/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */ #include "common/algorithm.h" #include "common/endian.h" #include "common/util.h" #include "common/rect.h" #include "common/textconsole.h" #include "graphics/primitives.h" #include "engines/wintermute/graphics/transparent_surface.h" namespace WinterMute { TransparentSurface::TransparentSurface() : Surface() {} TransparentSurface::TransparentSurface(const Surface &surf, bool copyData) : Surface() { if (copyData) { copyFrom(surf); } else { w = surf.w; h = surf.h; pitch = surf.pitch; format = surf.format; pixels = surf.pixels; } } void doBlit(byte *ino, byte* outo, uint32 width, uint32 height, uint32 pitch, int32 inStep, int32 inoStep) { byte *in, *out; #ifdef SCUMM_LITTLE_ENDIAN const int aIndex = 0; const int bIndex = 1; const int gIndex = 2; const int rIndex = 3; #else const int aIndex = 3; const int bIndex = 2; const int gIndex = 1; const int rIndex = 0; #endif const int bShift = 8;//img->format.bShift; const int gShift = 16;//img->format.gShift; const int rShift = 24;//img->format.rShift; const int aShift = 0;//img->format.aShift; const int bShiftTarget = 8;//target.format.bShift; const int gShiftTarget = 16;//target.format.gShift; const int rShiftTarget = 24;//target.format.rShift; for (uint32 i = 0; i < height; i++) { out = outo; in = ino; for (uint32 j = 0; j < width; j++) { uint32 pix = *(uint32 *)in; uint32 o_pix = *(uint32 *) out; int b = (pix >> bShift) & 0xff; int g = (pix >> gShift) & 0xff; int r = (pix >> rShift) & 0xff; int a = (pix >> aShift) & 0xff; int o_b, o_g, o_r, o_a; in += inStep; /* if (ca != 255) { a = a * ca >> 8; }*/ switch (a) { case 0: // Full transparency out += 4; break; case 255: // Full opacity o_b = b; o_g = g; o_r = r; o_a = a; //*(uint32 *)out = target.format.ARGBToColor(o_a, o_r, o_g, o_b); out[aIndex] = o_a; out[bIndex] = o_b; out[gIndex] = o_g; out[rIndex] = o_r; out += 4; break; default: // alpha blending o_a = 255; o_b = (o_pix >> bShiftTarget) & 0xff; o_g = (o_pix >> gShiftTarget) & 0xff; o_r = (o_pix >> rShiftTarget) & 0xff; o_b += ((b - o_b) * a) >> 8; o_g += ((g - o_g) * a) >> 8; o_r += ((r - o_r) * a) >> 8; //*(uint32 *)out = target.format.ARGBToColor(o_a, o_r, o_g, o_b); out[aIndex] = o_a; out[bIndex] = o_b; out[gIndex] = o_g; out[rIndex] = o_r; out += 4; } } outo += pitch; ino += inoStep; } } Common::Rect TransparentSurface::blit(Graphics::Surface &target, int posX, int posY, int flipping, Common::Rect *pPartRect, uint color, int width, int height) { int ca = (color >> 24) & 0xff; Common::Rect retSize; retSize.top = 0; retSize.left = 0; retSize.setWidth(0); retSize.setHeight(0); // Check if we need to draw anything at all if (ca == 0) return retSize; int cr = (color >> 16) & 0xff; int cg = (color >> 8) & 0xff; int cb = (color >> 0) & 0xff; // Compensate for transparency. Since we're coming // down to 255 alpha, we just compensate for the colors here if (ca != 255) { cr = cr * ca >> 8; cg = cg * ca >> 8; cb = cb * ca >> 8; } // Create an encapsulating surface for the data TransparentSurface srcImage(*this, false); // TODO: Is the data really in the screen format? if (format.bytesPerPixel != 4) { warning("TransparentSurface can only