/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // Sorenson Video 1 Codec // Based off FFmpeg's SVQ1 decoder (written by Arpi and Nick Kurshev) #include "image/codecs/svq1.h" #include "image/codecs/svq1_cb.h" #include "image/codecs/svq1_vlc.h" #include "common/stream.h" #include "common/bitstream.h" #include "common/rect.h" #include "common/system.h" #include "common/debug.h" #include "common/textconsole.h" #include "common/huffman.h" #include "graphics/yuv_to_rgb.h" namespace Image { #define SVQ1_BLOCK_SKIP 0 #define SVQ1_BLOCK_INTER 1 #define SVQ1_BLOCK_INTER_4V 2 #define SVQ1_BLOCK_INTRA 3 SVQ1Decoder::SVQ1Decoder(uint16 width, uint16 height) { debug(1, "SVQ1Decoder::SVQ1Decoder(width:%d, height:%d)", width, height); _width = width; _height = height; _frameWidth = _frameHeight = 0; _surface = 0; _last[0] = 0; _last[1] = 0; _last[2] = 0; // Setup Variable Length Code Tables _blockType = new HuffmanDecoder(0, 4, s_svq1BlockTypeCodes, s_svq1BlockTypeLengths); for (int i = 0; i < 6; i++) { _intraMultistage[i] = new HuffmanDecoder(0, 8, s_svq1IntraMultistageCodes[i], s_svq1IntraMultistageLengths[i]); _interMultistage[i] = new HuffmanDecoder(0, 8, s_svq1InterMultistageCodes[i], s_svq1InterMultistageLengths[i]); } _intraMean = new HuffmanDecoder(0, 256, s_svq1IntraMeanCodes, s_svq1IntraMeanLengths); _interMean = new HuffmanDecoder(0, 512, s_svq1InterMeanCodes, s_svq1InterMeanLengths); _motionComponent = new HuffmanDecoder(0, 33, s_svq1MotionComponentCodes, s_svq1MotionComponentLengths); } SVQ1Decoder::~SVQ1Decoder() { if (_surface) { _surface->free(); delete _surface; } delete[] _last[0]; delete[] _last[1]; delete[] _last[2]; delete _blockType; delete _intraMean; delete _interMean; delete _motionComponent; for (int i = 0; i < 6; i++) { delete _intraMultistage[i]; delete _interMultistage[i]; } } #define ALIGN(x, a) (((x)+(a)-1)&~((a)-1)) const Graphics::Surface *SVQ1Decoder::decodeFrame(Common::SeekableReadStream &stream) { debug(1, "SVQ1Decoder::decodeImage()"); Common::BitStream32BEMSB frameData(stream); uint32 frameCode = frameData.getBits(22); debug(1, " frameCode: %d", frameCode); if ((frameCode & ~0x70) || !(frameCode & 0x60)) { // Invalid warning("Invalid Image at frameCode"); return _surface; } byte temporalReference = frameData.getBits(8); debug(1, " temporalReference: %d", temporalReference); static const char *const types[4] = { "I (Key)", "P (Delta from Previous)", "B (Delta from Next)", "Invalid" }; byte frameType = frameData.getBits(2); debug(1, " frameType: %d = %s Frame", frameType, types[frameType]); if (frameType == 0) { // I Frame // TODO: Validate checksum if present if (frameCode == 0x50 || frameCode == 0x60) { uint32 checksum = frameData.getBits(16); debug(1, " checksum:0x%02x", checksum); // We're currently just ignoring the checksum } if ((frameCode ^ 0x10) >= 0x50) { // Skip embedded string byte stringLen = frameData.getBits(8); for (uint16 i = 0; i < stringLen-1; i++) frameData.skip(8); } frameData.skip(5); // Unknown static const struct { uint w, h; } standardFrameSizes[7] = { { 160, 120 }, // 0 { 128, 96 }, // 1 { 176, 144 }, // 2 { 352, 288 }, // 3 { 704, 576 }, // 4 { 240, 180 }, // 5 { 320, 240 } // 6 }; byte frameSizeCode = frameData.getBits(3); debug(1, " frameSizeCode: %d", frameSizeCode); if (frameSizeCode == 7) { _frameWidth = frameData.getBits(12); _frameHeight = frameData.getBits(12); } else { _frameWidth = standardFrameSizes[frameSizeCode].w; _frameHeight = standardFrameSizes[frameSizeCode].h; } debug(1, " frameWidth: %d", _frameWidth); debug(1, " frameHeight: %d", _frameHeight); } else if (frameType == 2) { // B Frame warning("B Frames not supported by SVQ1 decoder (yet)"); return _surface; } else if (frameType == 3) { // Invalid warning("Invalid Frame