/* ScummVM - Scumm Interpreter * Copyright (C) 2002-2006 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/stdafx.h" #include "common/endian.h" #include "graphics/dxa_player.h" #include "common/util.h" #ifdef USE_ZLIB #include #endif namespace Graphics { DXAPlayer::DXAPlayer() { _frameBuffer1 = 0; _frameBuffer2 = 0; _scaledBuffer = 0; _drawBuffer = 0; _width = 0; _height = 0; _frameSize = 0; _framesCount = 0; _frameNum = 0; _framesPerSec = 0; _frameSkipped = 0; _frameTicks = 0; _scaleMode = S_NONE; } DXAPlayer::~DXAPlayer() { } int DXAPlayer::getWidth() { if (!_fd.isOpen()) return 0; return _width; } int DXAPlayer::getHeight() { if (!_fd.isOpen()) return 0; return _height; } int DXAPlayer::getCurFrame() { if (!_fd.isOpen()) return -1; return _frameNum; } int DXAPlayer::getFrameCount() { if (!_fd.isOpen()) return 0; return _framesCount; } bool DXAPlayer::loadFile(const char *filename) { uint32 tag; int32 frameRate; if (!_fd.open(filename)) { return 0; } tag = _fd.readUint32BE(); assert(tag == MKID_BE('DEXA')); uint8 flags = _fd.readByte(); _framesCount = _fd.readUint16BE(); frameRate = _fd.readUint32BE(); if (frameRate > 0) _framesPerSec = 1000 / frameRate; else if (frameRate < 0) _framesPerSec = 100000 / (-frameRate); else _framesPerSec = 10; if (frameRate < 0) _frameTicks = -frameRate / 100; else _frameTicks = frameRate; _width = _fd.readUint16BE(); _height = _fd.readUint16BE(); if (flags & 0x80) { _scaleMode = S_INTERLACED; _curHeight = _height / 2; } else if (flags & 0x40) { _scaleMode = S_DOUBLE; _curHeight = _height / 2; } else { _scaleMode = S_NONE; _curHeight = _height; } debug(2, "flags 0x0%x framesCount %d width %d height %d rate %d ticks %d", flags, _framesCount, _width, _height, _framesPerSec, _frameTicks); _frameSize = _width * _height; _frameBuffer1 = (uint8 *)malloc(_frameSize); _frameBuffer2 = (uint8 *)malloc(_frameSize); if (!_frameBuffer1 || !_frameBuffer2) error("DXAPlayer: Error allocating frame buffers (size %d)", _frameSize); _scaledBuffer = 0; if (_scaleMode != S_NONE) { _scaledBuffer = (uint8 *)malloc(_frameSize); if (!_scaledBuffer) error("Error allocating scale buffer (size %d)", _frameSize); } _frameNum = 0; _frameSkipped = 0; return true; } void DXAPlayer::closeFile() { if (!_fd.isOpen()) return; _fd.close(); free(_frameBuffer1); free(_frameBuffer2); free(_scaledBuffer); } void DXAPlayer::copyFrameToBuffer(byte *dst, uint x, uint y, uint pitch) { uint h = _height; uint w = _width; byte *src = _drawBuffer; dst += y * pitch + x; do { memcpy(dst, src, w); dst += pitch; src += _width; } while (--h); } void DXAPlayer::decodeZlib(byte *data, int size, int totalSize) { #ifdef USE_ZLIB byte *temp = (byte *)malloc(size); if (temp) { memcpy(temp, data, size); z_stream d_stream; d_stream.zalloc = (alloc_func)0; d_stream.zfree = (free_func)0; d_stream.opaque = (voidpf)0; d_stream.next_in = temp; d_stream.avail_in = size; d_stream.total_in = size; d_stream.next_out = data; d_stream.avail_out = totalSize; inflateInit(&d_stream); inflate(&d_stream, Z_FINISH); inflateEnd(&d_stream); free(temp); } #endif } #define BLOCKW 4 #define BLOCKH 4 void DXAPlayer::decode12(byte *data, int size, int totalSize) { #ifdef USE_ZLIB /* decompress the input data */ decodeZlib(data, size, totalSize); byte *dat = data; byte *frame2 = (byte *)malloc(totalSize); memcpy(frame2, _frameBuffer1, totalSize); for (int by = 0; by < _height; by += BLOCKH) { for (int bx = 0; bx < _width; bx += BLOCKW) { byte type = *dat++; byte *b2 = frame2 + bx + by * _width; switch (type) { case 0: break; case 10: case 11: case 12: case 13: case 14: case 15: case 1: { unsigned short diffMap; if (type >= 10 && type <= 15) { static const struct { uint8 sh1, sh2; } shiftTbl[6] = { {0, 0}, {8, 0}, {8, 8}, {8, 4}, {4, 0}, {4, 4} }; diffMap = ((*dat & 0xF0) << shiftTbl[type-10].sh1) | ((*dat & 0x0F) << shiftTbl[type-10].sh2); dat++; } else { diffMap = *(unsigned short*)dat; dat += 2; } for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { if (diffMap & 0x8000) { b2[xc] = *dat++; } diffMap <<= 1; } b2 += _width; } break; } case 2: { byte color = *dat++; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = color; } b2 += _width; } break; } case 3: { for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = *dat++; } b2 += _width; } break; } case 4: { byte mbyte = *dat++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; byte *b1 = _frameBuffer1 + (bx+mx) + (by+my) * _width; for (int yc = 0; yc < BLOCKH; yc++) { memcpy(b2, b1, BLOCKW); b1 += _width; b2 += _width; } break; } case 5: break; default: error("decode12: Unknown type %d", type); } } } memcpy(data, frame2, totalSize); free(frame2); #endif } void DXAPlayer::decode13(byte *data, int size, int totalSize) { #ifdef USE_ZLIB uint8 *codeBuf, *dataBuf, *motBuf, *maskBuf; /* decompress the input data */ decodeZlib(data, size, totalSize); uint8 *frame2 = (uint8*)malloc(totalSize); memcpy(frame2, _frameBuffer1, totalSize); int codeSize = _width * _curHeight / 16; int dataSize, motSize, maskSize; dataSize = READ_BE_UINT32(&data[0]); motSize = READ_BE_UINT32(&data[4]); maskSize = READ_BE_UINT32(&data[8]); codeBuf = &data[12]; dataBuf = &codeBuf[codeSize]; motBuf = &dataBuf[dataSize]; maskBuf = &motBuf[motSize]; for (int by = 0; by < _curHeight; by += BLOCKH) { for (int bx = 0; bx < _width; bx += BLOCKW) { uint8 type = *codeBuf++; uint8 *b2 = (uint8*)frame2 + bx + by * _width; switch (type) { case 0: break; case 1: { uint16 diffMap = READ_BE_UINT16(maskBuf); maskBuf += 2; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { if (diffMap & 0x8000) { b2[xc] = *dataBuf++; } diffMap <<= 1; } b2 += _width; } break; } case 2: { uint8 color = *dataBuf++; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = color; } b2 += _width; } break; } case 3: { for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = *dataBuf++; } b2 += _width; } break; } case 4: { uint8 mbyte = *motBuf++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; uint8 *b1 = (uint8*)_frameBuffer1 + (bx+mx) + (by+my) * _width; for (int yc = 0; yc < BLOCKH; yc++) { memcpy(b2, b1, BLOCKW); b1 += _width; b2 += _width; } break; } case 8: { static const int subX[4] = {0, 2, 0, 2}; static const int subY[4] = {0, 0, 2, 2}; uint8 subMask = *maskBuf++; for (int subBlock = 0; subBlock < 4; subBlock++) { int sx = bx + subX[subBlock], sy = by + subY[subBlock]; b2 = (uint8*)frame2 + sx + sy * _width; switch (subMask & 0xC0) { // 00: skip case 0x00: break; // 01: solid color case 0x40: { uint8 subColor = *dataBuf++; for (int yc = 0; yc < BLOCKH / 2; yc++) { for (int xc = 0; xc < BLOCKW / 2; xc++) { b2[xc] = subColor; } b2 += _width; } break; } // 02: motion vector case 0x80: { uint8 mbyte = *motBuf++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; uint8 *b1 = (uint8*)_frameBuffer1 + (sx+mx) + (sy+my) * _width; for (int yc = 0; yc < BLOCKH / 2; yc++) { memcpy(b2, b1, BLOCKW / 2); b1 += _width; b2 += _width; } break; } // 03: raw case 0xC0: for (int yc = 0; yc < BLOCKH / 2; yc++) { for (int xc = 0; xc < BLOCKW / 2; xc++) { b2[xc] = *dataBuf++; } b2 += _width; } break; } subMask <<= 2; } break; } case 32: case 33: case 34: { int count = type - 30; uint8 pixels[4]; memcpy(pixels, dataBuf, count); dataBuf += count; if (count == 2) { uint16 code = READ_BE_UINT16(maskBuf); maskBuf += 2; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = pixels[code & 1]; code >>= 1; } b2 += _width; } } else { uint32 code = READ_BE_UINT32(maskBuf); maskBuf += 4; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = pixels[code & 3]; code >>= 2; } b2 += _width; } } break; } default: error("decode13: Unknown type %d", type); } } } memcpy(data, frame2, totalSize); free(frame2); #endif } void DXAPlayer::decodeNextFrame() { uint32 tag; tag = _fd.readUint32BE(); if (tag == MKID_BE('CMAP')) { byte rgb[768]; _fd.read(rgb, ARRAYSIZE(rgb)); setPalette(rgb); } tag = _fd.readUint32BE(); if (tag == MKID_BE('FRAM')) { byte type = _fd.readByte(); uint32 size = _fd.readUint32BE(); _fd.read(_frameBuffer2, size); switch (type) { case 2: case 3: decodeZlib(_frameBuffer2, size, _frameSize); break; case 12: decode12(_frameBuffer2, size, _frameSize); break; case 13: decode13(_frameBuffer2, size, _frameSize); break; default: error("decodeFrame: Unknown compression type %d", type); } if (type == 2 || type == 4 || type == 12 || type == 13) { memcpy(_frameBuffer1, _frameBuffer2, _frameSize); } else { for (int j = 0; j < _curHeight; ++j) { for (int i = 0; i < _width; ++i) { const int offs = j * _width + i; _frameBuffer1[offs] ^= _frameBuffer2[offs]; } } } } switch (_scaleMode) { case S_INTERLACED: for (int cy = 0; cy < _curHeight; cy++) { memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width); memset(&_scaledBuffer[((2 * cy) + 1) * _width], 0, _width); } _drawBuffer = _scaledBuffer; break; case S_DOUBLE: for (int cy = 0; cy < _curHeight; cy++) { memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width); memcpy(&_scaledBuffer[((2 * cy) + 1) * _width], &_frameBuffer1[cy * _width], _width); } _drawBuffer = _scaledBuffer; break; case S_NONE: _drawBuffer = _frameBuffer1; break; } } } // End of namespace Graphics