blit 32 bpp images"); return retSize; } if (pPartRect) { srcImage.pixels = &((char *)pixels)[pPartRect->top * srcImage.pitch + pPartRect->left * 4]; srcImage.w = pPartRect->width(); srcImage.h = pPartRect->height(); debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, pPartRect->left, pPartRect->top, pPartRect->width(), pPartRect->height(), color, width, height); } else { debug(6, "Blit(%d, %d, %d, [%d, %d, %d, %d], %08x, %d, %d)", posX, posY, flipping, 0, 0, srcImage.w, srcImage.h, color, width, height); } if (width == -1) width = srcImage.w; if (height == -1) height = srcImage.h; #ifdef SCALING_TESTING // Hardcode scaling to 66% to test scaling width = width * 2 / 3; height = height * 2 / 3; #endif Graphics::Surface *img; Graphics::Surface *imgScaled = NULL; byte *savedPixels = NULL; if ((width != srcImage.w) || (height != srcImage.h)) { // Scale the image img = imgScaled = srcImage.scale(width, height); savedPixels = (byte *)img->pixels; } else { img = &srcImage; } // Handle off-screen clipping if (posY < 0) { img->h = MAX(0, (int)img->h - -posY); img->pixels = (byte *)img->pixels + img->pitch * -posY; posY = 0; } if (posX < 0) { img->w = MAX(0, (int)img->w - -posX); img->pixels = (byte *)img->pixels + (-posX * 4); posX = 0; } img->w = CLIP((int)img->w, 0, (int)MAX((int)target.w - posX, 0)); img->h = CLIP((int)img->h, 0, (int)MAX((int)target.h - posY, 0)); if ((img->w > 0) && (img->h > 0)) { int xp = 0, yp = 0; int inStep = 4; int inoStep = img->pitch; if (flipping & TransparentSurface::FLIP_V) { inStep = -inStep; xp = img->w - 1; } if (flipping & TransparentSurface::FLIP_H) { inoStep = -inoStep; yp = img->h - 1; } byte *ino = (byte *)img->getBasePtr(xp, yp); byte *outo = (byte *)target.getBasePtr(posX, posY); byte *in, *out; #ifdef SCUMM_LITTLE_ENDIAN const int aIndex = 0; const int bIndex = 1; const int gIndex = 2; const int rIndex = 3; #else const int aIndex = 3; const int bIndex = 2; const int gIndex = 1; const int rIndex = 0; #endif const int bShift = 8;//img->format.bShift; const int gShift = 16;//img->format.gShift; const int rShift = 24;//img->format.rShift; const int aShift = 0;//img->format.aShift; const int bShiftTarget = 8;//target.format.bShift; const int gShiftTarget = 16;//target.format.gShift; const int rShiftTarget = 24;//target.format.rShift; if (ca == 255 && cb == 255 && cg == 255 && cr == 255) { doBlit(ino, outo, img->w, img->h, target.pitch, inStep, inoStep); } else { for (int i = 0; i < img->h; i++) { out = outo; in = ino; for (int j = 0; j < img->w; j++) { uint32 pix = *(uint32 *)in; uint32 o_pix = *(uint32 *) out; int b = (pix >> bShift) & 0xff; int g = (pix >> gShift) & 0xff; int r = (pix >> rShift) & 0xff; int a = (pix >> aShift) & 0xff; int o_b, o_g, o_r, o_a; in += inStep; if (ca != 255) { a = a * ca >> 8; } switch (a) { case 0: // Full transparency out += 4; break; case 255: // Full opacity if (cb != 255) o_b = (b * cb) >> 8; else o_b = b; if (cg != 255) o_g = (g * cg) >> 8; else o_g = g; if (cr != 255) o_r = (r * cr) >> 8; else o_r = r; o_a = a; //*(uint32 *)out = target.format.ARGBToColor(o_a, o_r, o_g, o_b); out[aIndex] = o_a; out[bIndex] = o_b; out[gIndex] = o_g; out[rIndex] = o_r; out += 