/* ScummVM - Scumm Interpreter * Copyright (C) 2004 The ScummVM project * * The ReInherit Engine is (C)2000-2003 by Daniel Balsom. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ * */ // Background animation management module #include "reinherit.h" #include "yslib.h" #include "cvar_mod.h" #include "console_mod.h" #include "game_mod.h" #include "events_mod.h" #include "render_mod.h" #include "animation_mod.h" #include "animation.h" namespace Saga { static R_ANIMINFO AnimInfo; int ANIM_Register() { CVAR_RegisterFunc(CF_anim_info, "anim_info", NULL, R_CVAR_NONE, 0, 0); return R_SUCCESS; } int ANIM_Init() { AnimInfo.anim_limit = R_MAX_ANIMATIONS; AnimInfo.anim_count = 0; AnimInfo.initialized = 1; return R_SUCCESS; } int ANIM_Shutdown(void) { uint16 i; for (i = 0; i < R_MAX_ANIMATIONS; i++) { free(AnimInfo.anim_tbl[i]); } AnimInfo.initialized = 0; return R_SUCCESS; } int ANIM_Load(const byte *anim_resdata, size_t anim_resdata_len, uint16 *anim_id_p) { R_ANIMATION *new_anim; uint16 anim_id = 0; uint16 i; if (!AnimInfo.initialized) { return R_FAILURE; } // Find an unused animation slot for (i = 0; i < R_MAX_ANIMATIONS; i++) { if (AnimInfo.anim_tbl[i] == NULL) { anim_id = i; break; } } if (i == R_MAX_ANIMATIONS) { return R_FAILURE; } new_anim = (R_ANIMATION *)malloc(sizeof *new_anim); if (new_anim == NULL) { R_printf(R_STDERR, "Error: Allocation failure.\n"); return R_MEM; } new_anim->resdata = anim_resdata; new_anim->resdata_len = anim_resdata_len; if (GAME_GetGameType() == R_GAMETYPE_ITE) { if (ANIM_GetNumFrames(anim_resdata, &new_anim->n_frames) != R_SUCCESS) { R_printf(R_STDERR, "Error: Couldn't get animation frame count.\n"); return R_FAILURE; } // Cache frame offsets new_anim->frame_offsets = (size_t *)malloc(new_anim->n_frames * sizeof *new_anim->frame_offsets); if (new_anim->frame_offsets == NULL) { R_printf(R_STDERR, "Error: Allocation failure.\n"); return R_MEM; } for (i = 0; i < new_anim->n_frames; i++) { ANIM_GetFrameOffset(anim_resdata, i + 1, &new_anim->frame_offsets[i]); } } else { new_anim->cur_frame_p = anim_resdata + SAGA_FRAME_HEADER_LEN; new_anim->cur_frame_len = anim_resdata_len - SAGA_FRAME_HEADER_LEN; ANIM_GetNumFrames(anim_resdata, &new_anim->n_frames); } // Set animation data new_anim->current_frame = 1; new_anim->end_frame = new_anim->n_frames; new_anim->stop_frame = new_anim->end_frame; new_anim->frame_time = R_DEFAULT_FRAME_TIME; new_anim->flags = 0; new_anim->play_flag = 0; new_anim->link_flag = 0; new_anim->link_id = 0; AnimInfo.anim_tbl[anim_id] = new_anim; *anim_id_p = anim_id; AnimInfo.anim_count++; return R_SUCCESS; } int ANIM_Link(uint16 anim_id1, uint16 anim_id2) { R_ANIMATION *anim1; R_ANIMATION *anim2; if ((anim_id1 >= AnimInfo.anim_count) || (anim_id2 >= AnimInfo.anim_count)) { return R_FAILURE; } anim1 = AnimInfo.anim_tbl[anim_id1]; anim2 = AnimInfo.anim_tbl[anim_id2]; if ((anim1 == NULL) || (anim2 == NULL)) { return R_FAILURE; } anim1->link_id = anim_id2; anim1->link_flag = 1; anim2->frame_time = anim1->frame_time; return R_SUCCESS; } int ANIM_Play(uint16 anim_id, int vector_time) { R_EVENT