Type"); return _surface; } bool checksumPresent = frameData.getBit() != 0; debug(1, " checksumPresent: %d", checksumPresent); if (checksumPresent) { bool usePacketChecksum = frameData.getBit() != 0; debug(1, " usePacketChecksum: %d", usePacketChecksum); bool componentChecksumsAfterImageData = frameData.getBit() != 0; debug(1, " componentChecksumsAfterImageData: %d", componentChecksumsAfterImageData); byte unk4 = frameData.getBits(2); debug(1, " unk4: %d", unk4); if (unk4 != 0) warning("Invalid Frame Header in SVQ1 Frame Decode"); } // Some more unknown data bool unk5 = frameData.getBit() != 0; if (unk5) { frameData.skip(8); while (frameData.getBit() != 0) frameData.skip(8); } uint yWidth = ALIGN(_frameWidth, 16); uint yHeight = ALIGN(_frameHeight, 16); uint uvWidth = ALIGN(yWidth / 4, 16); uint uvHeight = ALIGN(yHeight / 4, 16); uint uvPitch = uvWidth + 4; // we need at least one extra column and pitch must be divisible by 4 byte *current[3]; // Decode Y, U and V component planes for (int i = 0; i < 3; i++) { uint width, height, pitch; if (i == 0) { width = yWidth; height = yHeight; pitch = width; current[i] = new byte[width * height]; } else { width = uvWidth; height = uvHeight; pitch = uvPitch; // Add an extra row here. See below for more information. current[i] = new byte[pitch * (height + 1)]; } if (frameType == 0) { // I Frame // Keyframe (I) byte *currentP = current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (!svq1DecodeBlockIntra(&frameData, ¤tP[x], pitch)) { warning("svq1DecodeBlockIntra decode failure"); return _surface; } } currentP += 16 * pitch; } } else { // Delta frame (P or B) // Prediction Motion Vector Common::Point *pmv = new Common::Point[(width / 8) + 3]; byte *previous = 0; if (frameType == 2) { // B Frame error("SVQ1 Video: B Frames not supported"); //previous = _next[i]; } else { previous = _last[i]; } byte *currentP = current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (!svq1DecodeDeltaBlock(&frameData, ¤tP[x], previous, pitch, pmv, x, y)) { warning("svq1DecodeDeltaBlock decode failure"); return _surface; } } pmv[0].x = pmv[0].y = 0; currentP += 16 * pitch; } delete[] pmv; } } // Now we'll create the surface if (!_surface) { _surface = new Graphics::Surface(); _surface->create(yWidth, yHeight, g_system->getScreenFormat()); _surface->w = _width; _surface->h = _height; } // We need to massage the chrominance data a bit to be able to be used by the converter // Since the thing peeks at values one column and one row beyond the data, we need to fill it in // First, fill in the column-after-last with the last column's value for (uint i = 0; i < uvHeight; i++) { current[1][i * uvPitch + uvWidth] = current[1][i * uvPitch + uvWidth - 1]; current[2][i * uvPitch + uvWidth] = current[2][i * uvPitch + uvWidth - 1]; } // Then, copy the last row to the one after the last row memcpy(current[1] + uvHeight * uvPitch, current[1] + (uvHeight - 1) * uvPitch, uvWidth + 1); memcpy(current[2] + uvHeight * uvPitch, current[2] + (uvHeight - 1) * uvPitch, uvWidth + 1); // Finally, actually do the conversion ;) YUVToRGBMan.convert410(_surface, Graphics::YUVToRGBManager::kScaleFull, current[0], current[1], current[2], yWidth, yHeight, yWidth, uvPitch); // Store the current surfaces for later and free the old ones for (int i = 0; i < 3; i++) { delete[] _last[i]; _last[i] = current[i]; } return _surface; } bool SVQ1Decoder::svq1DecodeBlockIntra(Common::BitStream32BEMSB *s, byte *pixels, int pitch) { // initialize list for breadth first processing of vectors byte *list[63]; list[0] = pixels; // recursively process vector for (int i = 0, m = 1, n = 1, level = 5; i < n; i++) { for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size uint32 *dst = (uint32 *)list[i]; uint width = 1 << ((level + 