/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "common/scummsys.h" #include "common/str.h" #include "common/file.h" #include "common/textconsole.h" #include "common/debug.h" #include "common/endian.h" #include "zvision/rlf_animation.h" namespace ZVision { RlfAnimation::RlfAnimation(const Common::String &fileName, bool stream) : _stream(stream), _lastFrameRead(0), _frameCount(0), _width(0), _height(0), _frameTime(0), _frames(0), _currentFrameBuffer(0), _currentFrame(-1), _frameBufferByteSize(0) { if (!_file.open(fileName)) { warning("RLF animation file %s could not be opened", fileName.c_str()); return; } if (!readHeader()) { warning("%s is not a RLF animation file. Wrong magic number", fileName.c_str()); return; } _currentFrameBuffer = new uint16[_width * _height]; _frameBufferByteSize = _width * _height * sizeof(uint16); if (!stream) { _frames = new Frame[_frameCount]; // Read in each frame for (uint i = 0; i < _frameCount; i++) { _frames[i] = readNextFrame(); } } }; RlfAnimation::~RlfAnimation() { if (_frames != 0) { delete[] _frames; } if (_currentFrameBuffer != 0) { delete[] _currentFrameBuffer; } } bool RlfAnimation::readHeader() { if (_file.readUint32BE() != MKTAG('F', 'E', 'L', 'R')) { return false; } // Read the header _file.readUint32LE(); // Size1 _file.readUint32LE(); // Unknown1 _file.readUint32LE(); // Unknown2 _frameCount = _file.readUint32LE(); // Frame count // Since we don't need any of the data, we can just seek right to the // entries we need rather than read in all the individual entries. _file.seek(136, SEEK_CUR); //// Read CIN header //_file.readUint32BE(); // Magic number FNIC //_file.readUint32LE(); // Size2 //_file.readUint32LE(); // Unknown3 //_file.readUint32LE(); // Unknown4 //_file.readUint32LE(); // Unknown5 //_file.seek(0x18, SEEK_CUR); // VRLE //_file.readUint32LE(); // LRVD //_file.readUint32LE(); // Unknown6 //_file.seek(0x18, SEEK_CUR); // HRLE //_file.readUint32LE(); // ELHD //_file.readUint32LE(); // Unknown7 //_file.seek(0x18, SEEK_CUR); // HKEY //_file.readUint32LE(); // ELRH //// Read MIN info header //_file.readUint32BE(); // Magic number FNIM //_file.readUint32LE(); // Size3 //_file.readUint32LE(); // OEDV //_file.readUint32LE(); // Unknown8 //_file.readUint32LE(); // Unknown9 //_file.readUint32LE(); // Unknown10 _width = _file.readUint32LE(); // Width _height = _file.readUint32LE(); // Height // Read time header _file.readUint32BE(); // Magic number EMIT _file.readUint32LE(); // Size4 _file.readUint32LE(); // Unknown11 _frameTime = _file.readUint32LE() / 10; // Frame time in microseconds return true; } RlfAnimation::Frame RlfAnimation::readNextFrame() { RlfAnimation::Frame frame; _file.readUint32BE(); // Magic number MARF uint32 size = _file.readUint32LE(); // Size _file.readUint32LE(); // Unknown1 _file.readUint32LE(); // Unknown2 uint32 type = _file.readUint32BE(); // Either ELHD or ELRH uint32 headerSize = _file.readUint32LE(); // Offset from the beginning of this frame to the frame data. Should always be 28 _file.readUint32LE(); // Unknown3 frame.encodedSize = size - headerSize; frame.encodedData = new int8[frame.encodedSize]; _file.read(frame.encodedData, frame.encodedSize); if (type == MKTAG('E', 'L', 'H', 'D')) { frame.type = Masked; } else if (type == MKTAG('E', 'L', 'R', 'H')) { frame.type = Simple; _completeFrames.push_back(_lastFrameRead); } else { warning("Frame %u doesn't have type that can be decoded", _lastFrameRead); } _lastFrameRead++; return frame; } const uint16 *RlfAnimation::getFrameData(uint frameNumber) { assert(!