/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * * This file contains the handle based Memory Manager code. */ #include "tinsel/heapmem.h" #include "tinsel/timers.h" // For DwGetCurrentTime #include "tinsel/tinsel.h" namespace Tinsel { // internal allocation flags #define DWM_USED 0x0001 ///< the objects memory block is in use #define DWM_DISCARDED 0x0100 ///< the objects memory block has been discarded #define DWM_LOCKED 0x0200 ///< the objects memory block is locked #define DWM_SENTINEL 0x0400 ///< the objects memory block is a sentinel // Specifies the total amount of memory required for DW1 demo, DW1, or DW2 respectively. // Currently this is set at 5MB for the DW1 demo and DW1 and 10MB for DW2 // This could probably be reduced somewhat // If the memory is not enough, the engine throws an "Out of memory" error in handle.cpp inside LockMem() static const uint32 MemoryPoolSize[3] = {5 * 1024 * 1024, 5 * 1024 * 1024, 10 * 1024 * 1024}; // list of all memory nodes MEM_NODE mnodeList[NUM_MNODES]; // pointer to the linked list of free mnodes static MEM_NODE *pFreeMemNodes; #ifdef DEBUG // diagnostic mnode counters static int numNodes; static int maxNodes; #endif // the mnode heap sentinel static MEM_NODE heapSentinel; // static MEM_NODE *AllocMemNode(void); /** * Initialises the memory manager. */ void MemoryInit(void) { MEM_NODE *pNode; #ifdef DEBUG // clear number of nodes in use numNodes = 0; #endif // place first node on free list pFreeMemNodes = mnodeList; // link all other objects after first for (int i = 1; i < NUM_MNODES; i++) { mnodeList[i - 1].pNext = mnodeList + i; } // null the last mnode mnodeList[NUM_MNODES - 1].pNext = NULL; // allocates a big chunk of memory uint32 size = MemoryPoolSize[0]; if (TinselVersion == TINSEL_V1) size = MemoryPoolSize[1]; else if (TinselVersion == TINSEL_V2) size = MemoryPoolSize[2]; uint8 *mem = (uint8 *)malloc(size); assert(mem); // allocate a mnode for this memory pNode = AllocMemNode(); // make sure mnode was allocated assert(pNode); // convert segment to memory address pNode->pBaseAddr = mem; // set size of the memory heap pNode->size = size; // clear the memory memset(pNode->pBaseAddr, 0, size); // set cyclic links to the sentinel heapSentinel.pPrev = pNode; heapSentinel.pNext = pNode; pNode->pPrev = &heapSentinel; pNode->pNext = &heapSentinel; // flag sentinel as locked heapSentinel.flags = DWM_LOCKED | DWM_SENTINEL; } /** * Allocate a mnode from the free list. */ static MEM_NODE *AllocMemNode(void) { // get the first free mnode MEM_NODE *pMemNode = pFreeMemNodes; // make sure a mnode is available assert(pMemNode); // Out of memory nodes // the next free mnode pFreeMemNodes = pMemNode->pNext; // wipe out the mnode memset(pMemNode, 0, sizeof(MEM_NODE)); #ifdef DEBUG // one more mnode in use if (++numNodes > maxNodes) maxNodes = numNodes; #endif // return new mnode return pMemNode; } /** * Return a mnode back to the free list. * @param pMemNode Node of the memory object */ void FreeMemNode(MEM_NODE *pMemNode) { // validate mnode pointer assert(pMemNode >= mnodeList && pMemNode <= mnodeList + NUM_MNODES - 1); #ifdef DEBUG // one less mnode in use --numNodes; assert(numNodes >= 0); #endif // place free list in mnode next pMemNode->pNext = pFreeMemNodes; // add mnode to top of free list pFreeMemNodes = pMemNode; } /** * Tries to make space for the specified number of bytes on the specified heap. * @param size Number of bytes to free up * @param bDiscard When set - will discard blocks to fullfill the request * @return true if any blocks were discarded, false otherwise */ bool HeapCompact(long size, bool bDiscard) { MEM_NODE *pHeap = &heapSentinel; MEM_NODE *pPrev, *pCur, *pOldest; long largest; // size of largest free block uint32 oldest; // time