/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "graphics/png.h" #ifdef GRAPHICS_PNG_H #include "graphics/pixelformat.h" #include "graphics/surface.h" #include "common/endian.h" #include "common/memstream.h" #include "common/stream.h" #include "common/types.h" #include "common/util.h" #include "common/zlib.h" // PNG decoder, based on the W3C specs: // http://www.w3.org/TR/PNG/ // Parts of the code have been adapted from LodePNG, by Lode Vandevenne: // http://members.gamedev.net/lode/projects/LodePNG/ /* LodePNG version 20101211 Copyright (c) 2005-2010 Lode Vandevenne This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. */ namespace Graphics { enum PNGChunks { // == Critical chunks ===================================================== kChunkIHDR = MKTAG('I','H','D','R'), // Image header kChunkIDAT = MKTAG('I','D','A','T'), // Image data kChunkPLTE = MKTAG('P','L','T','E'), // Palette kChunkIEND = MKTAG('I','E','N','D'), // Image trailer // == Ancillary chunks ==================================================== kChunktRNS = MKTAG('t','R','N','S') // Transparency // All of the other ancillary chunks are ignored. They're added here for // reference only. // cHRM - Primary chromacities and white point // gAMA - Image gamma // iCCP - Embedded ICC profile // sBIT - Significant bits // sRGB - Standard RGB color space // tEXT - Textual data // sTXt - Compressed textual data // iTXt - International textual data // bKGD - Background color // hIST - Image histogram // pHYs - Physical pixel dimensions // sPLT - Suggested palette // tIME - Image last-modification time }; // Refer to http://www.w3.org/TR/PNG/#9Filters enum PNGFilters { kFilterNone = 0, kFilterSub = 1, kFilterUp = 2, kFilterAverage = 3, kFilterPaeth = 4 }; PNG::PNG() : _compressedBuffer(0), _compressedBufferSize(0), _unfilteredSurface(0), _transparentColorSpecified(false) { } PNG::~PNG() { if (_unfilteredSurface) { _unfilteredSurface->free(); delete _unfilteredSurface; } } Graphics::Surface *PNG::getSurface(const PixelFormat &format) { Graphics::Surface *output = new Graphics::Surface(); output->create(_unfilteredSurface->w, _unfilteredSurface->h, format); byte *src = (byte *)_unfilteredSurface->pixels; byte a = 0xFF; if (_header.colorType != kIndexed) { if (_header.colorType == kTrueColor || _header.colorType == kTrueColorWithAlpha) { if (_unfilteredSurface->format.bytesPerPixel != 3 && _unfilteredSurface->format.bytesPerPixel != 4) error("Unsupported truecolor PNG format"); } else if (_header.colorType == kGrayScale || _header.colorType == kGrayScaleWithAlpha) { if (_unfilteredSurface->format.bytesPerPixel != 1 && _unfilteredSurface->format.bytesPerPixel != 2) error("Unsupported grayscale PNG format"); } for (uint16 i = 0; i < output->h; i++) { for (uint16 j = 0; j < output->w; j++) { if (format.bytesPerPixel == 2) { // 2bpp uint16 *dest = ((uint16 *)output->getBasePtr(j, i)); if (_unfilteredSurface->format.bytesPerPixel == 1) { // Grayscale if (_transparentColorSpecified) a = (src[0] == _transparentColor[0]) ? 0 : 0xFF; *dest = format.ARGBToColor( a, src[0], src[0], src[0]); } else if (_unfilteredSurface->format.bytesPerPixel == 2) { // Grayscale + alpha *dest = format.ARGBToColor(src[1], src[0], src[0], src[0]); } else if (_unfilteredSurface->format.bytesPerPixel == 3) { // RGB if (_transparentColorSpecified) { bool isTransparentColor = (src[0] == _transparentColor[0] && src[1] == _transparentColor[1] && src[2] == _transparentColor[2]); a = isTransparentColor ? 