event; R_ANIMATION *anim; R_ANIMATION *link_anim; uint16 link_anim_id; R_BUFFER_INFO buf_info; byte *display_buf; const byte *nextf_p; size_t nextf_len; uint16 frame; int result; R_GAME_DISPLAYINFO disp_info; if (anim_id >= AnimInfo.anim_count) { return R_FAILURE; } GAME_GetDisplayInfo(&disp_info); RENDER_GetBufferInfo(&buf_info); display_buf = buf_info.r_bg_buf; anim = AnimInfo.anim_tbl[anim_id]; if (anim == NULL) { return R_FAILURE; } if (anim->play_flag) { frame = anim->current_frame; if (GAME_GetGameType() == R_GAMETYPE_ITE) { result = ITE_DecodeFrame(anim->resdata, anim->frame_offsets[frame - 1], display_buf, disp_info.logical_w * disp_info.logical_h); if (result != R_SUCCESS) { R_printf(R_STDERR, "ANIM_Play: Error decoding frame %u", anim->current_frame); anim->play_flag = 0; return R_FAILURE; } } else { if (anim->cur_frame_p == NULL) { R_printf(R_STDERR, "ANIM_Play: Frames exhausted.\n"); return R_FAILURE; } result = IHNM_DecodeFrame(display_buf, disp_info.logical_w * disp_info.logical_h, anim->cur_frame_p, anim->cur_frame_len, &nextf_p, &nextf_len); if (result != R_SUCCESS) { R_printf(R_STDERR, "ANIM_Play: Error decoding frame %u", anim->current_frame); anim->play_flag = 0; return R_FAILURE; } anim->cur_frame_p = nextf_p; anim->cur_frame_len = nextf_len; } anim->current_frame++; } anim->play_flag = 1; if (anim->current_frame > anim->n_frames) { // Animation done playing if (anim->link_flag) { // If this animation has a link, follow it anim->play_flag = 0; anim->current_frame = 1; link_anim_id = anim->link_id; link_anim = AnimInfo.anim_tbl[link_anim_id]; if (link_anim != NULL) { link_anim->current_frame = 1; link_anim->play_flag = 1; } anim_id = link_anim_id; } else if (anim->flags & ANIM_LOOP) { // Loop animation anim->current_frame = 1; anim->cur_frame_p = anim->resdata + SAGA_FRAME_HEADER_LEN; anim->cur_frame_len = anim->resdata_len - SAGA_FRAME_HEADER_LEN; } else { // No link, stop playing anim->current_frame = anim->n_frames; anim->play_flag = 0; if (anim->flags & ANIM_ENDSCENE) { // This animation ends the scene event.type = R_ONESHOT_EVENT; event.code = R_SCENE_EVENT; event.op = EVENT_END; event.time = anim->frame_time + vector_time; EVENT_Queue(&event); } return R_SUCCESS; } } event.type = R_ONESHOT_EVENT; event.code = R_ANIM_EVENT; event.op = EVENT_FRAME; event.param = anim_id; event.time = anim->frame_time + vector_time; EVENT_Queue(&event); return R_SUCCESS; } int ANIM_Reset() { uint16 i; for (i = 0; i < R_MAX_ANIMATIONS; i++) { ANIM_Free(i); } AnimInfo.anim_count = 0; return R_SUCCESS; } int ANIM_SetFlag(uint16 anim_id, uint16 flag) { R_ANIMATION *anim; if (anim_id > AnimInfo.anim_count) { return R_FAILURE; } anim = AnimInfo.anim_tbl[anim_id]; if (anim == NULL) { return R_FAILURE; } anim->flags |= flag; return R_SUCCESS; } int ANIM_SetFrameTime(uint16 anim_id, int time) { R_ANIMATION *anim; if (anim_id > AnimInfo.anim_count) { return R_FAILURE; } anim = AnimInfo.anim_tbl[anim_id]; if (anim == NULL) { return R_FAILURE; } anim->frame_time = time; return R_SUCCESS; } int ANIM_Free(uint16 anim_id) { R_ANIMATION *anim; if (anim_id > AnimInfo.anim_count) { return R_FAILURE; } anim = AnimInfo.anim_tbl[anim_id]; if (anim == NULL) { return R_FAILURE; } if (GAME_GetGameType() == R_GAMETYPE_ITE) { free(anim->frame_offsets); anim->frame_offsets = NULL; } free(anim); AnimInfo.anim_tbl[anim_id] = NULL; AnimInfo.anim_count--; return R_SUCCESS; } // The actual number of frames present in an animation resource is // sometimes less than number present in the .nframes member of the // animation header. For this reason, the function attempts to find // the last valid frame number, which it returns via 'n_frames' int ANIM_GetNumFrames(const byte *anim_resource, uint16 *n_frames) { R_ANIMATION_HEADER ah; size_t offset; int magic; int x; const byte *read_p = anim_resource; if (!AnimInfo.initialized) { return R_FAILURE; } ah.magic = ys_read_u16_le(read_p, &read_p); ah.screen_w = ys_read_u16_le(read_p, &read_p); ah.screen_h = ys_read_u16_le(read_p, &read_p); ah.unknown06 = ys_read_u8(read_p, &read_p); ah.unknown07 = ys_read_u8(read_p, &read_p); ah.nframes = ys_read_u8(read_p, NULL); if (GAME_GetGameType() == R_GAMETYPE_IHNM) { *n_frames = ah.nframes; } if (ah.magic == 68) { for (x = ah.nframes; x > 0; x--) { if (ANIM_GetFrameOffset(anim_resource, x, &offset) != R_SUCCESS) { return R_FAILURE; } magic = *(anim_resource + offset); if (magic == SAGA_FRAME_HEADER_MAGIC) { *n_frames = x; return R_SUCCESS; } } return R_FAILURE; } return R_FAILURE; } int ITE_DecodeFrame(const byte * resdata, size_t frame_offset, byte * buf, size_t buf_len) { R_ANIMATION_HEADER ah; R_FRAME_HEADER fh; const byte *read_p = resdata; byte *write_p; uint16 magic; uint16 x_start; uint16 y_start; uint32 screen_w; uint32 screen_h; int mark_byte; byte data_byte; int new_row; uint16 control_ch; uint16 param_ch; uint16 runcount; int x_vector; uint16 i; if (!AnimInfo.initialized) { return R_FAILURE; } // Read animation header ah.magic = ys_read_u16_le(read_p, &read_p); ah.screen_w = ys_read_u16_le(read_p, &read_p); ah.screen_h = ys_read_u16_le(read_p, &read_p); ah.unknown06 = ys_read_u8(read_p, &read_p); ah.unknown07 = ys_read_u8(read_p, &read_p); ah.nframes = ys_read_u8(read_p, &read_p); ah.flags = ys_read_u8(read_p, &read_p); ah.unknown10 = ys_read_u8(read_p, &read_p); ah.unknown11 = ys_read_u8(read_p, &read_p); screen_w = ah.screen_w; screen_h = ah.screen_h; if ((screen_w * screen_h) > buf_len) { // Buffer argument is too small to hold decoded frame, abort. R_printf(R_STDERR, "ITE_DecodeFrame: Buffer size inadequate.\n"); return R_FAILURE; } // Read frame header read_p = resdata + frame_offset; // Check for frame magic byte magic = ys_read_u8(read_p, &read_p); if (magic != SAGA_FRAME_HEADER_MAGIC) { R_printf(R_STDERR, "ITE_DecodeFrame: Invalid frame offset.