of the oldest discardable block while (true) { bool bChanged; do { bChanged = false; for (pPrev = pHeap->pNext, pCur = pPrev->pNext; pCur != pHeap; pPrev = pCur, pCur = pCur->pNext) { if (pPrev->flags == 0 && pCur->flags == 0) { // both blocks are free - merge them pPrev->size += pCur->size; // unlink the current mnode pPrev->pNext = pCur->pNext; pCur->pNext->pPrev = pPrev; // free the current mnode FreeMemNode(pCur); // set the changed flag bChanged = true; // leave the loop break; } else if (pPrev->flags == DWM_USED && pCur->flags == 0) { // a free block after a moveable, non-discarded, not locked block - swap them // set the changed flag bChanged = true; // move the unlocked blocks data up (can overlap) memmove(pPrev->pBaseAddr + pCur->size, pPrev->pBaseAddr, pPrev->size); // swap the order in the linked list pPrev->pPrev->pNext = pCur; pCur->pNext->pPrev = pPrev; pCur->pPrev = pPrev->pPrev; pPrev->pPrev = pCur; pPrev->pNext = pCur->pNext; pCur->pNext = pPrev; pCur->pBaseAddr = pPrev->pBaseAddr; pPrev->pBaseAddr += pCur->size; // leave the loop break; } } } while (bChanged); // find the largest free block for (largest = 0, pCur = pHeap->pNext; pCur != pHeap; pCur = pCur->pNext) { if (pCur->flags == 0 && pCur->size > largest) largest = pCur->size; } if (largest >= size) // we have freed enough memory return true; if (!bDiscard) // we cannot free enough without discarding blocks return false; // find the oldest discardable block oldest = DwGetCurrentTime(); pOldest = NULL; for (pCur = pHeap->pNext; pCur != pHeap; pCur = pCur->pNext) { if (pCur->flags == DWM_USED) { // found a non-discarded discardable block if (pCur->lruTime < oldest) { oldest = pCur->lruTime; pOldest = pCur; } } } if (pOldest) // discard the oldest block MemoryDiscard(pOldest); else // cannot discard any blocks return false; } } /** * Allocates the specified number of bytes from the heap. * @param flags Allocation attributes * @param size Number of bytes to allocate */ static MEM_NODE *MemoryAlloc(long size) { const MEM_NODE *pHeap = &heapSentinel; MEM_NODE *pNode; #ifdef SCUMM_NEED_ALIGNMENT const int alignPadding = sizeof(void*) - 1; size = (size + alignPadding) & ~alignPadding; //round up to nearest multiple of sizeof(void*), this ensures the addresses that are returned are alignment-safe. #endif do { // search the heap for a free block for (pNode = pHeap->pNext; pNode != pHeap; pNode = pNode->pNext) { if (pNode->flags == 0 && pNode->size >= size) { // a free block of the required size pNode->flags = DWM_USED; // update the LRU time pNode->lruTime = DwGetCurrentTime() + 1; if (pNode->size == size) { // an exact fit return pNode; } else { // allocate a node for the remainder of the free block MEM_NODE *pTemp = AllocMemNode(); // calc size of the free block long freeSize = pNode->size - size; // set size of free block pTemp->size = freeSize; // set size of node pNode->size = size; // place the free node before pNode pTemp->pBaseAddr = pNode->pBaseAddr; pNode->pBaseAddr += freeSize; pTemp->pNext = pNode; pTemp->pPrev = pNode->pPrev; pNode->pPrev->pNext = pTemp; pNode->pPrev = pTemp; return pNode; } } } // compact the heap if we get to here } while (HeapCompact(size, true)); // could not allocate a block return 0; } /** * Allocate a discarded MEM_NODE. Actual memory can be assigned to it * by using MemoryReAlloc(). */ MEM_NODE *MemoryNoAlloc() { MEM_NODE *pHeap = &heapSentinel; // chain a discarded node onto the end of the heap MEM_NODE *pNode = AllocMemNode(); pNode->flags = DWM_USED | DWM_DISCARDED; // set mnode at the end of the list pNode->pPrev = pHeap->pPrev; pNode->pNext = pHeap; // fix links to this mnode pHeap->pPrev->pNext = pNode; pHeap->pPrev = pNode; // return the discarded node return pNode; } /** * Allocate a fixed