0 : 0xFF; } *dest = format.ARGBToColor( a, src[0], src[1], src[2]); } else if (_unfilteredSurface->format.bytesPerPixel == 4) { // RGBA *dest = format.ARGBToColor(src[3], src[0], src[1], src[2]); } } else { // 4bpp uint32 *dest = ((uint32 *)output->getBasePtr(j, i)); if (_unfilteredSurface->format.bytesPerPixel == 1) { // Grayscale if (_transparentColorSpecified) a = (src[0] == _transparentColor[0]) ? 0 : 0xFF; *dest = format.ARGBToColor( a, src[0], src[0], src[0]); } else if (_unfilteredSurface->format.bytesPerPixel == 2) { // Grayscale + alpha *dest = format.ARGBToColor(src[1], src[0], src[0], src[0]); } else if (_unfilteredSurface->format.bytesPerPixel == 3) { // RGB if (_transparentColorSpecified) { bool isTransparentColor = (src[0] == _transparentColor[0] && src[1] == _transparentColor[1] && src[2] == _transparentColor[2]); a = isTransparentColor ? 0 : 0xFF; } *dest = format.ARGBToColor( a, src[0], src[1], src[2]); } else if (_unfilteredSurface->format.bytesPerPixel == 4) { // RGBA *dest = format.ARGBToColor(src[3], src[0], src[1], src[2]); } } src += _unfilteredSurface->format.bytesPerPixel; } } } else { byte index, r, g, b; // Convert the indexed surface to the target pixel format for (uint16 i = 0; i < output->h; i++) { bool otherPixel = false; for (uint16 j = 0; j < output->w; j++) { if (_header.bitDepth != 4) index = *src; else if (!otherPixel) index = (*src) >> 4; else index = (*src) & 0xf; r = _palette[index * 4 + 0]; g = _palette[index * 4 + 1]; b = _palette[index * 4 + 2]; a = _palette[index * 4 + 3]; if (format.bytesPerPixel == 2) *((uint16 *)output->getBasePtr(j, i)) = format.ARGBToColor(a, r, g, b); else *((uint32 *)output->getBasePtr(j, i)) = format.ARGBToColor(a, r, g, b); if (_header.bitDepth != 4 || otherPixel) src++; otherPixel = !otherPixel; } // The surface is a whole scanline wide, skip the rest of it. if (_header.bitDepth == 4) src += output->w / 2 + output->w % 2; } } return output; } bool PNG::read(Common::SeekableReadStream *str) { uint32 chunkLength = 0, chunkType = 0; _stream = str; // First, check the PNG signature if (_stream->readUint32BE() != MKTAG(0x89, 0x50, 0x4e, 0x47)) { delete _stream; return false; } if (_stream->readUint32BE() != MKTAG(0x0d, 0x0a, 0x1a, 0x0a)) { delete _stream; return false; } // Start reading chunks till we reach an IEND chunk while (chunkType != kChunkIEND) { // The chunk length does not include the type or CRC bytes chunkLength = _stream->readUint32BE(); chunkType = _stream->readUint32BE(); switch (chunkType) { case kChunkIHDR: readHeaderChunk(); break; case kChunkIDAT: if (_compressedBufferSize == 0) { _compressedBufferSize += chunkLength; _compressedBuffer = new byte[_compressedBufferSize]; _stream->read(_compressedBuffer, chunkLength); } else { // Expand the buffer uint32 prevSize = _compressedBufferSize; _compressedBufferSize += chunkLength; byte *tmp = new byte[prevSize]; memcpy(tmp, _compressedBuffer, prevSize); delete[] _compressedBuffer; _compressedBuffer = new byte[_compressedBufferSize]; memcpy(_compressedBuffer, tmp, prevSize); delete[] tmp; _stream->read(_compressedBuffer + prevSize, chunkLength); } break; case kChunkPLTE: // only available in indexed PNGs if (_header.colorType != kIndexed) error("A palette chunk has been found in a non-indexed PNG file"); if (chunkLength % 3 != 0) error("Palette chunk not divisible by 3"); _paletteEntries = chunkLength / 3; readPaletteChunk(); break; case kChunkIEND: // End of stream break; case