\n"); return R_FAILURE; } // For some strange reason, the animation header is in little // endian format, but the actual RLE encoded frame data, // including the frame header, is in big endian format. fh.x_start = ys_read_u16_be(read_p, &read_p); fh.y_start = ys_read_u8(read_p, &read_p); read_p++; /* Skip pad byte */ fh.x_pos = ys_read_u16_be(read_p, &read_p); fh.y_pos = ys_read_u16_be(read_p, &read_p); fh.width = ys_read_u16_be(read_p, &read_p); fh.height = ys_read_u16_be(read_p, &read_p); x_start = fh.x_start; y_start = fh.y_start; // Setup write pointer to the draw origin write_p = (buf + (y_start * screen_w) + x_start); // Begin RLE decompression to output buffer do { mark_byte = ys_read_u8(read_p, &read_p); switch (mark_byte) { case 0x10: // Long Unencoded Run runcount = ys_read_s16_be(read_p, &read_p); for (i = 0; i < runcount; i++) { if (*read_p != 0) { *write_p = *read_p; } write_p++; read_p++; } continue; break; case 0x20: // Long encoded run runcount = ys_read_s16_be(read_p, &read_p); data_byte = *read_p++; for (i = 0; i < runcount; i++) { *write_p++ = data_byte; } continue; break; case 0x2F: // End of row x_vector = ys_read_s16_be(read_p, &read_p); new_row = ys_read_u8(read_p, &read_p); // Set write pointer to the new draw origin write_p = buf + ((y_start + new_row) * screen_w) + x_start + x_vector; continue; break; case 0x30: // Reposition command x_vector = ys_read_s16_be(read_p, &read_p); write_p += x_vector; continue; break; case 0x3F: // End of frame marker return R_SUCCESS; break; default: break; } // Mask all but two high order control bits control_ch = mark_byte & 0xC0U; param_ch = mark_byte & 0x3FU; switch (control_ch) { case 0xC0: // 1100 0000 // Run of empty pixels runcount = param_ch + 1; write_p += runcount; continue; break; case 0x80: // 1000 0000 // Run of compressed data runcount = param_ch + 1; data_byte = *read_p++; for (i = 0; i < runcount; i++) { *write_p++ = data_byte; } continue; break; case 0x40: // 0100 0000 // Uncompressed run runcount = param_ch + 1; for (i = 0; i < runcount; i++) { if (*read_p != 0) { *write_p = *read_p; } write_p++; read_p++; } continue; break; default: // Unknown marker found - abort R_printf(R_STDERR, "ITE_DecodeFrame: Invalid RLE marker encountered.\n"); return R_FAILURE; break; } } while (mark_byte != 63); // end of frame marker return R_SUCCESS; } int IHNM_DecodeFrame(byte *decode_buf, size_t decode_buf_len, const byte *thisf_p, size_t thisf_len, const byte **nextf_p, size_t *nextf_len) { int in_ch; int decoded_data = 0; int cont_flag = 1; int control_ch; int param_ch; byte data_pixel; int x_origin = 0; int y_origin = 0; int x_vector; int new_row; uint16 runcount; uint16 c; size_t in_ch_offset; const byte *inbuf_p = thisf_p; size_t inbuf_remain = thisf_len; byte *outbuf_p = decode_buf; byte *outbuf_endp = (decode_buf + decode_buf_len) - 1; size_t outbuf_remain = decode_buf_len; R_GAME_DISPLAYINFO di; GAME_GetDisplayInfo(&di); *nextf_p = NULL; for (; cont_flag; decoded_data = 1) { in_ch_offset = (size_t) (inbuf_p - thisf_p); in_ch = *inbuf_p++; inbuf_remain--; switch (in_ch) { case 0x0F: // 15: Frame header { int param1; int param2; int param3; int param4; int param5; int param6; if (inbuf_remain < 13) { R_printf(R_STDERR, "0x%02X: Input buffer underrun.", in_ch); return R_FAILURE; } param1 = ys_read_u16_be(inbuf_p, &inbuf_p); param2 = ys_read_u16_be(inbuf_p, &inbuf_p); inbuf_p++; // skip 1? param3 = ys_read_u16_be(inbuf_p, &inbuf_p); param4 = ys_read_u16_be(inbuf_p, &inbuf_p); param5 = ys_read_u16_be(inbuf_p, &inbuf_p); param6 = ys_read_u16_be(inbuf_p, &inbuf_p); inbuf_remain -= 13; x_origin = param1; y_origin = param2; outbuf_p = decode_buf + x_origin + (y_origin * di.logical_w); if (outbuf_p > outbuf_endp) { R_printf(R_STDERR, "0x%02X: (0x%X) Invalid output position. (x: %d, y: %d)\n", in_ch, in_ch_offset, x_origin, y_origin); return R_FAILURE; } outbuf_remain = (outbuf_endp - outbuf_p) + 1; continue; } break; case 0x10: // Long Unencoded Run runcount = ys_read_s16_be(inbuf_p, &inbuf_p); if (inbuf_remain < runcount) { R_printf(R_STDERR, "0x%02X: Input buffer underrun.", in_ch); return R_FAILURE; } if (outbuf_remain < runcount) { R_printf(R_STDERR, "0x%02X: Output buffer overrun.", in_ch); return R_FAILURE; } for (c = 0; c < runcount; c++) { if (*inbuf_p != 0) { *outbuf_p = *inbuf_p; } outbuf_p++; inbuf_p++; } inbuf_remain -= runcount; outbuf_remain -= runcount; continue; break; case 0x1F: // 31: Unusued? if (inbuf_remain < 3) { R_printf(R_STDERR, "0x%02X: Input buffer underrun.", in_ch); return R_FAILURE; } inbuf_p += 3; inbuf_remain -= 3; continue; break; case 0x20: // Long compressed run if (inbuf_remain <= 3) { R_printf(R_STDERR, "0x%02X: Input buffer underrun.", in_ch); return R_FAILURE; } runcount = ys_read_s16_be(inbuf_p, &inbuf_p); data_pixel = *inbuf_p++; for (c = 0; c < runcount; c++) { *outbuf_p++ = data_pixel; } outbuf_remain -= runcount; inbuf_remain -= 1; continue; break; case 0x2F: // End of row if (inbuf_remain <= 4) { return R_FAILURE; } x_vector = ys_read_s16_be(inbuf_p, &inbuf_p); new_row = ys_read_s16_be(inbuf_p, &inbuf_p); outbuf_p = decode_buf + ((y_origin + new_row) * di.logical_w) + x_origin + x_vector; inbuf_remain -= 4; outbuf_remain = (outbuf_endp - outbuf_p) + 1; continue; break; case 0x30: // Reposition command if (inbuf_remain < 2) { return R_FAILURE; } x_vector = ys_read_s16_be(inbuf_p, &inbuf_p); if (((x_vector > 0) && ((size_t) x_vector > outbuf_remain)) || (-x_vector > outbuf_p - decode_buf)) { R_printf(R_STDERR, "0x30: Invalid x_vector.\n"); return R_FAILURE; } outbuf_p += x_vector; outbuf_remain -= x_vector; inbuf_remain -= 2; continue; break; case 0x3F: // 68: Frame end marker printf("0x3F: Frame end marker\n"); if (decoded_data && inbuf_remain > 0) { *nextf_p = inbuf_p; *nextf_len = inbuf_remain; } else { *nextf_p = NULL; *nextf_len = 0; } cont_flag = 0; continue; break; default: break; } control_ch = in_ch & 0xC0; param_ch = in_ch & 0x3f; switch (control_ch) { case 0xC0: // Run of empty pixels runcount = param_ch + 1; if (outbuf_remain < runcount) { return R_FAILURE; } outbuf_p += runcount; outbuf_remain -= runcount; continue; break; case 0x80: // Run of compressed data runcount = param_ch + 1; if ((outbuf_remain < runcount) || (inbuf_remain <= 1)) { return R_FAILURE; } data_pixel = *inbuf_p++; inbuf_remain--; for (c = 0; c < runcount; c++) { *outbuf_p++ = data_pixel; } outbuf_remain -= runcount; continue; break; case 0x40: // Uncompressed run runcount = param_ch + 1; if ((outbuf_remain < runcount) || (inbuf_remain < runcount)) { return R_FAILURE; } for (c = 0; c < runcount; c++) { if (*inbuf_p != 0) { *outbuf_p = *inbuf_p; } outbuf_p++; inbuf_p++; } inbuf_remain -= runcount; outbuf_remain -= runcount; continue; break; default: break; } } return R_SUCCESS; } int ANIM_GetFrameOffset(const byte *resdata, uint16 find_frame, size_t *frame_offset_p) { R_ANIMATION_HEADER ah; uint16 num_frames; uint16 current_frame; const byte *read_p = resdata; const byte *search_ptr; byte mark_byte; uint16 control; uint16 runcount; uint16 magic; if (!AnimInfo.initialized) { return R_FAILURE; } // Read animation header ah.magic = ys_read_u16_le(read_p, &read_p); ah.screen_w = ys_read_u16_le(read_p, &read_p); ah.screen_h = ys_read_u16_le(read_p, &read_p); ah.unknown06 = ys_read_u8(read_p, &read_p); ah.unknown07 = ys_read_u8(read_p, &read_p); ah.nframes = ys_read_u8(read_p, &read_p); ah.flags = ys_read_u8(read_p, &read_p); ah.unknown10 = ys_read_u8(read_p, &read_p); ah.unknown11 = ys_read_u8(read_p, &read_p); num_frames = ah.nframes; if ((find_frame < 1) || (find_frame > num_frames)) { return R_FAILURE; } search_ptr = read_p; for (current_frame = 1; current_frame < find_frame; current_frame++) { magic = ys_read_u8(search_ptr, &search_ptr); if (magic != SAGA_FRAME_HEADER_MAGIC) { // Frame sync failure. Magic Number not found return R_FAILURE; } search_ptr += SAGA_FRAME_HEADER_LEN; // For some strange reason, the animation header is in little // endian format, but the actual RLE encoded frame data, // including the frame header, is in big endian format. */ do { mark_byte = *search_ptr; switch (mark_byte) { case 0x3F: // End of frame marker search_ptr++; continue; break; case 0x30: // Reposition command search_ptr += 3; continue; break; case 0x2F: // End of row marker search_ptr += 4; continue; break; case 0x20: // Long compressed run marker search_ptr += 4; continue; break; case 0x10: // (16) 0001 0000 // Long Uncompressed Run search_ptr++; runcount = ys_read_s16_be(search_ptr, &search_ptr); search_ptr += runcount; continue; break; default: break; } // Mask all but two high order (control) bits control = mark_byte & 0xC0; switch (control) { case 0xC0: // Run of empty pixels search_ptr++; continue; break; case 0x80: // Run of compressed data search_ptr += 2; // Skip data byte continue; break; case 0x40: // Uncompressed run search_ptr++; runcount = (mark_byte & 0x3f) + 1; search_ptr += runcount; continue; break; default: // Encountered unknown RLE marker, abort return R_FAILURE; break; } } while (mark_byte != 63); } *frame_offset_p = (search_ptr - resdata); return R_SUCCESS; } static void CF_anim_info(int argc, char *argv[]) { uint16 anim_ct; uint16 i; uint16 idx; YS_IGNORE_PARAM(argc); YS_IGNORE_PARAM(argv); anim_ct = AnimInfo.anim_count; CON_Print("There are %d animations loaded:", anim_ct); for (idx = 0, i = 0; i < anim_ct; idx++, i++) { while (AnimInfo.anim_tbl[idx] == NULL) { idx++; } CON_Print("%02d: Frames: %u Flags: %u", i, AnimInfo.anim_tbl[idx]->n_frames, AnimInfo.anim_tbl[idx]->flags); } return; } } // End of namespace Saga