4) / 2); uint height = 1 << ((level + 3) / 2); // get number of stages (-1 skips vector, 0 for mean only) int stages = _intraMultistage[level]->getSymbol(*s) - 1; if (stages == -1) { for (uint y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], 0, width); continue; // skip vector } if (stages > 0 && level >= 4) { warning("Error (svq1_decode_block_intra): invalid vector: stages = %d, level = %d", stages, level); return false; // error - invalid vector } int mean = _intraMean->getSymbol(*s); if (stages == 0) { for (uint y = 0; y < height; y++) memset(&dst[y * (pitch / 4)], mean, width); } else { const uint32 *codebook = (const uint32 *)s_svq1IntraCodebooks[level]; uint32 bitCache = s->getBits(stages * 4); // calculate codebook entries for this vector int entries[6]; for (int j = 0; j < stages; j++) entries[j] = (((bitCache >> ((stages - j - 1) * 4)) & 0xF) + j * 16) << (level + 1); mean -= stages * 128; uint32 n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); for (uint y = 0; y < height; y++) { for (uint x = 0; x < (width / 4); x++, codebook++) { uint32 n1 = n4; uint32 n2 = n4; uint32 n3; // add codebook entries to vector for (int j = 0; j < stages; j++) { n3 = READ_UINT32(&codebook[entries[j]]) ^ 0x80808080; n1 += (n3 & 0xFF00FF00) >> 8; n2 += n3 & 0x00FF00FF; } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = (((n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= n3 & 0x00FF00FF; } if (n2 & 0xFF00FF00) { n3 = (((n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= n3 & 0x00FF00FF; } // store result dst[x] = (n1 << 8) | n2; } dst += pitch / 4; } } } return true; } bool SVQ1Decoder::svq1DecodeBlockNonIntra(Common::BitStream32BEMSB *s, byte *pixels, int pitch) { // initialize list for breadth first processing of vectors byte *list[63]; list[0] = pixels; // recursively process vector for (int i = 0, m = 1, n = 1, level = 5; i < n; i++) { for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size uint32 *dst = (uint32 *)list[i]; int width = 1 << ((level + 4) / 2); int height = 1 << ((level + 3) / 2); // get number of stages (-1 skips vector, 0 for mean only) int stages = _interMultistage[level]->getSymbol(*s) - 1; if (stages == -1) continue; // skip vector if (stages > 0 && level >= 4) { warning("Error (svq1_decode_block_non_intra): invalid vector: stages = %d, level = %d", stages, level); return false; // error - invalid vector } int mean = _interMean->getSymbol(*s) - 256; const uint32 *codebook = (const uint32 *)s_svq1InterCodebooks[level]; uint32 bitCache = s->getBits(stages * 4); // calculate codebook entries for this vector int entries[6]; for (int j = 0; j < stages; j++) entries[j] = (((bitCache >> ((stages - j - 1) * 4)) & 0xF) + j * 16) << (level + 1); mean -= stages * 128; uint32 n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); for (int y = 0; y < height; y++) { for (int x = 0; x < (width / 4); x++, codebook++) { uint32 n3 = dst[x]; // add mean value to vector uint32 n1 = ((n3 & 0xFF00FF00) >> 8) + n4; uint32 n2 = (n3 & 0x00FF00FF) + n4; // add codebook entries to vector for (int j = 0; j < stages; j++) { n3 = READ_UINT32(&codebook[entries[j]]) ^ 0x80808080; n1 += (n3 & 0xFF00FF00) >> 8; n2 += n3 & 0x00FF00FF; } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= n3 & 0x00FF00FF; } if (n2 & 0xFF00FF00) { n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= n3 & 0x00FF00FF; } // store result dst[x] = (n1 << 8) | n2; } dst += pitch / 4; } } return true; } // median of 3 static inline int midPred(int a, int b, int c) { if (a > b) { if (c > b) { if (c > a) b = a; else b = c; } } else { if (b > c) { if (c > a) b = c; else b = a; } } return b; } bool SVQ1Decoder::svq1DecodeMotionVector(Common::BitStream32BEMSB *s, Common::Point *mv, Common::Point **pmv) { for (int