4; break; default: // alpha blending o_a = 255; o_b = (o_pix >> bShiftTarget) & 0xff; o_g = (o_pix >> gShiftTarget) & 0xff; o_r = (o_pix >> rShiftTarget) & 0xff; if (cb == 0) o_b = 0; else if (cb != 255) o_b += ((b - o_b) * a * cb) >> 16; else o_b += ((b - o_b) * a) >> 8; if (cg == 0) o_g = 0; else if (cg != 255) o_g += ((g - o_g) * a * cg) >> 16; else o_g += ((g - o_g) * a) >> 8; if (cr == 0) o_r = 0; else if (cr != 255) o_r += ((r - o_r) * a * cr) >> 16; else o_r += ((r - o_r) * a) >> 8; //*(uint32 *)out = target.format.ARGBToColor(o_a, o_r, o_g, o_b); out[aIndex] = o_a; out[bIndex] = o_b; out[gIndex] = o_g; out[rIndex] = o_r; out += 4; } } outo += target.pitch; ino += inoStep; } } } if (imgScaled) { imgScaled->pixels = savedPixels; imgScaled->free(); delete imgScaled; } retSize.setWidth(img->w); retSize.setHeight(img->h); return retSize; } /** * Scales a passed surface, creating a new surface with the result * @param srcImage Source image to scale * @param scaleFactor Scale amount. Must be between 0 and 1.0 (but not zero) * @remarks Caller is responsible for freeing the returned surface */ TransparentSurface *TransparentSurface::scale(int xSize, int ySize) const { TransparentSurface *s = new TransparentSurface(); s->create(xSize, ySize, this->format); int *horizUsage = scaleLine(xSize, this->w); int *vertUsage = scaleLine(ySize, this->h); // Loop to create scaled version for (int yp = 0; yp < ySize; ++yp) { const byte *srcP = (const byte *)this->getBasePtr(0, vertUsage[yp]); byte *destP = (byte *)s->getBasePtr(0, yp); for (int xp = 0; xp < xSize; ++xp) { const byte *tempSrcP = srcP + (horizUsage[xp] * this->format.bytesPerPixel); for (int byteCtr = 0; byteCtr < this->format.bytesPerPixel; ++byteCtr) { *destP++ = *tempSrcP++; } } } // Delete arrays and return surface delete[] horizUsage; delete[] vertUsage; return s; } /** * Writes a color key to the alpha channel of the surface * @param rKey the red component of the color key * @param gKey the green component of the color key * @param bKey the blue component of the color key * @param overwriteAlpha if true, all other alpha will be set fully opaque */ void TransparentSurface::applyColorKey(uint8 rKey, uint8 gKey, uint8 bKey, bool overwriteAlpha) { assert(format.bytesPerPixel == 4); for (int i = 0; i < h; i++) { for (int j = 0; j < w; j++) { uint32 pix = ((uint32 *)pixels)[i * w + j]; uint8 r, g, b, a; format.colorToARGB(pix, a, r, g, b); if (r == rKey && g == gKey && b == bKey) { a = 0; ((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b); } else if (overwriteAlpha) { a = 255; ((uint32 *)pixels)[i * w + j] = format.ARGBToColor(a, r, g, b); } } } } /** * Returns an array indicating which pixels of a source image horizontally or vertically get * included in a scaled image */ int *TransparentSurface::scaleLine(int size, int srcSize) { int scale = 100 * size / srcSize; assert(scale > 0); int *v = new int[size]; Common::fill(v, &v[size], 0); int distCtr = 0; int *destP = v; for (int distIndex = 0; distIndex < srcSize; ++distIndex) { distCtr += scale; while (distCtr >= 100) { assert(destP < &v[size]); *destP++ = distIndex; distCtr -= 100; } } return v; } } // End of namespace Graphics