/* ScummVM - Scumm Interpreter * Copyright (C) 2001 Ludvig Strigeus * Copyright (C) 2001/2002 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ * */ #include "stdafx.h" #include "scumm.h" #include "actor.h" #include "common/util.h" #include #if !defined(__GNUC__) #pragma START_PACK_STRUCTS #endif struct Box { /* Internal walkbox file format */ union { struct { int16 ulx, uly; int16 urx, ury; int16 lrx, lry; int16 llx, lly; byte mask; byte flags; uint16 scale; } GCC_PACK old; struct { int32 ulx, uly; int32 urx, ury; int32 lrx, lry; int32 llx, lly; uint32 mask; // FIXME - is 'mask' really here? uint32 flags; // FIXME - is 'flags' really here? uint32 scaleSlot; uint32 scale; uint32 unk2; uint32 unk3; } GCC_PACK v8; } GCC_PACK; } GCC_PACK; #if !defined(__GNUC__) #pragma END_PACK_STRUCTS #endif struct PathNode { /* Linked list of walkpath nodes */ uint index; struct PathNode *left, *right; }; struct PathVertex { /* Linked list of walkpath nodes */ PathNode *left; PathNode *right; }; #define BOX_MATRIX_SIZE 2000 PathVertex *unkMatrixProc1(PathVertex *vtx, PathNode *node); byte Scumm::getMaskFromBox(int box) { Box *ptr = getBoxBaseAddr(box); if (!ptr) return 0; if (_features & GF_AFTER_V8) return (byte) FROM_LE_32(ptr->v8.mask); else return ptr->old.mask; } void Scumm::setBoxFlags(int box, int val) { debug(2, "setBoxFlags(%d, 0x%02x)", box, val); /* FULL_THROTTLE stuff */ if (val & 0xC000) { assert(box >= 0 && box < 65); _extraBoxFlags[box] = val; } else { Box *b = getBoxBaseAddr(box); assert(b); if (_features & GF_AFTER_V8) b->v8.flags = TO_LE_32(val); else b->old.flags = val; } } byte Scumm::getBoxFlags(int box) { Box *ptr = getBoxBaseAddr(box); if (!ptr) return 0; if (_features & GF_AFTER_V8) return (byte) FROM_LE_32(ptr->v8.flags); else return ptr->old.flags; } void Scumm::setBoxScale(int box, int scale) { Box *b = getBoxBaseAddr(box); if (_features & GF_AFTER_V8) b->v8.scale = TO_LE_32(scale); else b->old.scale = TO_LE_16(scale); } void Scumm::setBoxScaleSlot(int box, int slot) { Box *b = getBoxBaseAddr(box); b->v8.scaleSlot = TO_LE_32(slot); } int Scumm::getScale(int box, int x, int y) { Box *ptr = getBoxBaseAddr(box); assert(ptr); if (_features & GF_AFTER_V8) { int slot = FROM_LE_32(ptr->v8.scaleSlot); if (slot) { assert(1 <= slot && slot <= 20); int scaleX = 0, scaleY = 0; ScaleSlot &s = _scaleSlots[slot-1]; if (s.y1 == s.y2 && s.x1 == s.x2) error("Invalid scale slot %d", slot); if (s.y1 != s.y2) { if (y < 0) y = 0; scaleY = (s.scale2 - s.scale1) * (y - s.y1) / (s.y2 - s.y1) + s.scale1; if (s.x1 == s.x2) { return scaleY; } } scaleX = (s.scale2 - s.scale1) * (x - s.x1) / (s.x2 - s.x1) + s.scale1; if (s.y1 == s.y2) { return scaleX; } else { return (scaleX + scaleY - s.x1) / 2; } } else return FROM_LE_32(ptr->v8.scale); } else { uint16 scale = FROM_LE_16(ptr->old.scale); if (scale & 0x8000) { scale = (scale & 0x7FFF) + 1; byte *resptr = getResourceAddress(rtScaleTable, scale); if (resptr == NULL) error("Scale table %d not defined", scale); if (y >= _realHeight) y = _realHeight - 1; else if (y < 0) y = 0; scale = resptr[y]; } return scale; } } int Scumm::getBoxScale(int box) { if (_features & GF_NO_SCALLING) return 255; Box *ptr = getBoxBaseAddr(box); if (!ptr) return 255; if (_features & GF_AFTER_V8) return FROM_LE_32(ptr->v8.scale); else return FROM_LE_16(ptr->old.scale); } byte Scumm::getNumBoxes() { byte *ptr = getResourceAddress(rtMatrix, 2); if (!ptr) return 0; if (_features & GF_AFTER_V8) return (byte) READ_LE_UINT32(ptr); else return ptr[0]; } Box *Scumm::getBoxBaseAddr(int box) { byte *ptr = getResourceAddress(rtMatrix, 2); if (!ptr) return NULL; checkRange(ptr[0] - 1, 0, box, "Illegal box %d"); if (_features & GF_SMALL_HEADER) { if (_features & GF_OLD256) return (Box *)(ptr + box * (SIZEOF_BOX - 2) + 1); else return (Box *)(ptr + box * SIZEOF_BOX + 1); } else if (_features & GF_AFTER_V8) { return (Box *)(ptr + box * 52 + 4); } else return (Box *)(ptr + box * SIZEOF_BOX + 2); } int Scumm::getSpecialBox(int x, int y) { int i; int numOfBoxes; byte flag; numOfBoxes = getNumBoxes() - 1; for (i = numOfBoxes; i >= 0; i--) { flag = getBoxFlags(i); if (!(flag & kBoxInvisible) && (flag & kBoxPlayerOnly)) return (-1); if (checkXYInBoxBounds(i, x, y)) return (i); } return (-1); } bool Scumm::checkXYInBoxBounds(int b, int x, int y) { BoxCoords box; if (b == 0 && (!(_features & GF_SMALL_HEADER))) return false; getBoxCoordinates(b, &box); if (x < box.ul.x && x < box.ur.x && x < box.lr.x && x < box.ll.x) return false; if (x > box.ul.x && x > box.ur.x && x > box.lr.x && x > box.ll.x) return false; if (y < box.ul.y && y < box.ur.y && y < box.lr.y && y < box.ll.y) return false; if (y > box.ul.y && y > box.ur.y && y > box.lr.y && y > box.ll.y) return false; if (box.ul.x == box.ur.x && box.ul.y == box.ur.y && box.lr.x == box.ll.x && box.lr.y == box.ll.y || box.ul.x == box.ll.x && box.ul.y == box.ll.y && box.ur.x == box.lr.x && box.ur.y == box.lr.y) { ScummPoint pt; pt = closestPtOnLine(box.ul.x, box.ul.y, box.lr.x, box.lr.y, x, y); if (distanceFromPt(x, y, pt.x, pt.y) <= 4) return true; } if (!compareSlope(box.ul.x, box.ul.y, box.ur.x, box.ur.y, x, y)) return false; if (!compareSlope(box.ur.x, box.ur.y, box.lr.x, box.lr.y, x, y)) return false; if (!compareSlope(box.ll.x, box.ll.y, x, y, box.lr.x, box.lr.y)) return false; if (!compareSlope(box.ul.x, box.ul.y, x, y, box.ll.x, box.ll.y)) return false; return true; } void Scumm::getBoxCoordinates(int boxnum, BoxCoords *box) { Box *bp = getBoxBaseAddr(boxnum); if (_features & GF_AFTER_V8) { box->ul.x = (int32)FROM_LE_32(bp->v8.ulx); box->ul.y = (int32)FROM_LE_32(bp->v8.uly); box->ur.x = (int32)FROM_LE_32(bp->v8.urx); box->ur.y = (int32)FROM_LE_32(bp->v8.ury); box->ll.x = (int32)FROM_LE_32(bp->v8.llx); box->ll.y = (int32)FROM_LE_32(bp->v8.lly); box->lr.x = (int32)FROM_LE_32(bp->v8.lrx); box->lr.y = (int32)FROM_LE_32(bp->v8.lry); // FIXME: Some walkboxes in CMI appear to have been flipped, // in the sense that for instance the lower boundary is above // the upper one. Can that really be the case, or is there // some more sinister problem afoot? // // Is this fix sufficient, or will we need something more // elaborate? if (box->ul.y > box->ll.y && box->ur.y > box->lr.y) { SWAP(box->ul.x, box->ll.x); SWAP(box->ul.y, box->ll.y); SWAP(box->ur.x, box->lr.x); SWAP(box->ur.y, box->lr.y); } if (box->ul.x > box->ur.x && box->ll.x > box->lr.x) { SWAP(box->ul.x, box->ur.x); SWAP(box->ul.y, box->ur.y); SWAP(box->ll.x, box->lr.x); SWAP(box->ll.y, box->lr.y); } } else { box->ul.x = (int16)FROM_LE_16(bp->old.ulx); box->ul.y = (int16)FROM_LE_16(bp->old.uly); box->ur.x = (int16)FROM_LE_16(bp->old.urx); box->ur.y = (int16)FROM_LE_16(bp->old.ury); box->ll.x = (int16)FROM_LE_16(bp->old.llx); box->ll.y = (int16)FROM_LE_16(bp->old.lly); box->lr.x = (int16)FROM_LE_16(bp->old.lrx); box->lr.y = (int16)FROM_LE_16(bp->old.lry); } } uint Scumm::distanceFromPt(int x, int y, int ptx, int pty) { int diffx, diffy; diffx = abs(ptx - x); if (diffx >= 0x100) return 0xFFFF; diffy = abs(pty - y); if (diffy >= 0x100) return 0xFFFF; diffx *= diffx; diffy *= diffy; return diffx + diffy; } ScummPoint Scumm::closestPtOnLine(int ulx, int uly, int llx, int lly, int x, int y) { int lydiff, lxdiff; int32 dist, a, b, c; int x2, y2; ScummPoint pt; if (llx == ulx) { // Vertical line? x2 = ulx; y2 = y; } else if (lly == uly) { // Horizontal line? x2 = x; y2 = uly; } else { lydiff = lly - uly; lxdiff = llx - ulx; if (abs(lxdiff) > abs(lydiff)) { dist = lxdiff * lxdiff + lydiff * lydiff; a = ulx * lydiff / lxdiff; b = x * lxdiff / lydiff; c = (a + b - uly + y) * lydiff * lxdiff / dist; x2 = c; y2 = c * lydiff / lxdiff - a + uly; } else { dist = lydiff * lydiff + lxdiff * lxdiff; a = uly * lxdiff / lydiff; b = y * lydiff / lxdiff; c = (a + b - ulx + x) * lydiff * lxdiff / dist; y2 = c; x2 = c * lxdiff / lydiff - a + ulx; } } lxdiff = llx - ulx; lydiff = lly - uly; if (abs(lydiff) < abs(lxdiff)) { if (lxdiff > 0) { if (x2 < ulx) { type1:; x2 = ulx; y2 = uly; } else if (x2 > llx) { type2:; x2 = llx; y2 = lly; } } else { if (x2 > ulx) goto type1; if (x2 < llx) goto type2; } } else { if (lydiff > 0) { if (y2 < uly) goto type1; if (y2 > lly) goto type2; } else { if (y2 > uly) goto type1; if (y2 < lly) goto type2; } } pt.x = x2; pt.y = y2; return pt; } bool Scumm::inBoxQuickReject(int b, int x, int y, int threshold) { int t; BoxCoords box; getBoxCoordinates(b, &box); if (threshold == 0) return true; t = x - threshold; if (t > box.ul.x && t > box.ur.x && t > box.lr.x && t > box.ll.x) return false; t = x + threshold; if (t < box.ul.x && t < box.ur.x && t < box.lr.x && t < box.ll.x) return false; t = y - threshold; if (t > box.ul.y && t > box.ur.y && t > box.lr.y && t > box.ll.y) return false; t = y + threshold; if (t < box.ul.y && t < box.ur.y && t < box.lr.y && t < box.ll.y) return false; return true; } AdjustBoxResult Scumm::getClosestPtOnBox(int b, int x, int y) { ScummPoint pt; AdjustBoxResult best; uint dist; uint bestdist = (uint) 0xFFFF; BoxCoords box; getBoxCoordinates(b, &box); pt = closestPtOnLine(box.ul.x, box.ul.y, box.ur.x, box.ur.y, x, y); dist = distanceFromPt(x, y, pt.x, pt.y); if (dist < bestdist) { bestdist = dist; best.x = pt.x; best.y = pt.y; } pt = closestPtOnLine(box.ur.x, box.ur.y, box.lr.x, box.lr.y, x, y); dist = distanceFromPt(x, y, pt.x, pt.y); if (dist < bestdist) { bestdist = dist; best.x = pt.x; best.y = pt.y; } pt = closestPtOnLine(box.lr.x, box.lr.y, box.ll.x, box.ll.y, x, y); dist = distanceFromPt(x, y, pt.x, pt.y); if (dist < bestdist) { bestdist = dist; best.x = pt.x; best.y = pt.y; } pt = closestPtOnLine(box.ll.x, box.ll.y, box.ul.x, box.ul.y, x, y); dist = distanceFromPt(x, y, pt.x, pt.y); if (dist < bestdist) { bestdist = dist; best.x = pt.x; best.y = pt.y; } best.dist = bestdist; return best; } byte *Scumm::getBoxMatrixBaseAddr() { byte *ptr = getResourceAddress(rtMatrix, 1); if (*ptr == 0xFF) ptr++; return ptr; } /* * Compute if there is a way that connects box 'from' with box 'to'. * Returns the number of a box adjactant to 'from' that is the next on the * way to 'to' (this can be 'to' itself or a third box). * If there is no connection -1 is return. */ int Scumm::getPathToDestBox(byte from, byte to) { byte *boxm; byte i; int dest = -1; if (from == to) return to; boxm = getBoxMatrixBaseAddr(); i = 0; while (i != from) { while (*boxm != 0xFF) boxm += 3; i++; boxm++; } while (boxm[0] != 0xFF) { if (boxm[0] <= to && to <= boxm[1]) dest = boxm[2]; boxm += 3; } return dest; } /* * Computes the next point actor a has to walk towards in a straight * line in order to get from box1 to box3 via box2. */ bool Scumm::findPathTowards(Actor *a, byte box1nr, byte box2nr, byte box3nr, int16 &foundPathX, int16 &foundPathY) { BoxCoords box1; BoxCoords box2; ScummPoint tmp; int i, j; int flag; int q, pos; getBoxCoordinates(box1nr, &box1); getBoxCoordinates(box2nr, &box2); for (i = 0; i < 4; i++) { for (j = 0; j < 4; j++) { if (box1.ul.x == box1.ur.x && box1.ul.x == box2.ul.x && box1.ul.x == box2.ur.x) { flag = 0; if (box1.ul.y > box1.ur.y) { SWAP(box1.ul.y, box1.ur.y); flag |= 1; } if (box2.ul.y > box2.ur.y) { SWAP(box2.ul.y, box2.ur.y); flag |= 2; } if (box1.ul.y > box2.ur.y || box2.ul.y > box1.ur.y || (box1.ur.y == box2.ul.y || box2.ur.y == box1.ul.y) && box1.ul.y != box1.ur.y && box2.ul.y != box2.ur.y) { if (flag & 1) SWAP(box1.ul.y, box1.ur.y); if (flag & 2) SWAP(box2.ul.y, box2.ur.y); } else { pos = a->y; if (box2nr == box3nr) { int diffX = a->walkdata.destx - a->x; int diffY = a->walkdata.desty - a->y; int boxDiffX = box1.ul.x - a->x; if (diffX != 0) { int t; diffY *= boxDiffX; t = diffY / diffX; if (t == 0 && (diffY <= 0 || diffX <= 0) && (diffY >= 0 || diffX >= 0)) t = -1; pos = a->y + t; } } q = pos; if (q < box2.ul.y) q = box2.ul.y; if (q > box2.ur.y) q = box2.ur.y; if (q < box1.ul.y) q = box1.ul.y; if (q > box1.ur.y) q = box1.ur.y; if (q == pos && box2nr == box3nr) return true; foundPathY = q; foundPathX = box1.ul.x; return false; } } if (box1.ul.y == box1.ur.y && box1.ul.y == box2.ul.y && box1.ul.y == box2.ur.y) { flag = 0; if (box1.ul.x > box1.ur.x) { SWAP(box1.ul.x, box1.ur.x); flag |= 1; } if (box2.ul.x > box2.ur.x) { SWAP(box2.ul.x, box2.ur.x); flag |= 2; } if (box1.ul.x > box2.ur.x || box2.ul.x > box1.ur.x || (box1.ur.x == box2.ul.x || box2.ur.x == box1.ul.x) && box1.ul.x != box1.ur.x && box2.ul.x != box2.ur.x) { if (flag & 1) SWAP(box1.ul.x, box1.ur.x); if (flag & 2) SWAP(box2.ul.x, box2.ur.x); } else { if (box2nr == box3nr) { int diffX = a->walkdata.destx - a->x; int diffY = a->walkdata.desty - a->y; int boxDiffY = box1.ul.y - a->y; pos = a->x; if (diffY != 0) { pos += diffX * boxDiffY / diffY; } } else { pos = a->x; } q = pos; if (q < box2.ul.x) q = box2.ul.x; if (q > box2.ur.x) q = box2.ur.x; if (q < box1.ul.x) q = box1.ul.x; if (q > box1.ur.x) q = box1.ur.x; if (q == pos && box2nr == box3nr) return true; foundPathX = q; foundPathY = box1.ul.y; return false; } } tmp = box1.ul; box1.ul = box1.ur; box1.ur = box1.lr; box1.lr = box1.ll; box1.ll = tmp; } tmp = box2.ul; box2.ul = box2.ur; box2.ur = box2.lr; box2.lr = box2.ll; box2.ll = tmp; } return false; } void Scumm::createBoxMatrix() { int num, i, j; byte flags; int table_1[66], table_2[66]; int counter, val; int code; // A heap (an optiimsation to avoid calling malloc/free extremly often) _maxBoxVertexHeap = 1000; createResource(rtMatrix, 4, _maxBoxVertexHeap); _boxPathVertexHeap = getResourceAddress(rtMatrix, 4); _boxPathVertexHeapIndex = _boxMatrixItem = 0; // Temporary 64*65 distance matrix createResource(rtMatrix, 3, 65 * 64); _boxMatrixPtr3 = getResourceAddress(rtMatrix, 3); // The result "matrix" in the special format used by Scumm. createResource(rtMatrix, 1, BOX_MATRIX_SIZE); _boxMatrixPtr1 = getResourceAddress(rtMatrix, 1); num = getNumBoxes(); // Initialise the distance matrix: each box has distance 0 to itself, // and distance 1 to its direct neighbors. Initially, it has distance // 250 (= infinity) to all other boxes. for (i = 0; i < num; i++) { for (j = 0; j < num; j++) { if (i == j) { _boxMatrixPtr3[i * 64 + j] = 0; } else if (areBoxesNeighbours(i, j)) { _boxMatrixPtr3[i * 64 + j] = 1; } else { _boxMatrixPtr3[i * 64 + j] = 250; } } } // Iterate over all boxes for (j = 0; j < num; j++) { flags = getBoxFlags(j); if (flags & kBoxInvisible) { // Locked/invisible boxes are only reachable from themselves. addToBoxMatrix(0xFF); addToBoxMatrix(j); addToBoxMatrix(j); addToBoxMatrix(j); } else { PathNode *node, *node2 = NULL; PathVertex *vtx = addPathVertex(); for (i = 0; i < num; i++) { flags = getBoxFlags(j); if (!