i = 0; i < 2; i++) { // get motion code int diff = _motionComponent->getSymbol(*s); if (diff < 0) return false; // error - invalid motion code else if (diff && s->getBit() != 0) diff = -diff; // add median of motion vector predictors and clip result if (i == 1) mv->y = ((diff + midPred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26; else mv->x = ((diff + midPred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26; } return true; } void SVQ1Decoder::svq1SkipBlock(byte *current, byte *previous, int pitch, int x, int y) { const byte *src = &previous[x + y * pitch]; byte *dst = current; for (int i = 0; i < 16; i++) { memcpy(dst, src, 16); src += pitch; dst += pitch; } } void SVQ1Decoder::putPixels8C(byte *block, const byte *pixels, int lineSize, int h) { for (int i = 0; i < h; i++) { *((uint32 *)block) = READ_UINT32(pixels); *((uint32 *)(block + 4)) = READ_UINT32(pixels + 4); pixels += lineSize; block += lineSize; } } static inline uint32 rndAvg32(uint32 a, uint32 b) { return (a | b) - (((a ^ b) & ~0x01010101) >> 1); } void SVQ1Decoder::putPixels8L2(byte *dst, const byte *src1, const byte *src2, int dstStride, int srcStride1, int srcStride2, int h) { for (int i = 0; i < h; i++) { uint32 a = READ_UINT32(&src1[srcStride1 * i]); uint32 b = READ_UINT32(&src2[srcStride2 * i]); *((uint32 *)&dst[dstStride * i]) = rndAvg32(a, b); a = READ_UINT32(&src1[srcStride1 * i + 4]); b = READ_UINT32(&src2[srcStride2 * i + 4]); *((uint32 *)&dst[dstStride * i + 4]) = rndAvg32(a, b); } } void SVQ1Decoder::putPixels8X2C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8L2(block, pixels, pixels + 1, lineSize, lineSize, lineSize, h); } void SVQ1Decoder::putPixels8Y2C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8L2(block, pixels, pixels + lineSize, lineSize, lineSize, lineSize, h); } void SVQ1Decoder::putPixels8XY2C(byte *block, const byte *pixels, int lineSize, int h) { for (int j = 0; j < 2; j++) { uint32 a = READ_UINT32(pixels); uint32 b = READ_UINT32(pixels + 1); uint32 l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL; uint32 h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); pixels += lineSize; for (int i = 0; i < h; i += 2) { a = READ_UINT32(pixels); b = READ_UINT32(pixels + 1); uint32 l1 = (a & 0x03030303UL) + (b & 0x03030303UL); uint32 h1 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); *((uint32 *)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL); pixels += lineSize; block += lineSize; a = READ_UINT32(pixels); b = READ_UINT32(pixels + 1); l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL; h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); *((uint32 *)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL); pixels += lineSize; block += lineSize; } pixels += 4 - lineSize * (h + 1); block += 4 - lineSize * h; } } void SVQ1Decoder::putPixels16C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8C(block, pixels, lineSize, h); putPixels8C(block + 8, pixels + 8, lineSize, h); } void SVQ1Decoder::putPixels16X2C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8X2C(block, pixels, lineSize, h); putPixels8X2C(block + 8, pixels + 8, lineSize, h); } void SVQ1Decoder::putPixels16Y2C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8Y2C(block, pixels, lineSize, h); putPixels8Y2C(block + 8, pixels + 8, lineSize, h); } void SVQ1Decoder::putPixels16XY2C(byte *block, const byte *pixels, int lineSize, int h) { putPixels8XY2C(block, pixels, lineSize, h); putPixels8XY2C(block + 8, pixels + 8, lineSize, h); } bool SVQ1Decoder::svq1MotionInterBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch, Common::Point *motion, int x, int y) { // predict and decode motion vector Common::Point *pmv[3]; pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } Common::Point mv; bool