/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "graphics/pixelformat.h" #include "graphics/yuv_to_rgb.h" #include "graphics/decoders/jpeg.h" #include "common/debug.h" #include "common/endian.h" #include "common/stream.h" #include "common/textconsole.h" namespace Graphics { // Order used to traverse the quantization tables static const uint8 _zigZagOrder[64] = { 0, 1, 8, 16, 9, 2, 3, 10, 17, 24, 32, 25, 18, 11, 4, 5, 12, 19, 26, 33, 40, 48, 41, 34, 27, 20, 13, 6, 7, 14, 21, 28, 35, 42, 49, 56, 57, 50, 43, 36, 29, 22, 15, 23, 30, 37, 44, 51, 58, 59, 52, 45, 38, 31, 39, 46, 53, 60, 61, 54, 47, 55, 62, 63 }; JPEGDecoder::JPEGDecoder() : ImageDecoder(), _stream(NULL), _w(0), _h(0), _numComp(0), _components(NULL), _numScanComp(0), _scanComp(NULL), _currentComp(NULL), _rgbSurface(0) { // Initialize the quantization tables for (int i = 0; i < JPEG_MAX_QUANT_TABLES; i++) _quant[i] = NULL; // Initialize the Huffman tables for (int i = 0; i < 2 * JPEG_MAX_HUFF_TABLES; i++) { _huff[i].count = 0; _huff[i].values = NULL; _huff[i].sizes = NULL; _huff[i].codes = NULL; } } JPEGDecoder::~JPEGDecoder() { destroy(); } const Surface *JPEGDecoder::getSurface() const { // Make sure we have loaded data if (!isLoaded()) return 0; if (_rgbSurface) return _rgbSurface; // Create an RGBA8888 surface _rgbSurface = new Graphics::Surface(); _rgbSurface->create(_w, _h, Graphics::PixelFormat(4, 8, 8, 8, 0, 24, 16, 8, 0)); // Get our component surfaces const Graphics::Surface *yComponent = getComponent(1); const Graphics::Surface *uComponent = getComponent(2); const Graphics::Surface *vComponent = getComponent(3); YUVToRGBMan.convert444(_rgbSurface, Graphics::YUVToRGBManager::kScaleFull, (byte *)yComponent->pixels, (byte *)uComponent->pixels, (byte *)vComponent->pixels, yComponent->w, yComponent->h, yComponent->pitch, uComponent->pitch); return _rgbSurface; } void JPEGDecoder::destroy() { // Reset member variables _stream = NULL; _w = _h = 0; _restartInterval = 0; // Free the components for (int c = 0; c < _numComp; c++) _components[c].surface.free(); delete[] _components; _components = NULL; _numComp = 0; // Free the scan components delete[] _scanComp; _scanComp = NULL; _numScanComp = 0; _currentComp = NULL; // Free the quantization tables for (int i = 0; i < JPEG_MAX_QUANT_TABLES; i++) { delete[] _quant[i]; _quant[i] = NULL; } // Free the Huffman tables for (int i = 0; i < 2 * JPEG_MAX_HUFF_TABLES; i++) { _huff[i].count = 0; delete[] _huff[i].values; _huff[i].values = NULL; delete[] _huff[i].sizes; _huff[i].sizes = NULL; delete[] _huff[i].codes; _huff[i].codes = NULL; } if (_rgbSurface) { _rgbSurface->free(); delete _rgbSurface; } } bool JPEGDecoder::loadStream(Common::SeekableReadStream &stream) { // Reset member variables and tables from previous reads destroy(); // Save the input stream _stream = &stream; bool ok = true; bool done = false; while (!_stream->eos() && ok && !done) { // Read the marker // WORKAROUND: While each and every JPEG file should end with // an EOI (end of image) tag, in reality this may not be the // case. For instance, at least one image in the Masterpiece // edition of Myst doesn't, yet other programs are able to read // the image without complaining. // // Apparently, the customary workaround is to insert a fake // EOI tag. uint16 marker = _stream->readByte(); bool fakeEOI = false; if (_stream->eos()) { fakeEOI = true; marker = 0xFF; } if (marker != 0xFF) { error("JPEG: Invalid marker[0]: 0x%02X", marker); ok = false; break; } while (marker == 0xFF && !