block of data. * @note For now, we simply malloc it! * @todo We really should keep a list of the allocated pointers, * so that we can discard them later on, when the engine quits. */ void *MemoryAllocFixed(long size) { #ifdef SCUMM_NEED_ALIGNMENT const int alignPadding = sizeof(void*) - 1; size = (size + alignPadding) & ~alignPadding; //round up to nearest multiple of sizeof(void*), this ensures the addresses that are returned are alignment-safe. #endif return malloc(size); } /** * Discards the specified memory object. * @param pMemNode Node of the memory object */ void MemoryDiscard(MEM_NODE *pMemNode) { // validate mnode pointer assert(pMemNode >= mnodeList && pMemNode <= mnodeList + NUM_MNODES - 1); // object must be in use and locked assert((pMemNode->flags & (DWM_USED | DWM_LOCKED)) == DWM_USED); // discard it if it isn't already if ((pMemNode->flags & DWM_DISCARDED) == 0) { // allocate a free node to replace this node MEM_NODE *pTemp = AllocMemNode(); // copy node data memcpy(pTemp, pMemNode, sizeof(MEM_NODE)); // flag as a free block pTemp->flags = 0; // link in the free node pTemp->pPrev->pNext = pTemp; pTemp->pNext->pPrev = pTemp; // discard the node pMemNode->flags |= DWM_DISCARDED; pMemNode->pBaseAddr = NULL; pMemNode->size = 0; // and place it at the end of the heap while ((pTemp->flags & DWM_SENTINEL) != DWM_SENTINEL) pTemp = pTemp->pNext; // pTemp now points to the heap sentinel // set mnode at the end of the list pMemNode->pPrev = pTemp->pPrev; pMemNode->pNext = pTemp; // fix links to this mnode pTemp->pPrev->pNext = pMemNode; pTemp->pPrev = pMemNode; } } /** * Locks a memory object and returns a pointer to the first byte * of the objects memory block. * @param pMemNode Node of the memory object */ void *MemoryLock(MEM_NODE *pMemNode) { // validate mnode pointer assert(pMemNode >= mnodeList && pMemNode <= mnodeList + NUM_MNODES - 1); // make sure memory object is not already locked assert((pMemNode->flags & DWM_LOCKED) == 0); // check for a discarded or null memory object if ((pMemNode->flags & DWM_DISCARDED) || pMemNode->size == 0) return NULL; // set the lock flag pMemNode->flags |= DWM_LOCKED; // return memory objects base address return pMemNode->pBaseAddr; } /** * Changes the size of a specified memory object and re-allocate it if necessary. * @param pMemNode Node of the memory object * @param size New size of block */ void MemoryReAlloc(MEM_NODE *pMemNode, long size) { MEM_NODE *pNew; // validate mnode pointer assert(pMemNode >= mnodeList && pMemNode <= mnodeList + NUM_MNODES - 1); // align the size to machine boundary requirements size = (size + sizeof(void *) - 1) & ~(sizeof(void *) - 1); // validate the size assert(size); if (size != pMemNode->size) { // make sure memory object is discarded and not locked assert(pMemNode->flags == DWM_USED | DWM_DISCARDED); assert(pMemNode->size == 0); // unlink the mnode from the current heap pMemNode->pNext->pPrev = pMemNode->pPrev; pMemNode->pPrev->pNext = pMemNode->pNext; // allocate a new node pNew = MemoryAlloc(size); // make sure memory allocated assert(pNew != NULL); // copy the node to the current node memcpy(pMemNode, pNew, sizeof(MEM_NODE)); // relink the mnode into the list pMemNode->pPrev->pNext = pMemNode; pMemNode->pNext->pPrev = pMemNode; // free the new node FreeMemNode(pNew); } } /** * Unlocks a memory object. * @param pMemNode Node of the memory object */ void MemoryUnlock(MEM_NODE *pMemNode) { // validate mnode pointer assert(pMemNode >= mnodeList && pMemNode <= mnodeList + NUM_MNODES - 1); // make sure memory object is already locked assert(pMemNode->flags & DWM_LOCKED); // clear the lock flag pMemNode->flags &= ~DWM_LOCKED; // update the LRU time pMemNode->lruTime = DwGetCurrentTime(); } } // End of namespace Tinsel