_stream); assert(frameNumber < _frameCount && frameNumber >= 0); if (frameNumber == _currentFrame) { return _currentFrameBuffer; } uint closestFrame = _currentFrame; uint distance = ABS(_currentFrame - frameNumber); for (Common::List::const_iterator iter = _completeFrames.begin(); iter != _completeFrames.end(); iter++) { uint newDistance = ABS((*iter) - frameNumber); if (closestFrame == -1 || newDistance < distance) { closestFrame = (*iter); distance = newDistance; } } bool forwards = frameNumber > closestFrame; if (forwards) { for (uint i = closestFrame; i <= frameNumber; i++) { applyFrameToCurrent(i); } } else { for (uint i = closestFrame; i >= frameNumber; i--) { applyFrameToCurrent(i); } } _currentFrame = frameNumber; return _currentFrameBuffer; } const uint16 *RlfAnimation::getNextFrame() { assert(_currentFrame + 1 < _frameCount); if (_stream) { applyFrameToCurrent(readNextFrame()); } else { applyFrameToCurrent(_currentFrame + 1); } _currentFrame -= 1; return _currentFrameBuffer; } const uint16 *RlfAnimation::getPreviousFrame() { assert(!_stream); assert(_currentFrame - 1 >= 0); applyFrameToCurrent(_currentFrame - 1); _currentFrame =- 1; return _currentFrameBuffer; } void RlfAnimation::applyFrameToCurrent(uint frameNumber) { if (_frames[frameNumber].type == Masked) { decodeMaskedRunLengthEncoding(_frames[frameNumber].encodedData, (int8 *)_currentFrameBuffer, _frames[frameNumber].encodedSize, _frameBufferByteSize); } else if (_frames[frameNumber].type == Simple) { decodeSimpleRunLengthEncoding(_frames[frameNumber].encodedData, (int8 *)_currentFrameBuffer, _frames[frameNumber].encodedSize, _frameBufferByteSize); } } void RlfAnimation::applyFrameToCurrent(const RlfAnimation::Frame &frame) { if (frame.type == Masked) { decodeMaskedRunLengthEncoding(frame.encodedData, (int8 *)_currentFrameBuffer, frame.encodedSize, _frameBufferByteSize); } else if (frame.type == Simple) { decodeSimpleRunLengthEncoding(frame.encodedData, (int8 *)_currentFrameBuffer, frame.encodedSize, _frameBufferByteSize); } } void RlfAnimation::decodeMaskedRunLengthEncoding(int8 *source, int8 *dest, uint32 sourceSize, uint32 destSize) const { uint32 sourceOffset = 0; uint32 destOffset = 0; while (sourceOffset < sourceSize) { int8 numberOfSamples = source[sourceOffset]; sourceOffset++; // If numberOfSamples is negative, the next abs(numberOfSamples) samples should // be copied directly from source to dest if (numberOfSamples < 0) { numberOfSamples = ABS(numberOfSamples); while (numberOfSamples > 0) { if (sourceOffset + 1 >= sourceSize) { return; } else if (destOffset + 1 >= destSize) { warning("Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize); return; } WRITE_UINT16(dest + destOffset, READ_LE_UINT16(source + sourceOffset)); sourceOffset += 2; destOffset += 2; numberOfSamples--; } // If numberOfSamples is >= 0, move destOffset forward ((numberOfSamples * 2) + 2) // This function assumes the dest buffer has been memset with 0's. } else { if (sourceOffset + 1 >= sourceSize) { return; } else if (destOffset + 1 >= destSize) { warning("Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize); return; } destOffset += (numberOfSamples * 2) + 2; } } } void RlfAnimation::decodeSimpleRunLengthEncoding(int8 *source, int8 *dest, uint32 sourceSize, uint32 destSize) const { uint32 sourceOffset = 0; uint32 destOffset = 0; while (sourceOffset < sourceSize) { int8 numberOfSamples = source[sourceOffset]; sourceOffset++; // If numberOfSamples is negative, the next abs(numberOfSamples) samples should // be copied directly from source to dest if (numberOfSamples < 0) { numberOfSamples = ABS(numberOfSamples); while (numberOfSamples > 0) { if (sourceOffset + 1 >= sourceSize) { return; } else if (destOffset + 1 >= destSize) { warning("Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize); return; } WRITE_UINT16(dest + destOffset, READ_LE_UINT16(source + sourceOffset)); sourceOffset += 2; destOffset += 2; numberOfSamples--; } // If numberOfSamples is >= 0, copy one sample from source to the // next (numberOfSamples + 2) dest spots } else { if (sourceOffset + 1 >= sourceSize) { return; } uint16 sampleColor = READ_LE_UINT16(source + sourceOffset); sourceOffset += 2; numberOfSamples += 2; while (numberOfSamples > 0) { if (destOffset + 1 >= destSize) { warning("Frame decoding overflow\n\tsourceOffset=%u\tsourceSize=%u\n\tdestOffset=%u\tdestSize=%u", sourceOffset, sourceSize, destOffset, destSize); return; } WRITE_UINT16(dest + destOffset, sampleColor); destOffset += 2; numberOfSamples--; } } } } } // End of namespace ZVision