_stream->eos()) marker = _stream->readByte(); if (_stream->eos()) { fakeEOI = true; marker = 0xD9; } if (fakeEOI) warning("JPEG: Inserted fake EOI"); // Process the marker data switch (marker) { case 0xC0: // Start Of Frame ok = readSOF0(); break; case 0xC4: // Define Huffman Tables ok = readDHT(); break; case 0xD8: // Start Of Image break; case 0xD9: // End Of Image done = true; break; case 0xDA: // Start Of Scan ok = readSOS(); break; case 0xDB: // Define Quantization Tables ok = readDQT(); break; case 0xE0: // JFIF/JFXX segment ok = readJFIF(); break; case 0xDD: // Define Restart Interval ok = readDRI(); break; case 0xFE: // Comment _stream->seek(_stream->readUint16BE() - 2, SEEK_CUR); break; default: { // Unknown marker uint16 size = _stream->readUint16BE(); if ((marker & 0xE0) != 0xE0) warning("JPEG: Unknown marker %02X, skipping %d bytes", marker, size - 2); _stream->seek(size - 2, SEEK_CUR); } } } _stream = 0; return ok; } bool JPEGDecoder::readJFIF() { uint16 length = _stream->readUint16BE(); uint32 tag = _stream->readUint32BE(); if (tag != MKTAG('J', 'F', 'I', 'F')) { warning("JPEGDecoder::readJFIF() tag mismatch"); return false; } if (_stream->readByte() != 0) { // NULL warning("JPEGDecoder::readJFIF() NULL mismatch"); return false; } byte majorVersion = _stream->readByte(); byte minorVersion = _stream->readByte(); if (majorVersion != 1 || minorVersion > 2) warning("JPEGDecoder::readJFIF(): v%d.%02d JPEGs may not be handled correctly", majorVersion, minorVersion); /* byte densityUnits = */_stream->readByte(); /* uint16 xDensity = */_stream->readUint16BE(); /* uint16 yDensity = */_stream->readUint16BE(); byte thumbW = _stream->readByte(); byte thumbH = _stream->readByte(); _stream->seek(thumbW * thumbH * 3, SEEK_CUR); // Ignore thumbnail if (length != (thumbW * thumbH * 3) + 16) { warning("JPEGDecoder::readJFIF() length mismatch"); return false; } return true; } // Marker 0xC0 (Start Of Frame, Baseline DCT) bool JPEGDecoder::readSOF0() { debug(5, "JPEG: readSOF0"); uint16 size = _stream->readUint16BE(); // Read the sample precision uint8 precision = _stream->readByte(); if (precision != 8) { warning("JPEG: Just 8 bit precision supported at the moment"); return false; } // Image size _h = _stream->readUint16BE(); _w = _stream->readUint16BE(); // Number of components _numComp = _stream->readByte(); if (size != 8 + 3 * _numComp) { warning("JPEG: Invalid number of components"); return false; } // Allocate the new components delete[] _components; _components = new Component[_numComp]; // Read the components details for (int c = 0; c < _numComp; c++) { _components[c].id = _stream->readByte(); _components[c].factorH = _stream->readByte(); _components[c].factorV = _components[c].factorH & 0xF; _components[c].factorH >>= 4; _components[c].quantTableSelector = _stream->readByte(); } return true; } // Marker 0xC4 (Define Huffman Tables) bool JPEGDecoder::readDHT() { debug(5, "JPEG: readDHT"); uint16 size = _stream->readUint16BE() - 2; uint32 pos = _stream->pos(); while ((uint32)_stream->pos() < (size + pos)) { // Read the table type and id uint8 tableId = _stream->readByte(); uint8 tableType = tableId >> 4; // type 0: DC, 1: AC tableId &= 0xF; uint8 tableNum = (tableId << 1) + tableType; // Free the Huffman table delete[] _huff[tableNum].values; _huff[tableNum].values = NULL; delete[] _huff[tableNum].sizes; _huff[tableNum].sizes = NULL; delete[] _huff[tableNum].codes; _huff[tableNum].codes = NULL; // Read the number of values for each length uint8 numValues[16]; _huff[tableNum].count = 0; for (int len = 0; len < 16; len++) { numValues[len] = _stream->readByte(); _huff[tableNum].count += numValues[len]; } // Allocate memory for the current table _huff[tableNum].values = new uint8[_huff[tableNum].count]; _huff[tableNum].sizes = new uint8[_huff[tableNum].count]; _huff[tableNum].codes = new uint16[_huff[tableNum].count]; // Read the table contents int cur = 0; for (int len = 0; len < 16; len++) { for (int i = 0; i < numValues[len]; i++) { _huff[tableNum].values[cur] = _stream->readByte(); _huff[tableNum].sizes[cur] = len + 1; cur++; } } // Fill the table of Huffman codes cur = 0; uint16 curCode = 0; uint8 curCodeSize = _huff[tableNum].sizes[0]; while (cur < _huff[tableNum].count) { // Increase the code size to fit the request while (_huff[tableNum].sizes[cur] != curCodeSize) { curCode <<= 1; curCodeSize++; } // Assign the current code _huff[tableNum].codes[cur] = curCode; curCode++; cur++; } } return true; } // Marker 0xDA (Start Of Scan) bool JPEGDecoder::readSOS() { debug(5, "JPEG: readSOS"); uint16 size = _stream->readUint16BE(); // Number of scan components _numScanComp = _stream->readByte(); if (size != 6 + 2 * _numScanComp) { warning("JPEG: Invalid number of components"); return false; } // Allocate the new scan components delete[] _scanComp; _scanComp = new Component *[_numScanComp]; // Reset the maximum sampling factors _maxFactorV = 0; _maxFactorH = 0; // Component-specification parameters for (int c = 0; c < _numScanComp; c++) { // Read the desired component id uint8 id = _stream->readByte(); // Search the component with the specified id bool found = false; for (int i = 0; !found && i < _numComp; i++) { if (_components[i].id == id) { // We found the desired component found = true; // Assign the found component to the c'th scan component _scanComp[c] = &_components[i]; } } if (!found) { warning("JPEG: Invalid component"); return false; } // Read the entropy table selectors _scanComp[c]->DCentropyTableSelector = _stream->readByte(); _scanComp[c]->ACentropyTableSelector = _scanComp[c]->DCentropyTableSelector & 0xF; _scanComp[c]->DCentropyTableSelector >>= 4; // Calculate the maximum sampling factors if (_scanComp[c]->factorV > _maxFactorV) _maxFactorV = _scanComp[c]->factorV; if (_scanComp[c]->factorH > _maxFactorH) _maxFactorH = _scanComp[c]->factorH; // Initialize the DC predictor _scanComp[c]->DCpredictor = 0; } // Start of spectral selection if (_stream->readByte() != 0) { warning("JPEG: Progressive scanning not supported"); return false; } // End of spectral selection if (_stream->readByte() != 63) { warning("JPEG: Progressive scanning not supported"); return false; } // Successive approximation parameters if (_stream->readByte() != 0) { warning("JPEG: Progressive scanning not supported"); return false; } // Entropy coded sequence starts, initialize Huffman decoder _bitsNumber = 0; // Read all the scan MCUs uint16 xMCU = _w / (_maxFactorH * 8); uint16 yMCU = _h / (_maxFactorV * 8); // Check for non- multiple-of-8 dimensions if (_w % (_maxFactorH * 8) != 0) xMCU++; if (_h % (_maxFactorV * 8) != 0) yMCU++; // Initialize the scan surfaces for (uint16 c = 0; c < _numScanComp; c++) { _scanComp[c]->surface.create(xMCU * _maxFactorH * 8, yMCU * _maxFactorV * 8, PixelFormat::createFormatCLUT8()); } bool ok = true; uint16 interval = _restartInterval; for (int y = 0; ok && (y < yMCU); y++) { for (int x = 0; ok && (x < xMCU); x++) { ok = readMCU(x, y); // If we have a restart interval, we'll need to reset a couple // variables if (_restartInterval != 0) { interval--; if (interval == 0) { interval = _restartInterval; _bitsNumber = 0; for (byte i = 0; i < _numScanComp; i++) _scanComp[i]->DCpredictor = 0; } } } } // Trim Component surfaces back to image height and width // Note: Code using jpeg must use surface.pitch correctly... for (uint16 c = 0; c < _numScanComp; c++) { _scanComp[c]->surface.w = _w; _scanComp[c]->surface.h = _h; } return ok; } // Marker 0xDB (Define Quantization Tables) bool JPEGDecoder::readDQT() { debug(5, "JPEG: readDQT"); uint16 size = _stream->readUint16BE() - 2; uint32 pos = _stream->pos(); while ((uint32)_stream->pos() < (pos + size)) { // Read the table precision and id uint8 tableId = _stream->readByte(); bool highPrecision = (tableId & 0xF0) != 0; // Validate the table id tableId &= 0xF; if (tableId >= JPEG_MAX_QUANT_TABLES) { warning("JPEG: Invalid quantization table"); return false; } // Create the new table if necessary if (!_quant[tableId]) _quant[tableId] = new uint16[64]; // Read the table (stored in Zig-Zag order) for (int i = 0; i < 64; i++) _quant[tableId][i] = highPrecision ? _stream->readUint16BE() : _stream->readByte(); } return true; } // Marker 0xDD (Define Restart Interval) bool JPEGDecoder::readDRI() { debug(5, "JPEG: readDRI"); uint16 size = _stream->readUint16BE() - 2; if (size != 2) { warning("JPEG: Invalid DRI size %d", size); return false; } _restartInterval = _stream->readUint16BE(); debug(5, "Restart interval: %d", _restartInterval); return true; } bool JPEGDecoder::readMCU(uint16 xMCU, uint16 yMCU) { bool ok = true; for (int c = 0; ok && (c < _numComp); c++) { // Set the current component _currentComp = _scanComp[c]; // Read the data units of the current component for (int y = 0; ok && (y < _scanComp[c]->factorV); y++) for (int x = 0; ok && (x < _scanComp[c]->factorH); x++) ok = readDataUnit(xMCU * _scanComp[c]->factorH + x, yMCU * _scanComp[c]->factorV + y); } return ok; } // triple-butterfly-add (and possible rounding) #define xadd3(xa, xb, xc, xd, h) \ p = xa + xb; \ n = xa - xb; \ xa = p + xc + h; \ xb = n + xd + h; \ xc = p - xc + h; \ xd = n - xd + h; // butterfly-mul #define xmul(xa, xb, k1, k2, sh) \ n = k1 * (xa + xb); \ p = xa; \ xa = (n + (k2 - k1) * xb) >> sh; \ xb = (n - (k2 + k1) * p) >> sh; // IDCT based on public domain code from http://halicery.com/jpeg/idct.html void JPEGDecoder::idct1D8x8(int32 src[8], int32 dest[64], int32 ps, int32 half) { int p, n; src[0] <<= 9; src[1] <<= 7; src[3] *= 181; src[4] <<= 9; src[5] *= 181; src[7] <<= 7; // Even part xmul(src[6], src[2], 277, 669, 0) xadd3(src[0], src[4], src[6], src[2], half) // Odd part xadd3(src[1], src[7], src[3], src[5], 0) xmul(src[5], src[3], 251, 50, 6) xmul(src[1], src[7], 213, 142, 6) dest[0 * 8] = (src[0] + src[1]) >> ps; dest[1 * 8] = (src[4] + src[5]) >> ps; dest[2 * 8] = (src[2] + src[3]) >> ps; dest[3 * 8] = (src[6] + src[7]) >> ps; dest[4 * 8] = (src[6] - src[7]) >> ps; dest[5 * 8] = (src[2] - src[3]) >> ps; dest[6 * 8] = (src[4] - src[5]) >> ps; dest[7 * 8] = (src[0] - src[1]) >> ps; } void JPEGDecoder::idct2D8x8(int32 block[64]) { int32 tmp[64]; // Apply 1D IDCT to rows for (int i = 0; i < 8; i++) idct1D8x8(&block[i * 8], &tmp[i], 9, 1 << 8); // Apply 1D IDCT to columns for (int i = 0; i < 8; i++) idct1D8x8(&tmp[i * 8], &block[i], 12, 1 << 11); } bool JPEGDecoder::readDataUnit(uint16 x, uint16 y) { // Prepare an empty data array int16 readData[64]; for (int i = 1; i < 64; i++) readData[i] = 0; // Read the DC component readData[0] = _currentComp->DCpredictor + readDC(); _currentComp->DCpredictor = readData[0]; // Read the AC components (stored in Zig-Zag) readAC(readData); // Calculate the DCT coefficients from the input sequence int32 block[64]; for (uint8 i = 0; i < 64; i++) { // Dequantize int32 val = readData[i]; int16 quant = _quant[_currentComp->quantTableSelector][i]; val *= quant; // Store the normalized coefficients, undoing the Zig-Zag block[_zigZagOrder[i]] = val; } // Apply the IDCT idct2D8x8(block); // Level shift to make the values unsigned for (int i = 0; i < 64; i++) { block[i] = block[i] + 128; if (block[i] < 0) block[i] = 0; if (block[i] > 255) block[i] = 255; } // Paint the component surface uint8 scalingV = _maxFactorV / _currentComp->factorV; uint8 scalingH = _maxFactorH / _currentComp->factorH; // Convert coordinates from MCU blocks to pixels x <<= 3; y <<= 3; for (uint8 j = 0; j < 8; j++) { for (uint16 sV = 0; sV < scalingV; sV++) { // Get the beginning of the block line byte *ptr = (byte *)_currentComp->surface.getBasePtr(x * scalingH, (y + j) * scalingV + sV); for (uint8 i = 0; i < 8; i++) { for (uint16 sH = 0; sH < scalingH; sH++) { *ptr = (byte)(block[j * 8 + i]); ptr++; } } } } return true; } int16 JPEGDecoder::readDC() { // DC is type 0 uint8 tableNum = _currentComp->DCentropyTableSelector << 1; // Get the number of bits to read uint8 numBits = readHuff(tableNum); // Read the requested bits return readSignedBits(numBits); } void JPEGDecoder::readAC(int16 *out) { // AC is type 1 uint8 tableNum = (_currentComp->ACentropyTableSelector << 1) + 1; // Start reading AC element 1 uint8 cur = 1; while (cur < 64) { uint8 s = readHuff(tableNum); uint8 r = s >> 4; s &= 0xF; if (s == 0) { if (r == 15) { // Skip 16 values cur += 16; } else { // EOB: end of block cur = 64; } } else { // Skip r values cur += r; // Read the next value out[cur] = readSignedBits(s); cur++; } } } int16 JPEGDecoder::readSignedBits(uint8 numBits) { uint16 ret = 0; if (numBits > 16) error("requested %d bits", numBits); //XXX // MSB=0 for negatives, 1 for positives for (int i = 0; i < numBits; i++) ret = (ret << 1) + readBit(); // Extend sign bits (PAG109) if (!(ret >> (numBits - 1))) { uint16 tmp = ((uint16)-1 << numBits) + 1; ret = ret + tmp; } return ret; } // TODO: optimize? uint8 JPEGDecoder::readHuff(uint8 table) { bool foundCode = false; uint8 val = 0; uint8 cur = 0; uint8 codeSize = 1; uint16 code = readBit(); while (!foundCode) { // Prepare a code of the current size while (codeSize < _huff[table].sizes[cur]) { code = (code << 1) + readBit(); codeSize++; } // Compare the codes of the current size while (!foundCode && (codeSize == _huff[table].sizes[cur])) { if (code == _huff[table].codes[cur]) { // Found the code val = _huff[table].values[cur]; foundCode = true; } else { // Continue reading cur++; } } } return val; } uint8 JPEGDecoder::readBit() { // Read a whole byte if necessary if (_bitsNumber == 0) { _bitsData = _stream->readByte(); _bitsNumber = 8; // Detect markers if (_bitsData == 0xFF) { uint8 byte2 = _stream->readByte(); // A stuffed 0 validates the previous byte if (byte2 != 0) { if (byte2 == 0xDC) { // DNL marker: Define Number of Lines // TODO: terminate scan warning("DNL marker detected: terminate scan"); } else if (byte2 >= 0xD0 && byte2 <= 0xD7) { debug(7, "RST%d marker detected", byte2 & 7); _bitsData = _stream->readByte(); } else { warning("Error: marker 0x%02X read in entropy data", byte2); } } } } _bitsNumber--; return (_bitsData & (1 << _bitsNumber)) ? 1 : 0; } const Surface *JPEGDecoder::getComponent(uint c) const { for (int i = 0; i < _numComp; i++) if (_components[i].id == c) // We found the desired component return &_components[i].surface; error("JPEGDecoder::getComponent: No component %d present", c); return NULL; } } // End of Graphics namespace