0, 1, 2, 3, 10, 12, 13 ,15}; // Reminder from convertToMsn // 31 30 29 28 27 26 25 24 - 23 22 21 20 19 18 17 16 - 15 14 13 12 11 10 09 08 - 07 06 05 04 03 02 01 00 // h h h h g g g g f f f f e e e e d d d d c c c c b b b b a a a a // // MSN: // hhhh (4 bits) Cleared to 0 // dddd c (5 bits) Sample index | after mapping through convInstr // ccc (3 bits) Effect type | after mapping through convEff // bbbb aaaa (8 bits) Effect value | unmodified // gggg ffff eeee (12 bits) Sample period | unmodified // // MS2: // hhhh (4 bits) Cleared to 0 // dddd (4 bits) Sample index | after mapping through convInstr // cccc (4 bits) Effect type | unmodified // bbbb aaaa (8 bits) Effect value | unmodified // gggg ffff eeee (12 bits) Sample period | transformed (0xE000 / p) - 256 // // MOD: // hhhh dddd (8 bits) Sample index // cccc (4 bits) Effect type for this channel/division // bbbb aaaa (8 bits) Effect value // gggg ffff eeee (12 bits) Sample period // Can we recover the instruments mapping? I don't think so as part of the original instrument index is cleared. // And it doesn't really matter as long as we are consistent. // However we need to make sure 31 (or 15 in MS2) is mapped to 0 in MOD. // We just add 1 to all other values, and this means a 1 <-> 1 mapping for the instruments for (int p = 0; p < patternNumber; ++p) { for (int n = 0; n < 64; ++n) { for (int k = 0; k < 4; ++k) { int32* l = &(note[p][n][k]); *l = note2[p][n][k]; int32 i = 0; if (nbInstr2 == 22) { // version 1 i = ((*l & 0xF800) >> 11); int32 e = ((*l & 0x0700) >> 8); int32 e1 = invConvEff[e]; *l &= 0x0FFF00FF; *l |= (e1 << 8); } else { // version 2 int32 h = (*l >> 16); i = ((*l & 0xF000) >> 12); *l &= 0x00000FFF; if (h) h = 0xE000 / (h + 256); *l |= (h << 16); if (i == 15) i = 31; } // Add back index in note if (i != 31) { ++i; *l |= ((i & 0x0F) << 12); *l |= ((i & 0xF0) << 24); } } } } for (int i = 0; i < 31; ++i) { // iname is not stored in the mod file. Just set it to 'instrument#' // finetune is not stored either. Assume 0. memset(instr[i].iname, 0, 22); sprintf(instr[i].iname, "instrument%d", i+1); instr[i].length = 0; instr[i].finetune = 0; instr[i].volume = 0; instr[i].loopStart = 0; instr[i].loopLength = 0; if (i < nbInstr2) { instr[i].length = ((instr2[i].end - instr2[i].start) >> 1); instr[i].loopStart = ((instr2[i].loopStart - instr2[i].start) >> 1); instr[i].loopLength = (( instr2[i].loopEnd - instr2[i].loopStart) >> 1); instr[i].volume = instr2[i].volume; } } // The ciaaSpeed is kind of useless and not present in the MSN file. // Traditionally 0x78 in SoundTracker. Was used in NoiseTracker as a restart point. // ProTracker uses 0x7F. FastTracker uses it as a restart point, whereas ScreamTracker 3 uses 0x7F like ProTracker. // You can use this to roughly detect which tracker made a MOD, and detection gets more accurate for more obscure MOD types. char ciaaSpeed = 0x7F; // The mark cannot be recovered either. Since we have 4 channels and 31 instrument it can be either ID='M.K.' or ID='4CHN'. // Assume 'M.K.' const char mark[4] = { 'M', '.', 'K', '.' }; Common::MemoryWriteStreamDynamic buffer(DisposeAfterUse::NO); buffer.write(msnFile.getName(), 19); buffer.writeByte(0); for (int i = 0 ; i < 31 ; ++i) { buffer.write(instr[i].iname, 22); buffer.writeUint16BE(instr[i].length); buffer.writeByte(instr[i].finetune); buffer.writeByte(instr[i].volume); buffer.writeUint16BE(instr[i].loopStart); buffer.writeUint16BE(instr[i].loopLength); } buffer.writeByte((char)songLength); buffer.writeByte(ciaaSpeed); buffer.write(arrangement, 128); buffer.write(mark, 4); for (int p = 0 ; p < patternNumber ; ++p) { for (int n = 0 ; n < 64 ; ++n) { for (int k = 0 ; k < 4 ; ++k) { // buffer.writeUint32BE(*((uint32*)(note[p][n]+k))); buffer.writeSint32BE(note[p][n][k]); } } } uint nb; char buf[4096]; while ((nb = msnFile.read(buf, 4096)) > 0) buffer.write(buf, nb); return new Common::MemoryReadStream(buffer.getData(), buffer.size(), DisposeAfterUse::YES); } int ResourceManager::getAudioRate() { return _audioRate; } //TODO: leave only one function for getting Cursor image const byte *ResourceManager::getCursor(CursorId id) const { switch (id) { case kCursorNormal: return _cursorNormal; case kCursorWait: return _cursorWait; default: return nullptr; } } }