kChunktRNS: readTransparencyChunk(chunkLength); break; default: // Skip the chunk content _stream->skip(chunkLength); break; } if (chunkType != kChunkIEND) _stream->skip(4); // skip the chunk CRC checksum } // We no longer need the file stream, thus close it here delete _stream; _stream = 0; // Unpack the compressed buffer Common::MemoryReadStream *compData = new Common::MemoryReadStream(_compressedBuffer, _compressedBufferSize, DisposeAfterUse::YES); _imageData = Common::wrapCompressedReadStream(compData); // Construct the final image constructImage(); // Close the uncompressed stream, which will also delete the memory stream, // and thus the original compressed buffer delete _imageData; return true; } /** * Paeth predictor, used by PNG filter type 4 * The parameters are of signed 16-bit integers, but should come * from unsigned chars. The integers are only needed to make * the paeth calculation correct. * * Taken from lodePNG, with a slight patch: * http://www.atalasoft.com/cs/blogs/stevehawley/archive/2010/02/23/libpng-you-re-doing-it-wrong.aspx */ byte PNG::paethPredictor(int16 a, int16 b, int16 c) { int16 pa = ABS(b - c); int16 pb = ABS(a - c); int16 pc = ABS(a + b - c - c); if (pa <= MIN(pb, pc)) return (byte)a; else if (pb <= pc) return (byte)b; else return (byte)c; } /** * Unfilters a filtered PNG scan line. * PNG filters are defined in: http://www.w3.org/TR/PNG/#9Filters * Note that filters are always applied to bytes * * Taken from lodePNG */ void PNG::unfilterScanLine(byte *dest, const byte *scanLine, const byte *prevLine, uint16 byteWidth, byte filterType, uint16 length) { uint16 i; switch (filterType) { case kFilterNone: // no change for (i = 0; i < length; i++) dest[i] = scanLine[i]; break; case kFilterSub: // add the bytes to the left for (i = 0; i < byteWidth; i++) dest[i] = scanLine[i]; for (i = byteWidth; i < length; i++) dest[i] = scanLine[i] + dest[i - byteWidth]; break; case kFilterUp: // add the bytes of the above scanline if (prevLine) { for (i = 0; i < length; i++) dest[i] = scanLine[i] + prevLine[i]; } else { for (i = 0; i < length; i++) dest[i] = scanLine[i]; } break; case kFilterAverage: // average value of the left and top left if (prevLine) { for (i = 0; i < byteWidth; i++) dest[i] = scanLine[i] + prevLine[i] / 2; for (i = byteWidth; i < length; i++) dest[i] = scanLine[i] + ((dest[i - byteWidth] + prevLine[i]) / 2); } else { for (i = 0; i < byteWidth; i++) dest[i] = scanLine[i]; for (i = byteWidth; i < length; i++) dest[i] = scanLine[i] + dest[i - byteWidth] / 2; } break; case kFilterPaeth: // Paeth filter: http://www.w3.org/TR/PNG/#9Filter-type-4-Paeth if (prevLine) { for(i = 0; i < byteWidth; i++) dest[i] = (scanLine[i] + prevLine[i]); // paethPredictor(0, prevLine[i], 0) is always prevLine[i] for(i = byteWidth; i < length; i++) dest[i] = (scanLine[i] + paethPredictor(dest[i - byteWidth], prevLine[i], prevLine[i - byteWidth])); } else { for(i = 0; i < byteWidth; i++) dest[i] = scanLine[i]; for(i = byteWidth; i < length; i++) dest[i] = (scanLine[i] + dest[i - byteWidth]); // paethPredictor(dest[i - byteWidth], 0, 0) is always dest[i - byteWidth] } break; default: error("Unknown line filter"); } } void PNG::constructImage() { assert (_header.bitDepth != 0); byte *dest; byte *scanLine; byte *prevLine = 0; byte filterType; uint16 scanLineWidth = (_header.width * getNumColorChannels() * _header.bitDepth + 7) / 8; if (_unfilteredSurface) { _unfilteredSurface->free(); delete _unfilteredSurface; } _unfilteredSurface = new Graphics::Surface(); // TODO/FIXME: It seems we can not properly determine the format here. But maybe there is a way... _unfilteredSurface->create(_header.width, _header.height, PixelFormat((getNumColorChannels() * _header.bitDepth + 7) / 8, 0, 0, 0, 0, 0, 0, 0, 0)); scanLine = new byte[_unfilteredSurface->pitch]; dest = (byte *)_unfilteredSurface->getBasePtr(0, 0); switch(_header.interlaceType) { case kNonInterlaced: for (uint16 y = 0; y < _unfilteredSurface->h; y++) { filterType = _imageData->readByte(); _imageData->read(scanLine, scanLineWidth); unfilterScanLine(dest, scanLine, prevLine, _unfilteredSurface->format.bytesPerPixel, filterType, scanLineWidth); prevLine = dest; dest += _unfilteredSurface->pitch; } break; case kInterlaced: // Theoretically, this shouldn't be needed, as interlacing is only // useful for web images. Interlaced PNG images require more complex // handling, so unless having support for such images is needed, there // is no reason to add support for them. error("TODO: Support for interlaced PNG images"); break; } delete[] scanLine; } void PNG::readHeaderChunk() { _header.width = _stream->readUint32BE(); _header.height = _stream->readUint32BE(); _header.bitDepth = _stream->readByte(); if (_header.bitDepth > 8) error("Only PNGs with a bit depth of 1-8 bits are supported (i.e. PNG24)"); _header.colorType = (PNGColorType)_stream->readByte(); _header.compressionMethod = _stream->readByte(); // Compression methods: http://www.w3.org/TR/PNG/#10Compression // Only compression method 0 (deflate) is documented and supported if (_header.compressionMethod != 0) error("Unknown PNG compression method: %d", _header.compressionMethod); _header.filterMethod = _stream->readByte(); // Filter methods: http://www.w3.org/TR/PNG/#9Filters // Only filter method 0 is documented and supported if (_header.filterMethod != 0) error("Unknown PNG filter method: %d", _header.filterMethod); _header.interlaceType = (PNGInterlaceType)_stream->readByte(); } byte PNG::getNumColorChannels() { switch (_header.colorType) { case kGrayScale: return 1; // Gray case kTrueColor: return 3; // RGB case kIndexed: return 1; // Indexed case kGrayScaleWithAlpha: return 2; // Gray + Alpha case kTrueColorWithAlpha: return 4; // RGBA default: error("Unknown color type"); } } void PNG::readPaletteChunk() { for (uint16 i = 0; i < _paletteEntries; i++) { _palette[i * 4 + 0] = _stream->readByte(); // R _palette[i * 4 + 1] = _stream->readByte(); // G _palette[i * 4 + 2] = _stream->readByte(); // B _palette[i * 4 + 3] = 0xFF; // Alpha, set in the tRNS chunk } } void PNG::readTransparencyChunk(uint32 chunkLength) { _transparentColorSpecified = true; switch(_header.colorType) { case kGrayScale: _transparentColor[0] = _stream->readUint16BE(); _transparentColor[1] = _transparentColor[0]; _transparentColor[2] = _transparentColor[0]; break; case kTrueColor: _transparentColor[0] = _stream->readUint16BE(); _transparentColor[1] = _stream->readUint16BE(); _transparentColor[2] = _stream->readUint16BE(); break; case kIndexed: for (uint32 i = 0; i < chunkLength; i++) _palette[i * 4 + 3] = _stream->readByte(); // A transparency chunk may have less entries // than the palette entries. The remaining ones // are unmodified (set to 255). Check here: // http://www.w3.org/TR/PNG/#11tRNS break; default: error("Transparency chunk found in a PNG that has a separate transparency channel"); } } } // End of Graphics namespace #endif // GRAPHICS_PNG_H