/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "common/scummsys.h" #include "graphics/colormasks.h" #include "zvision/render_table.h" #include "zvision/vector2.h" namespace ZVision { RenderTable::RenderTable(uint numColumns, uint numRows) : _numRows(numRows), _numColumns(numColumns), _renderState(FLAT) { assert(numRows != 0 && numColumns != 0); _internalBuffer = new Vector2[numRows * numColumns]; } RenderTable::~RenderTable() { delete[] _internalBuffer; } void RenderTable::setRenderState(RenderState newState) { _renderState = newState; switch (newState) { case PANORAMA: _panoramaOptions.fieldOfView = 27.0f; _panoramaOptions.linearScale = 0.55f; _panoramaOptions.reverse = false; break; case TILT: _tiltOptions.fieldOfView = 27.0f; _tiltOptions.linearScale = 0.55f; _tiltOptions.reverse = false; break; case FLAT: // Intentionally left empty break; } } const Common::Point RenderTable::convertWarpedCoordToFlatCoord(const Common::Point &point) { // If we're outside the range of the RenderTable, no warping is happening. Return the maximum image coords if (point.x >= (int16)_numColumns || point.y >= (int16)_numRows || point.x < 0 || point.y < 0) { int16 x = CLIP(point.x, 0, (int16)_numColumns); int16 y = CLIP(point.y, 0, (int16)_numRows); return Common::Point(x, y); } uint32 index = point.y * _numColumns + point.x; Common::Point newPoint(point); newPoint.x += _internalBuffer[index].x; newPoint.y += _internalBuffer[index].y; return newPoint; } uint16 mixTwoRGB(uint16 colorOne, uint16 colorTwo, float percentColorOne) { assert(percentColorOne < 1.0f); float rOne = float((colorOne & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift); float rTwo = float((colorTwo & Graphics::ColorMasks<555>::kRedMask) >> Graphics::ColorMasks<555>::kRedShift); float gOne = float((colorOne & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift); float gTwo = float((colorTwo & Graphics::ColorMasks<555>::kGreenMask) >> Graphics::ColorMasks<555>::kGreenShift); float bOne = float((colorOne & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift); float bTwo = float((colorTwo & Graphics::ColorMasks<555>::kBlueMask) >> Graphics::ColorMasks<555>::kBlueShift); float rFinal = rOne * percentColorOne + rTwo * (1.0f - percentColorOne); float gFinal = gOne * percentColorOne + gTwo * (1.0f - percentColorOne); float bFinal = bOne * percentColorOne + bTwo * (1.0f - percentColorOne); uint16 returnColor = (byte(rFinal + 0.5f) << Graphics::ColorMasks<555>::kRedShift) | (byte(gFinal + 0.5f) << Graphics::ColorMasks<555>::kGreenShift) | (byte(bFinal + 0.5f) << Graphics::ColorMasks<555>::kBlueShift); return returnColor; } void RenderTable::mutateImage(uint16 *sourceBuffer, uint16* destBuffer, uint32 destWidth, const Common::Rect &subRect) { uint32 destOffset = 0; for (uint32 y = subRect.top; y < subRect.bottom; y++) { uint32 sourceOffset = y * _numColumns; for (uint32 x = subRect.left; x < subRect.right; x++) { uint32 normalizedX = x - subRect.left; uint32 index = sourceOffset + x; // RenderTable only stores offsets from the original coordinates uint32 sourceYIndex = y + _internalBuffer[index].y; uint32 sourceXIndex = x + _internalBuffer[index].x; // Clamp the yIndex to the size of the image sourceYIndex = CLIP(sourceYIndex, 0, _numRows - 1); // Clamp the xIndex to the size of the image sourceXIndex = CLIP(sourceXIndex, 0, _numColumns - 1); destBuffer[destOffset + normalizedX] = sourceBuffer[sourceYIndex * _numColumns + sourceXIndex]; } destOffset += destWidth; } } void RenderTable::generateRenderTable() { switch (_renderState) { case ZVision::RenderTable::PANORAMA: generatePanoramaLookupTable(); break; case ZVision::RenderTable::TILT: generateTiltLookupTable(); break; case ZVision::RenderTable::FLAT: // Intentionally left empty break; } } void RenderTable::generatePanoramaLookupTable() { memset(_internalBuffer, 0, _numRows * _numColumns * sizeof(uint16)); float halfWidth = (float)_numColumns / 2.0f; float halfHeight = (float)_numRows / 2.0f; float fovInRadians = (_panoramaOptions.fieldOfView * M_PI / 180.0f); float cylinderRadius = halfHeight / tan(fovInRadians); for (uint x = 0; x < _numColumns; x++) { // Add an offset of 0.01 to overcome zero tan/atan issue (vertical line on half of screen) // Alpha represents the horizontal angle between the viewer at the center of a cylinder and x float alpha = atan(((float)x - halfWidth + 0.01f) / cylinderRadius); // To get x in cylinder coordinates, we just need to calculate the arc length // We also scale it by _panoramaOptions.linearScale int32 xInCylinderCoords = int32(floor((cylinderRadius * _panoramaOptions.linearScale * alpha) + halfWidth)); float cosAlpha = cos(alpha); for (uint y = 0; y < _numRows; y++) { // To calculate y in cylinder coordinates, we can do similar triangles comparison, // comparing the triangle from the center to the screen and from the center to the edge of the cylinder int32 yInCylinderCoords = int32(floor(halfHeight + ((float)y - halfHeight) * cosAlpha)); uint32 index = y * _numColumns + x; // Only store the (x,y) offsets instead of the absolute positions _internalBuffer[index].x = xInCylinderCoords - x; _internalBuffer[index].y = yInCylinderCoords - y; } } } void RenderTable::generateTiltLookupTable() { float halfWidth = (float)_numColumns / 2.0f; float halfHeight = (float)_numRows / 2.0f; float fovInRadians = (_tiltOptions.fieldOfView * M_PI / 180.0f); float cylinderRadius = halfWidth / tan(fovInRadians); for (uint y = 0; y < _numRows; y++) { // Add an offset of 0.01 to overcome zero tan/atan issue (horizontal line on half of screen) // Alpha represents the vertical angle between the viewer at the center of a cylinder and y float alpha = atan(((float)y - halfHeight + 0.01f) / cylinderRadius); // To get y in cylinder coordinates, we just need to calculate the arc length // We also scale it by _tiltOptions.linearScale int32 yInCylinderCoords = int32(floor((cylinderRadius * _tiltOptions.linearScale * alpha) + halfHeight)); float cosAlpha = cos(alpha); uint32 columnIndex = y * _numColumns; for (uint x = 0; x < _numColumns; x++) { // To calculate x in cylinder coordinates, we can do similar triangles comparison, // comparing the triangle from the center to the screen and from the center to the edge of the cylinder int32 xInCylinderCoords = int32(floor(halfWidth + ((float)x - halfWidth) * cosAlpha)); uint32 index = columnIndex + x; // Only store the (x,y) offsets instead of the absolute positions _internalBuffer[index].x = xInCylinderCoords - x; _internalBuffer[index].y = yInCylinderCoords - y; } } } void RenderTable::setPanoramaFoV(float fov) { assert(fov > 0.0f); _panoramaOptions.fieldOfView = fov; } void RenderTable::setPanoramaScale(float scale) { assert(scale > 0.0f); _panoramaOptions.linearScale = scale; } void RenderTable::setPanoramaReverse(bool reverse) { _panoramaOptions.reverse = reverse; } void RenderTable::setTiltFoV(float fov) { assert(fov > 0.0f); _tiltOptions.fieldOfView = fov; } void RenderTable::setTiltScale(float scale) { assert(scale > 0.0f); _tiltOptions.linearScale = scale; } void RenderTable::setTiltReverse(bool reverse) { _tiltOptions.reverse = reverse; } } // End of namespace ZVision