resultValid = svq1DecodeMotionVector(ss, &mv, pmv); if (!resultValid) return false; motion[0].x = motion[(x / 8) + 2].x = motion[(x / 8) + 3].x = mv.x; motion[0].y = motion[(x / 8) + 2].y = motion[(x / 8) + 3].y = mv.y; if (y + (mv.y >> 1) < 0) mv.y = 0; if (x + (mv.x >> 1) < 0) mv.x = 0; const byte *src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1)) * pitch]; byte *dst = current; // Halfpel motion compensation with rounding (a + b + 1) >> 1. // 4 motion compensation functions for the 4 halfpel positions // for 16x16 blocks switch(((mv.y & 1) << 1) + (mv.x & 1)) { case 0: putPixels16C(dst, src, pitch, 16); break; case 1: putPixels16X2C(dst, src, pitch, 16); break; case 2: putPixels16Y2C(dst, src, pitch, 16); break; case 3: putPixels16XY2C(dst, src, pitch, 16); break; default: break; } return true; } bool SVQ1Decoder::svq1MotionInter4vBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch, Common::Point *motion, int x, int y) { // predict and decode motion vector (0) Common::Point *pmv[4]; pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } Common::Point mv; bool resultValid = svq1DecodeMotionVector(ss, &mv, pmv); if (!resultValid) return false; // predict and decode motion vector (1) pmv[0] = &mv; if (y == 0) pmv[1] = pmv[2] = pmv[0]; else pmv[1] = &motion[(x / 8) + 3]; resultValid = svq1DecodeMotionVector(ss, &motion[0], pmv); if (!resultValid) return false; // predict and decode motion vector (2) pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; resultValid = svq1DecodeMotionVector(ss, &motion[(x / 8) + 2], pmv); if (!resultValid) return false; // predict and decode motion vector (3) pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; resultValid = svq1DecodeMotionVector(ss, pmv[3], pmv); if (!resultValid) return false; // form predictions for (int i = 0; i < 4; i++) { int mvx = pmv[i]->x + (i & 1) * 16; int mvy = pmv[i]->y + (i >> 1) * 16; // FIXME: clipping or padding? if (y + (mvy >> 1) < 0) mvy = 0; if (x + (mvx >> 1) < 0) mvx = 0; const byte *src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1)) * pitch]; byte *dst = current; // Halfpel motion compensation with rounding (a + b + 1) >> 1. // 4 motion compensation functions for the 4 halfpel positions // for 8x8 blocks switch(((mvy & 1) << 1) + (mvx & 1)) { case 0: putPixels8C(dst, src, pitch, 8); break; case 1: putPixels8X2C(dst, src, pitch, 8); break; case 2: putPixels8Y2C(dst, src, pitch, 8); break; case 3: putPixels8XY2C(dst, src, pitch, 8); break; default: break; } // select next block if (i & 1) current += (pitch - 1) * 8; else current += 8; } return true; } bool SVQ1Decoder::svq1DecodeDeltaBlock(Common::BitStream32BEMSB *ss, byte *current, byte *previous, int pitch, Common::Point *motion, int x, int y) { // get block type uint32 blockType = _blockType->getSymbol(*ss); // reset motion vectors if (blockType == SVQ1_BLOCK_SKIP || blockType == SVQ1_BLOCK_INTRA) { motion[0].x = motion[0].y = motion[(x / 8) + 2].x = motion[(x / 8) + 2].y = motion[(x / 8) + 3].x = motion[(x / 8) + 3].y = 0; } bool resultValid = true; switch (blockType) { case SVQ1_BLOCK_SKIP: svq1SkipBlock(current, previous, pitch, x, y); break; case SVQ1_BLOCK_INTER: resultValid = svq1MotionInterBlock(ss, current, previous, pitch, motion, x, y); if (!resultValid) { warning("svq1MotionInterBlock decode failure"); break; } resultValid = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTER_4V: resultValid = svq1MotionInter4vBlock(ss, current, previous, pitch, motion, x, y); if (!resultValid) { warning("svq1MotionInter4vBlock decode failure"); break; } resultValid = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTRA: resultValid = svq1DecodeBlockIntra(ss, current, pitch); break; default: break; } return resultValid; } } // End of namespace Image