/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ // // Heavily based on ffmpeg code. // // Copyright (c) 2001 Fabrice Bellard. // First version by Francois Revol revol@free.fr // Seek function by Gael Chardon gael.dev@4now.net // #include "graphics/video/qt_decoder.h" #include "common/debug.h" #include "common/endian.h" #include "common/macresman.h" #include "common/util.h" #include "common/zlib.h" // Audio codecs #include "sound/decoders/adpcm.h" #include "sound/decoders/raw.h" #include "graphics/video/codecs/qdm2.h" // Video codecs #include "graphics/video/codecs/cinepak.h" #include "graphics/video/codecs/mjpeg.h" #include "graphics/video/codecs/qtrle.h" #include "graphics/video/codecs/rpza.h" #include "graphics/video/codecs/smc.h" namespace Graphics { //////////////////////////////////////////// // QuickTimeDecoder //////////////////////////////////////////// QuickTimeDecoder::QuickTimeDecoder() : VideoDecoder() { _audStream = NULL; _beginOffset = 0; _videoCodec = NULL; _curFrame = -1; _startTime = _nextFrameStartTime = 0; _audHandle = Audio::SoundHandle(); _numStreams = 0; _fd = 0; _scaledSurface = 0; _dirtyPalette = false; _resFork = new Common::MacResManager(); initParseTable(); } QuickTimeDecoder::~QuickTimeDecoder() { close(); delete _resFork; } uint16 QuickTimeDecoder::getWidth() const { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->width / getScaleMode(); } uint16 QuickTimeDecoder::getHeight() const { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->height / getScaleMode(); } uint32 QuickTimeDecoder::getFrameCount() const { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->nb_frames; } byte QuickTimeDecoder::getBitsPerPixel() { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->bits_per_sample & 0x1F; } uint32 QuickTimeDecoder::getCodecTag() { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->codec_tag; } ScaleMode QuickTimeDecoder::getScaleMode() const { if (_videoStreamIndex < 0) return kScaleNormal; return (ScaleMode)(_scaleMode * _streams[_videoStreamIndex]->scaleMode); } uint32 QuickTimeDecoder::getFrameDuration() { if (_videoStreamIndex < 0) return 0; uint32 curFrameIndex = 0; for (int32 i = 0; i < _streams[_videoStreamIndex]->stts_count; i++) { curFrameIndex += _streams[_videoStreamIndex]->stts_data[i].count; if ((uint32)_curFrame < curFrameIndex) { // Ok, now we have what duration this frame has. return _streams[_videoStreamIndex]->stts_data[i].duration; } } // This should never occur error ("Cannot find duration for frame %d", _curFrame); return 0; } PixelFormat QuickTimeDecoder::getPixelFormat() const { if (!_videoCodec) return PixelFormat::createFormatCLUT8(); return _videoCodec->getPixelFormat(); } void QuickTimeDecoder::rewind() { VideoDecoder::reset(); _nextFrameStartTime = 0; // Restart the audio too stopAudio(); if (_audioStreamIndex >= 0) { _curAudioChunk = 0; _audStream = Audio::makeQueuingAudioStream(_streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels == 2); } startAudio(); } Codec *QuickTimeDecoder::createCodec(uint32 codecTag, byte bitsPerPixel) { if (codecTag == MKID_BE('cvid')) { // Cinepak: As used by most Myst and all Riven videos as well as some Myst ME videos. "The Chief" videos also use this. return new CinepakDecoder(); } else if (codecTag == MKID_BE('rpza')) { // Apple Video ("Road Pizza"): Used by some Myst videos. return new RPZADecoder(getWidth(), getHeight()); } else if (codecTag == MKID_BE('rle ')) { // QuickTime RLE: Used by some Myst ME videos. return new QTRLEDecoder(getWidth(), getHeight(), bitsPerPixel); } else if (codecTag == MKID_BE('smc ')) { // Apple SMC: Used by some Myst videos. return new SMCDecoder(getWidth(), getHeight()); } else if (codecTag == MKID_BE('SVQ1')) { // Sorenson Video 1: Used by some Myst ME videos. warning ("Sorenson Video 1 not yet supported"); } else if (codecTag == MKID_BE('SVQ3')) { // Sorenson Video 3: Used by some Myst ME videos. warning ("Sorenson Video 3 not yet supported"); } else if (codecTag == MKID_BE('jpeg')) { // Motion JPEG: Used by some Myst ME 10th Anniversary videos. return new JPEGDecoder(); } else if (codecTag == MKID_BE('QkBk')) { // CDToons: Used by most of the Broderbund games. This is an unknown format so far. warning ("CDToons not yet supported"); } else { warning ("Unsupported codec \'%s\'", tag2str(codecTag)); } return NULL; } void QuickTimeDecoder::startAudio() { if (_audStream) { // No audio/audio not supported updateAudioBuffer(); g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audHandle, _audStream); } } void QuickTimeDecoder::stopAudio() { if (_audStream) { g_system->getMixer()->stopHandle(_audHandle); _audStream = NULL; // the mixer automatically frees the stream } } void QuickTimeDecoder::pauseVideoIntern(bool pause) { if (_audStream) g_system->getMixer()->pauseHandle(_audHandle, pause); } Surface *QuickTimeDecoder::decodeNextFrame() { if (!_videoCodec || _curFrame >= (int32)getFrameCount() - 1) return NULL; if (_startTime == 0) _startTime = g_system->getMillis(); _curFrame++; _nextFrameStartTime += getFrameDuration(); Common::SeekableReadStream *frameData = getNextFramePacket(); if (frameData) { Surface *frame = _videoCodec->decodeImage(frameData); delete frameData; return scaleSurface(frame); } return NULL; } Surface *QuickTimeDecoder::scaleSurface(Surface *frame) { if (getScaleMode() == kScaleNormal) return frame; assert(_scaledSurface); for (uint32 j = 0; j < _scaledSurface->h; j++) for (uint32 k = 0; k < _scaledSurface->w; k++) memcpy(_scaledSurface->getBasePtr(k, j), frame->getBasePtr(k * getScaleMode(), j * getScaleMode()), frame->bytesPerPixel); return _scaledSurface; } bool QuickTimeDecoder::endOfVideo() const { return (!_audStream || _audStream->endOfData()) && (!_videoCodec || VideoDecoder::endOfVideo()); } uint32 QuickTimeDecoder::getElapsedTime() const { if (_audStream) return g_system->getMixer()->getSoundElapsedTime(_audHandle); return g_system->getMillis() - _startTime; } uint32 QuickTimeDecoder::getTimeToNextFrame() const { if (endOfVideo() || _curFrame < 0) return 0; // Convert from the QuickTime rate base to 1000 uint32 nextFrameStartTime = _nextFrameStartTime * 1000 / _streams[_videoStreamIndex]->time_scale; uint32 elapsedTime = getElapsedTime(); if (nextFrameStartTime <= elapsedTime) return 0; return nextFrameStartTime - elapsedTime; } bool QuickTimeDecoder::loadFile(const Common::String &filename) { if (!_resFork->open(filename) || !_resFork->hasDataFork()) return false; _foundMOOV = _foundMDAT = false; _numStreams = 0; _partial = 0; _videoStreamIndex = _audioStreamIndex = -1; _startTime = 0; MOVatom atom = { 0, 0, 0xffffffff }; if (_resFork->hasResFork()) { // Search for a 'moov' resource Common::MacResIDArray idArray = _resFork->getResIDArray(MKID_BE('moov')); if (!idArray.empty()) _fd = _resFork->getResource(MKID_BE('moov'), idArray[0]); if (_fd) { atom.size = _fd->size(); if (readDefault(atom) < 0 || !_foundMOOV) return false; } delete _fd; atom.type = 0; atom.offset = 0; atom.size = 0xffffffff; } _fd = _resFork->getDataFork(); if (readDefault(atom) < 0 || !_foundMOOV || !_foundMDAT) return false; init(); return true; } bool QuickTimeDecoder::load(Common::SeekableReadStream *stream) { _fd = stream; _foundMOOV = _foundMDAT = false; _numStreams = 0; _partial = 0; _videoStreamIndex = _audioStreamIndex = -1; _startTime = 0; MOVatom atom = { 0, 0, 0xffffffff }; if (readDefault(atom) < 0 || !_foundMOOV || !_foundMDAT) { _fd = 0; return false; } init(); return true; } void QuickTimeDecoder::init() { // some cleanup : make sure we are on the mdat atom if((uint32)_fd->pos() != _mdatOffset) _fd->seek(_mdatOffset, SEEK_SET); for (uint32 i = 0; i < _numStreams;) { if (_streams[i]->codec_type == CODEC_TYPE_MOV_OTHER) {// not audio, not video, delete delete _streams[i]; for (uint32 j = i + 1; j < _numStreams; j++) _streams[j - 1] = _streams[j]; _numStreams--; } else i++; } for (uint32 i = 0; i < _numStreams; i++) { MOVStreamContext *sc = _streams[i]; if (!sc->time_rate) sc->time_rate = 1; if (!sc->time_scale) sc->time_scale = _timeScale; sc->duration /= sc->time_rate; sc->ffindex = i; sc->is_ff_stream = 1; if (sc->codec_type == CODEC_TYPE_VIDEO && _videoStreamIndex < 0) _videoStreamIndex = i; else if (sc->codec_type == CODEC_TYPE_AUDIO && _audioStreamIndex < 0) _audioStreamIndex = i; } if (_audioStreamIndex >= 0 && checkAudioCodecSupport(_streams[_audioStreamIndex]->codec_tag)) { _audStream = Audio::makeQueuingAudioStream(_streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels == 2); _curAudioChunk = 0; // Make sure the bits per sample transfers to the sample size if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('raw ') || _streams[_audioStreamIndex]->codec_tag == MKID_BE('twos')) _streams[_audioStreamIndex]->sample_size = (_streams[_audioStreamIndex]->bits_per_sample / 8) * _streams[_audioStreamIndex]->channels; startAudio(); } if (_videoStreamIndex >= 0) { _videoCodec = createCodec(getCodecTag(), getBitsPerPixel()); if (getScaleMode() != kScaleNormal) { // We have to initialize the scaled surface _scaledSurface = new Surface(); _scaledSurface->create(getWidth(), getHeight(), getPixelFormat().bytesPerPixel); } } } void QuickTimeDecoder::initParseTable() { static const ParseTable p[] = { { &QuickTimeDecoder::readDefault, MKID_BE('dinf') }, { &QuickTimeDecoder::readLeaf, MKID_BE('dref') }, { &QuickTimeDecoder::readDefault, MKID_BE('edts') }, { &QuickTimeDecoder::readELST, MKID_BE('elst') }, { &QuickTimeDecoder::readHDLR, MKID_BE('hdlr') }, { &QuickTimeDecoder::readMDAT, MKID_BE('mdat') }, { &QuickTimeDecoder::readMDHD, MKID_BE('mdhd') }, { &QuickTimeDecoder::readDefault, MKID_BE('mdia') }, { &QuickTimeDecoder::readDefault, MKID_BE('minf') }, { &QuickTimeDecoder::readMOOV, MKID_BE('moov') }, { &QuickTimeDecoder::readMVHD, MKID_BE('mvhd') }, { &QuickTimeDecoder::readLeaf, MKID_BE('smhd') }, { &QuickTimeDecoder::readDefault, MKID_BE('stbl') }, { &QuickTimeDecoder::readSTCO, MKID_BE('stco') }, { &QuickTimeDecoder::readSTSC, MKID_BE('stsc') }, { &QuickTimeDecoder::readSTSD, MKID_BE('stsd') }, { &QuickTimeDecoder::readSTSS, MKID_BE('stss') }, { &QuickTimeDecoder::readSTSZ, MKID_BE('stsz') }, { &QuickTimeDecoder::readSTTS, MKID_BE('stts') }, { &QuickTimeDecoder::readTKHD, MKID_BE('tkhd') }, { &QuickTimeDecoder::readTRAK, MKID_BE('trak') }, { &QuickTimeDecoder::readLeaf, MKID_BE('udta') }, { &QuickTimeDecoder::readLeaf, MKID_BE('vmhd') }, { &QuickTimeDecoder::readCMOV, MKID_BE('cmov') }, { &QuickTimeDecoder::readWAVE, MKID_BE('wave') }, { 0, 0 } }; _parseTable = p; } int QuickTimeDecoder::readDefault(MOVatom atom) { uint32 total_size = 0; MOVatom a; int err = 0; a.offset = atom.offset; while(((total_size + 8) < atom.size) && !_fd->eos() && _fd->pos() < _fd->size() && !err) { a.size = atom.size; a.type = 0; if (atom.size >= 8) { a.size = _fd->readUint32BE(); a.type = _fd->readUint32BE(); // Some QuickTime videos with resource forks have mdat chunks // that are of size 0. Adjust it so it's the correct size. if (a.type == MKID_BE('mdat') && a.size == 0) a.size = _fd->size(); } total_size += 8; a.offset += 8; debug(4, "type: %08x %.4s sz: %x %x %x", a.type, tag2str(a.type), a.size, atom.size, total_size); if (a.size == 1) { // 64 bit extended size warning("64 bit extended size is not supported in QuickTime"); return -1; } if (a.size == 0) { a.size = atom.size - total_size; if (a.size <= 8) break; } uint32 i = 0; for (; _parseTable[i].type != 0 && _parseTable[i].type != a.type; i++) // empty; if (a.size < 8) break; a.size -= 8; if (_parseTable[i].type == 0) { // skip leaf atoms data debug(0, ">>> Skipped [%s]", tag2str(a.type)); _fd->seek(a.size, SEEK_CUR); } else { uint32 start_pos = _fd->pos(); err = (this->*_parseTable[i].func)(a); uint32 left = a.size - _fd->pos() + start_pos; if (left > 0) // skip garbage at atom end _fd->seek(left, SEEK_CUR); } a.offset += a.size; total_size += a.size; } if (!err && total_size < atom.size) _fd->seek(atom.size - total_size, SEEK_SET); return err; } int QuickTimeDecoder::readLeaf(MOVatom atom) { if (atom.size > 1) _fd->seek(atom.size, SEEK_SET); return 0; } int QuickTimeDecoder::readMOOV(MOVatom atom) { if (readDefault(atom) < 0) return -1; // we parsed the 'moov' atom, we can terminate the parsing as soon as we find the 'mdat' // so we don't parse the whole file if over a network _foundMOOV = true; if(_foundMDAT) return 1; // found both, just go return 0; // now go for mdat } int QuickTimeDecoder::readCMOV(MOVatom atom) { #ifdef USE_ZLIB // Read in the dcom atom _fd->readUint32BE(); if (_fd->readUint32BE() != MKID_BE('dcom')) return -1; if (_fd->readUint32BE() != MKID_BE('zlib')) { warning("Unknown cmov compression type"); return -1; } // Read in the cmvd atom uint32 compressedSize = _fd->readUint32BE() - 12; if (_fd->readUint32BE() != MKID_BE('cmvd')) return -1; uint32 uncompressedSize = _fd->readUint32BE(); // Read in data byte *compressedData = (byte *)malloc(compressedSize); _fd->read(compressedData, compressedSize); // Create uncompressed stream byte *uncompressedData = (byte *)malloc(uncompressedSize); // Uncompress the data unsigned long dstLen = uncompressedSize; if (!Common::uncompress(uncompressedData, &dstLen, compressedData, compressedSize)) { warning ("Could not uncompress cmov chunk"); free(compressedData); free(uncompressedData); return -1; } // Load data into a new MemoryReadStream and assign _fd to be that Common::SeekableReadStream *oldStream = _fd; _fd = new Common::MemoryReadStream(uncompressedData, uncompressedSize, DisposeAfterUse::YES); // Read the contents of the uncompressed data MOVatom a = { MKID_BE('moov'), 0, uncompressedSize }; int err = readDefault(a); // Assign the file handle back to the original handle free(compressedData); delete _fd; _fd = oldStream; return err; #else warning ("zlib not found, cannot read QuickTime cmov atom"); return -1; #endif } int QuickTimeDecoder::readMVHD(MOVatom atom) { byte version = _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags if (version == 1) { warning("QuickTime version 1"); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } _timeScale = _fd->readUint32BE(); // time scale debug(0, "time scale = %i\n", _timeScale); // duration _duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); _fd->readUint32BE(); // preferred scale _fd->readUint16BE(); // preferred volume _fd->seek(10, SEEK_CUR); // reserved // We only need two values from the movie display matrix. Most of the values are just // skipped. xMod and yMod are 16:16 fixed point numbers, the last part of the 3x3 matrix // is 2:30. uint32 xMod = _fd->readUint32BE(); _fd->skip(12); uint32 yMod = _fd->readUint32BE(); _fd->skip(16); if (xMod != yMod) error("X and Y resolution modifiers differ"); if (xMod == 0x8000) _scaleMode = kScaleHalf; else if (xMod == 0x4000) _scaleMode = kScaleQuarter; else _scaleMode = kScaleNormal; debug(1, "readMVHD(): scaleMode = %d", (int)_scaleMode); _fd->readUint32BE(); // preview time _fd->readUint32BE(); // preview duration _fd->readUint32BE(); // poster time _fd->readUint32BE(); // selection time _fd->readUint32BE(); // selection duration _fd->readUint32BE(); // current time _fd->readUint32BE(); // next track ID return 0; } int QuickTimeDecoder::readTRAK(MOVatom atom) { MOVStreamContext *sc = new MOVStreamContext(); if (!sc) return -1; sc->sample_to_chunk_index = -1; sc->codec_type = CODEC_TYPE_MOV_OTHER; sc->start_time = 0; // XXX: check _streams[_numStreams++] = sc; return readDefault(atom); } // this atom contains actual media data int QuickTimeDecoder::readMDAT(MOVatom atom) { if (atom.size == 0) // wrong one (MP4) return 0; _foundMDAT = true; _mdatOffset = atom.offset; _mdatSize = atom.size; if (_foundMOOV) return 1; // found both, just go _fd->seek(atom.size, SEEK_CUR); return 0; // now go for moov } int QuickTimeDecoder::readTKHD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; byte version = _fd->readByte(); _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags // //MOV_TRACK_ENABLED 0x0001 //MOV_TRACK_IN_MOVIE 0x0002 //MOV_TRACK_IN_PREVIEW 0x0004 //MOV_TRACK_IN_POSTER 0x0008 // if (version == 1) { _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } /* st->id = */_fd->readUint32BE(); // track id (NOT 0 !) _fd->readUint32BE(); // reserved //st->start_time = 0; // check (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // highlevel (considering edits) duration in movie timebase _fd->readUint32BE(); // reserved _fd->readUint32BE(); // reserved _fd->readUint16BE(); // layer _fd->readUint16BE(); // alternate group _fd->readUint16BE(); // volume _fd->readUint16BE(); // reserved // We only need the two values from the displacement matrix for a track. // See readMVHD() for more information. uint32 xMod = _fd->readUint32BE(); _fd->skip(12); uint32 yMod = _fd->readUint32BE(); _fd->skip(16); if (xMod != yMod) error("X and Y resolution modifiers differ"); if (xMod == 0x8000) st->scaleMode = kScaleHalf; else if (xMod == 0x4000) st->scaleMode = kScaleQuarter; else st->scaleMode = kScaleNormal; debug(1, "readTKHD(): scaleMode = %d", (int)_scaleMode); // these are fixed-point, 16:16 // uint32 tkWidth = _fd->readUint32BE() >> 16; // track width // uint32 tkHeight = _fd->readUint32BE() >> 16; // track height return 0; } // edit list atom int QuickTimeDecoder::readELST(MOVatom atom) { _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags uint32 editCount = _streams[_numStreams - 1]->edit_count = _fd->readUint32BE(); // entries for (uint32 i = 0; i < editCount; i++){ _fd->readUint32BE(); // Track duration _fd->readUint32BE(); // Media time _fd->readUint32BE(); // Media rate } debug(0, "track[%i].edit_count = %i", _numStreams - 1, _streams[_numStreams - 1]->edit_count); if (editCount != 1) warning("Multiple edit list entries. Things may go awry"); return 0; } int QuickTimeDecoder::readHDLR(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags // component type uint32 ctype = _fd->readUint32LE(); uint32 type = _fd->readUint32BE(); // component subtype debug(0, "ctype= %s (0x%08lx)", tag2str(ctype), (long)ctype); debug(0, "stype= %s", tag2str(type)); if(ctype == MKID_BE('mhlr')) // MOV debug(0, "MOV detected"); else if(ctype == 0) { warning("MP4 streams are not supported"); return -1; } if (type == MKID_BE('vide')) st->codec_type = CODEC_TYPE_VIDEO; else if (type == MKID_BE('soun')) st->codec_type = CODEC_TYPE_AUDIO; _fd->readUint32BE(); // component manufacture _fd->readUint32BE(); // component flags _fd->readUint32BE(); // component flags mask if (atom.size <= 24) return 0; // nothing left to read // .mov: PASCAL string byte len = _fd->readByte(); _fd->seek(len, SEEK_CUR); _fd->seek(atom.size - (_fd->pos() - atom.offset), SEEK_CUR); return 0; } int QuickTimeDecoder::readMDHD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; byte version = _fd->readByte(); if (version > 1) return 1; // unsupported _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags if (version == 1) { _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } st->time_scale = _fd->readUint32BE(); st->duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // duration _fd->readUint16BE(); // language _fd->readUint16BE(); // quality return 0; } int QuickTimeDecoder::readSTSD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags uint32 entries = _fd->readUint32BE(); while (entries--) { //Parsing Sample description table MOVatom a = { 0, 0, 0 }; uint32 start_pos = _fd->pos(); int size = _fd->readUint32BE(); // size uint32 format = _fd->readUint32BE(); // data format _fd->readUint32BE(); // reserved _fd->readUint16BE(); // reserved _fd->readUint16BE(); // index debug(0, "size=%d 4CC= %s codec_type=%d", size, tag2str(format), st->codec_type); st->codec_tag = format; if (st->codec_type == CODEC_TYPE_VIDEO) { debug(0, "Video Codec FourCC: \'%s\'", tag2str(format)); _fd->readUint16BE(); // version _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor _fd->readUint32BE(); // temporal quality _fd->readUint32BE(); // spacial quality st->width = _fd->readUint16BE(); // width st->height = _fd->readUint16BE(); // height _fd->readUint32BE(); // horiz resolution _fd->readUint32BE(); // vert resolution _fd->readUint32BE(); // data size, always 0 uint16 frames_per_sample = _fd->readUint16BE(); // frames per samples debug(0, "frames/samples = %d", frames_per_sample); byte codec_name[32]; _fd->read(codec_name, 32); // codec name, pascal string (FIXME: true for mp4?) if (codec_name[0] <= 31) { memcpy(st->codec_name, &codec_name[1], codec_name[0]); st->codec_name[codec_name[0]] = 0; } st->bits_per_sample = _fd->readUint16BE(); // depth st->color_table_id = _fd->readUint16BE(); // colortable id // These are set in mov_read_stts and might already be set! // st->codec->time_base.den = 25; // st->codec->time_base.num = 1; // figure out the palette situation byte colorDepth = st->bits_per_sample & 0x1F; bool colorGreyscale = (st->bits_per_sample & 0x20) != 0; debug(0, "color depth: %d", colorDepth); // if the depth is 2, 4, or 8 bpp, file is palettized if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) { _dirtyPalette = true; if (colorGreyscale) { debug(0, "Greyscale palette"); // compute the greyscale palette uint16 colorCount = 1 << colorDepth; int16 colorIndex = 255; byte colorDec = 256 / (colorCount - 1); for (byte j = 0; j < colorCount; j++) { _palette[j * 3] = _palette[j * 3 + 1] = _palette[j * 3 + 2] = colorIndex; colorIndex -= colorDec; if (colorIndex < 0) colorIndex = 0; } } else if (st->color_table_id & 0x08) { // if flag bit 3 is set, use the default palette //uint16 colorCount = 1 << colorDepth; warning("Predefined palette! %dbpp", colorDepth); #if 0 byte *color_table; byte r, g, b; if (colorDepth == 2) color_table = ff_qt_default_palette_4; else if (colorDepth == 4) color_table = ff_qt_default_palette_16; else color_table = ff_qt_default_palette_256; for (byte j = 0; j < color_count; j++) { r = color_table[j * 4 + 0]; g = color_table[j * 4 + 1]; b = color_table[j * 4 + 2]; _palette_control.palette[j] = (r << 16) | (g << 8) | (b); } #endif } else { debug(0, "Palette from file"); // load the palette from the file uint32 colorStart = _fd->readUint32BE(); /* uint16 colorCount = */ _fd->readUint16BE(); uint16 colorEnd = _fd->readUint16BE(); for (uint32 j = colorStart; j <= colorEnd; j++) { // each R, G, or B component is 16 bits; // only use the top 8 bits; skip alpha bytes // up front _fd->readByte(); _fd->readByte(); _palette[j * 3] = _fd->readByte(); _fd->readByte(); _palette[j * 3 + 1] = _fd->readByte(); _fd->readByte(); _palette[j * 3 + 2] = _fd->readByte(); _fd->readByte(); } } st->palettized = true; } else st->palettized = false; } else if (st->codec_type == CODEC_TYPE_AUDIO) { debug(0, "Audio Codec FourCC: \'%s\'", tag2str(format)); st->stsd_version = _fd->readUint16BE(); _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor st->channels = _fd->readUint16BE(); // channel count st->bits_per_sample = _fd->readUint16BE(); // sample size // do we need to force to 16 for AMR ? // handle specific s8 codec _fd->readUint16BE(); // compression id = 0 _fd->readUint16BE(); // packet size = 0 st->sample_rate = (_fd->readUint32BE() >> 16); debug(0, "stsd version =%d", st->stsd_version); if (st->stsd_version == 0) { // Not used, except in special cases. See below. st->samples_per_frame = st->bytes_per_frame = 0; } else if (st->stsd_version == 1) { // Read QT version 1 fields. In version 0 these dont exist. st->samples_per_frame = _fd->readUint32BE(); debug(0, "stsd samples_per_frame =%d", st->samples_per_frame); _fd->readUint32BE(); // bytes per packet st->bytes_per_frame = _fd->readUint32BE(); debug(0, "stsd bytes_per_frame =%d", st->bytes_per_frame); _fd->readUint32BE(); // bytes per sample } else { warning("Unsupported QuickTime STSD audio version %d", st->stsd_version); return 1; } // Version 0 videos (such as the Riven ones) don't have this set, // but we need it later on. Add it in here. if (format == MKID_BE('ima4')) { st->samples_per_frame = 64; st->bytes_per_frame = 34 * st->channels; } } else { // other codec type, just skip (rtp, mp4s, tmcd ...) _fd->seek(size - (_fd->pos() - start_pos), SEEK_CUR); } // this will read extra atoms at the end (wave, alac, damr, avcC, SMI ...) a.size = size - (_fd->pos() - start_pos); if (a.size > 8) readDefault(a); else if (a.size > 0) _fd->seek(a.size, SEEK_CUR); } if (st->codec_type == CODEC_TYPE_AUDIO && st->sample_rate == 0 && st->time_scale > 1) st->sample_rate= st->time_scale; return 0; } int QuickTimeDecoder::readSTSC(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->sample_to_chunk_sz = _fd->readUint32BE(); debug(0, "track[%i].stsc.entries = %i", _numStreams - 1, st->sample_to_chunk_sz); st->sample_to_chunk = new MOVstsc[st->sample_to_chunk_sz]; if (!st->sample_to_chunk) return -1; for (uint32 i = 0; i < st->sample_to_chunk_sz; i++) { st->sample_to_chunk[i].first = _fd->readUint32BE(); st->sample_to_chunk[i].count = _fd->readUint32BE(); st->sample_to_chunk[i].id = _fd->readUint32BE(); //printf ("Sample to Chunk[%d]: First = %d, Count = %d\n", i, st->sample_to_chunk[i].first, st->sample_to_chunk[i].count); } return 0; } int QuickTimeDecoder::readSTSS(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->keyframe_count = _fd->readUint32BE(); debug(0, "keyframe_count = %d", st->keyframe_count); st->keyframes = new uint32[st->keyframe_count]; if (!st->keyframes) return -1; for (uint32 i = 0; i < st->keyframe_count; i++) { st->keyframes[i] = _fd->readUint32BE(); debug(6, "keyframes[%d] = %d", i, st->keyframes[i]); } return 0; } int QuickTimeDecoder::readSTSZ(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->sample_size = _fd->readUint32BE(); st->sample_count = _fd->readUint32BE(); debug(5, "sample_size = %d sample_count = %d", st->sample_size, st->sample_count); if (st->sample_size) return 0; // there isn't any table following st->sample_sizes = new uint32[st->sample_count]; if (!st->sample_sizes) return -1; for(uint32 i = 0; i < st->sample_count; i++) { st->sample_sizes[i] = _fd->readUint32BE(); debug(6, "sample_sizes[%d] = %d", i, st->sample_sizes[i]); } return 0; } static uint32 ff_gcd(uint32 a, uint32 b) { if(b) return ff_gcd(b, a%b); else return a; } int QuickTimeDecoder::readSTTS(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; uint32 duration = 0; uint32 total_sample_count = 0; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->stts_count = _fd->readUint32BE(); st->stts_data = new MOVstts[st->stts_count]; debug(0, "track[%i].stts.entries = %i", _numStreams - 1, st->stts_count); st->time_rate = 0; for (int32 i = 0; i < st->stts_count; i++) { int sample_duration; int sample_count; sample_count = _fd->readUint32BE(); sample_duration = _fd->readUint32BE(); st->stts_data[i].count = sample_count; st->stts_data[i].duration = sample_duration; st->time_rate = ff_gcd(st->time_rate, sample_duration); debug(0, "sample_count=%d, sample_duration=%d", sample_count, sample_duration); duration += sample_duration * sample_count; total_sample_count += sample_count; } st->nb_frames = total_sample_count; if (duration) st->duration = duration; return 0; } int QuickTimeDecoder::readSTCO(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->chunk_count = _fd->readUint32BE(); st->chunk_offsets = new uint32[st->chunk_count]; if (!st->chunk_offsets) return -1; for (uint32 i = 0; i < st->chunk_count; i++) { // WORKAROUND/HACK: The offsets in Riven videos (ones inside the Mohawk archives themselves) // have offsets relative to the archive and not the video. This is quite nasty. We subtract // the initial offset of the stream to get the correct value inside of the stream. st->chunk_offsets[i] = _fd->readUint32BE() - _beginOffset; } for (uint32 i = 0; i < _numStreams; i++) { MOVStreamContext *sc2 = _streams[i]; if(sc2 && sc2->chunk_offsets){ uint32 first = sc2->chunk_offsets[0]; uint32 last = sc2->chunk_offsets[sc2->chunk_count - 1]; if(first >= st->chunk_offsets[st->chunk_count - 1] || last <= st->chunk_offsets[0]) _ni = 1; } } return 0; } int QuickTimeDecoder::readWAVE(MOVatom atom) { if (_numStreams < 1) return 0; MOVStreamContext *st = _streams[_numStreams - 1]; if (atom.size > (1 << 30)) return -1; if (st->codec_tag == MKID_BE('QDM2')) // Read extradata for QDM2 st->extradata = _fd->readStream(atom.size - 8); else if (atom.size > 8) return readDefault(atom); else _fd->skip(atom.size); return 0; } void QuickTimeDecoder::close() { stopAudio(); delete _videoCodec; _videoCodec = 0; for (uint32 i = 0; i < _numStreams; i++) delete _streams[i]; delete _fd; _fd = 0; if (_scaledSurface) { _scaledSurface->free(); delete _scaledSurface; _scaledSurface = 0; } // The audio stream is deleted automatically _audStream = NULL; VideoDecoder::reset(); } Common::SeekableReadStream *QuickTimeDecoder::getNextFramePacket() { if (_videoStreamIndex < 0) return NULL; // First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for. int32 totalSampleCount = 0; int32 sampleInChunk = 0; int32 actualChunk = -1; for (uint32 i = 0; i < _streams[_videoStreamIndex]->chunk_count; i++) { int32 sampleToChunkIndex = -1; for (uint32 j = 0; j < _streams[_videoStreamIndex]->sample_to_chunk_sz; j++) if (i >= _streams[_videoStreamIndex]->sample_to_chunk[j].first - 1) sampleToChunkIndex = j; if (sampleToChunkIndex < 0) error("This chunk (%d) is imaginary", sampleToChunkIndex); totalSampleCount += _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count; if (totalSampleCount > getCurFrame()) { actualChunk = i; sampleInChunk = _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count - totalSampleCount + getCurFrame(); break; } } if (actualChunk < 0) { warning ("Could not find data for frame %d", getCurFrame()); return NULL; } // Next seek to that frame _fd->seek(_streams[_videoStreamIndex]->chunk_offsets[actualChunk]); // Then, if the chunk holds more than one frame, seek to where the frame we want is located for (int32 i = getCurFrame() - sampleInChunk; i < getCurFrame(); i++) { if (_streams[_videoStreamIndex]->sample_size != 0) _fd->skip(_streams[_videoStreamIndex]->sample_size); else _fd->skip(_streams[_videoStreamIndex]->sample_sizes[i]); } // Finally, read in the raw data for the frame //printf ("Frame Data[%d]: Offset = %d, Size = %d\n", getCurFrame(), _fd->pos(), _streams[_videoStreamIndex]->sample_sizes[getCurFrame()]); if (_streams[_videoStreamIndex]->sample_size != 0) return _fd->readStream(_streams[_videoStreamIndex]->sample_size); return _fd->readStream(_streams[_videoStreamIndex]->sample_sizes[getCurFrame()]); } bool QuickTimeDecoder::checkAudioCodecSupport(uint32 tag) { // Check if the codec is a supported codec if (tag == MKID_BE('twos') || tag == MKID_BE('raw ') || tag == MKID_BE('ima4')) return true; #ifdef GRAPHICS_QDM2_H if (tag == MKID_BE('QDM2')) return true; #endif warning("Audio Codec Not Supported: \'%s\'", tag2str(tag)); return false; } Audio::AudioStream *QuickTimeDecoder::createAudioStream(Common::SeekableReadStream *stream) { if (!stream || _audioStreamIndex < 0) return NULL; if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('twos') || _streams[_audioStreamIndex]->codec_tag == MKID_BE('raw ')) { // Fortunately, most of the audio used in Myst videos is raw... uint16 flags = 0; if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('raw ')) flags |= Audio::FLAG_UNSIGNED; if (_streams[_audioStreamIndex]->channels == 2) flags |= Audio::FLAG_STEREO; if (_streams[_audioStreamIndex]->bits_per_sample == 16) flags |= Audio::FLAG_16BITS; uint32 dataSize = stream->size(); byte *data = (byte *)malloc(dataSize); stream->read(data, dataSize); delete stream; return Audio::makeRawStream(data, dataSize, _streams[_audioStreamIndex]->sample_rate, flags); } else if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('ima4')) { // Riven uses this codec (as do some Myst ME videos) return Audio::makeADPCMStream(stream, DisposeAfterUse::YES, stream->size(), Audio::kADPCMApple, _streams[_audioStreamIndex]->sample_rate, _streams[_audioStreamIndex]->channels, 34); #ifdef GRAPHICS_QDM2_H } else if (_streams[_audioStreamIndex]->codec_tag == MKID_BE('QDM2')) { // Several Myst ME videos use this codec return makeQDM2Stream(stream, _streams[_audioStreamIndex]->extradata); #endif } error("Unsupported audio codec"); return NULL; } void QuickTimeDecoder::updateAudioBuffer() { if (!_audStream) return; // Keep three streams in buffer so that if/when the first two end, it goes right into the next for (; _audStream->numQueuedStreams() < 3 && _curAudioChunk < _streams[_audioStreamIndex]->chunk_count; _curAudioChunk++) { Common::MemoryWriteStreamDynamic *wStream = new Common::MemoryWriteStreamDynamic(); _fd->seek(_streams[_audioStreamIndex]->chunk_offsets[_curAudioChunk]); // First, we have to get the sample count uint32 sampleCount = 0; for (uint32 j = 0; j < _streams[_audioStreamIndex]->sample_to_chunk_sz; j++) if (_curAudioChunk >= (_streams[_audioStreamIndex]->sample_to_chunk[j].first - 1)) sampleCount = _streams[_audioStreamIndex]->sample_to_chunk[j].count; assert(sampleCount); // Then calculate the right sizes while (sampleCount > 0) { uint32 samples = 0, size = 0; if (_streams[_audioStreamIndex]->samples_per_frame >= 160) { samples = _streams[_audioStreamIndex]->samples_per_frame; size = _streams[_audioStreamIndex]->bytes_per_frame; } else if (_streams[_audioStreamIndex]->samples_per_frame > 1) { samples = MIN((1024 / _streams[_audioStreamIndex]->samples_per_frame) * _streams[_audioStreamIndex]->samples_per_frame, sampleCount); size = (samples / _streams[_audioStreamIndex]->samples_per_frame) * _streams[_audioStreamIndex]->bytes_per_frame; } else { samples = MIN(1024, sampleCount); size = samples * _streams[_audioStreamIndex]->sample_size; } // Now, we read in the data for this data and output it byte *data = (byte *)malloc(size); _fd->read(data, size); wStream->write(data, size); free(data); sampleCount -= samples; } // Now queue the buffer _audStream->queueAudioStream(createAudioStream(new Common::MemoryReadStream(wStream->getData(), wStream->size(), DisposeAfterUse::YES))); delete wStream; } } } // End of namespace Graphics