(flags & kBoxInvisible)) { node = unkMatrixProc2(vtx, i); if (i == j) node2 = node; } } table_1[j] = 0; table_2[j] = j; vtx = unkMatrixProc1(vtx, node2); node = vtx ? vtx->left : NULL; counter = 250; while (node) { val = _boxMatrixPtr3[j * 64 + node->index]; table_1[node->index] = val; if (val < counter) counter = val; if (table_1[node->index] != 250) table_2[node->index] = node->index; else table_2[node->index] = -1; node = node->left; } while (vtx) { counter = 250; node2 = node = vtx->left; while (node) { if (table_1[node->index] < counter) { counter = table_1[node->index]; node2 = node; } node = node->left; } vtx = unkMatrixProc1(vtx, node2); node = vtx ? vtx->left : NULL; while (node) { code = _boxMatrixPtr3[node2->index * 64 + node->index]; code += table_1[node2->index]; if (code < table_1[node->index]) { table_1[node->index] = code; table_2[node->index] = table_2[node2->index]; } node = node->left; } } addToBoxMatrix(0xFF); for (i = 1; i < num; i++) { if (table_2[i - 1] != -1) { addToBoxMatrix(i - 1); /* lo */ while (table_2[i - 1] == table_2[i]) { ++i; if (i == num) break; } addToBoxMatrix(i - 1); /* hi */ addToBoxMatrix(table_2[i - 1]); /* dst */ } } if (i == num && table_2[i - 1] != -1) { addToBoxMatrix(i - 1); /* lo */ addToBoxMatrix(i - 1); /* hi */ addToBoxMatrix(table_2[i - 1]); /* dest */ } } } addToBoxMatrix(0xFF); nukeResource(rtMatrix, 4); nukeResource(rtMatrix, 3); } PathVertex *unkMatrixProc1(PathVertex *vtx, PathNode *node) { if (node == NULL || vtx == NULL) return NULL; if (!node->right) { vtx->left = node->left; } else { node->right->left = node->left; } if (!node->left) { vtx->right = node->right; } else { node->left->right = node->right; } if (vtx->left) return vtx; return NULL; } PathNode *Scumm::unkMatrixProc2(PathVertex *vtx, int i) { PathNode *node; if (vtx == NULL) return NULL; node = (PathNode *)addToBoxVertexHeap(sizeof(PathNode)); node->index = i; node->left = 0; node->right = 0; if (!vtx->right) { vtx->left = node; } else { vtx->right->left = node; node->right = vtx->right; } vtx->right = node; return vtx->right; } /* Check if two boxes are neighbours */ bool Scumm::areBoxesNeighbours(int box1nr, int box2nr) { int j, k, m, n; int tmp_x, tmp_y; bool result; BoxCoords box; BoxCoords box2; if (getBoxFlags(box1nr) & kBoxInvisible || getBoxFlags(box2nr) & kBoxInvisible) return false; getBoxCoordinates(box1nr, &box2); getBoxCoordinates(box2nr, &box); result = false; j = 4; do { k = 4; do { if (box2.ur.x == box2.ul.x && box.ul.x == box2.ul.x && box.ur.x == box2.ur.x) { n = m = 0; if (box2.ur.y < box2.ul.y) { n = 1; SWAP(box2.ur.y, box2.ul.y); } if (box.ur.y < box.ul.y) { m = 1; SWAP(box.ur.y, box.ul.y); } if (box.ur.y < box2.ul.y || box.ul.y > box2.ur.y || (box.ul.y == box2.ur.y || box.ur.y == box2.ul.y) && box2.ur.y != box2.ul.y && box.ul.y != box.ur.y) { if (n) { SWAP(box2.ur.y, box2.ul.y); } if (m) { SWAP(box.ur.y, box.ul.y); } } else { if (n) { SWAP(box2.ur.y, box2.ul.y); } if (m) { SWAP(box.ur.y, box.ul.y); } result = true; } } if (box2.ur.y == box2.ul.y && box.ul.y == box2.ul.y && box.ur.y == box2.ur.y) { n = m = 0; if (box2.ur.x < box2.ul.x) { n = 1; SWAP(box2.ur.x, box2.ul.x); } if (box.ur.x < box.ul.x) { m = 1; SWAP(box.ur.x, box.ul.x); } if (box.ur.x < box2.ul.x || box.ul.x > box2.ur.x || (box.ul.x == box2.ur.x || box.ur.x == box2.ul.x) && box2.ur.x != box2.ul.x && box.ul.x != box.ur.x) { if (n) { SWAP(box2.ur.x, box2.ul.x); } if (m) { SWAP(box.ur.x, box.ul.x); } } else { if (n) { SWAP(box2.ur.x, box2.ul.x); } if (m) { SWAP(box.ur.x, box.ul.x); } result = true; } } tmp_x = box2.ul.x; tmp_y = box2.ul.y; box2.ul.x = box2.ur.x; box2.ul.y = box2.ur.y; box2.ur.x = box2.lr.x; box2.ur.y = box2.lr.y; box2.lr.x = box2.ll.x; box2.lr.y = box2.ll.y; box2.ll.x = tmp_x; box2.ll.y = tmp_y; } while (--k); tmp_x = box.ul.x; tmp_y = box.ul.y; box.ul.x = box.ur.x; box.ul.y = box.ur.y; box.ur.x = box.lr.x; box.ur.y = box.lr.y; box.lr.x = box.ll.x; box.lr.y = box.ll.y; box.ll.x = tmp_x; box.ll.y = tmp_y; } while (--j); return result; } void Scumm::addToBoxMatrix(byte b) { if (++_boxMatrixItem > BOX_MATRIX_SIZE) error("Box matrix overflow"); *_boxMatrixPtr1++ = b; } void *Scumm::addToBoxVertexHeap(int size) { byte *ptr = _boxPathVertexHeap; _boxPathVertexHeap += size; _boxPathVertexHeapIndex += size; if (_boxPathVertexHeapIndex >= _maxBoxVertexHeap) error("Box path vertex heap overflow"); return ptr; } PathVertex *Scumm::addPathVertex() { _boxPathVertexHeap = getResourceAddress(rtMatrix, 4); _boxPathVertexHeapIndex = 0; return (PathVertex *)addToBoxVertexHeap(sizeof(PathVertex)); } void Scumm::findPathTowardsOld(Actor *actor, byte trap1, byte trap2, byte final_trap, ScummPoint gateLoc[5]) { ScummPoint pt; ScummPoint gateA[2]; ScummPoint gateB[2]; getGates(trap1, trap2, gateA, gateB); gateLoc[1].x = actor->x; gateLoc[1].y = actor->y; gateLoc[2].x = 32000; gateLoc[3].x = 32000; gateLoc[4].x = 32000; if (trap2 == final_trap) { /* next = final box? */ gateLoc[4].x = actor->walkdata.destx; gateLoc[4].y = actor->walkdata.desty; if (getMaskFromBox(trap1) == getMaskFromBox(trap2) || 1) { if (compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[4].x, gateLoc[4].y, gateA[0].x, gateA[0].y) != compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[4].x, gateLoc[4].y, gateB[0].x, gateB[0].y) && compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[4].x, gateLoc[4].y, gateA[1].x, gateA[1].y) != compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[4].x, gateLoc[4].y, gateB[1].x, gateB[1].y)) { return; /* same zplane and between both gates? */ } } } pt = closestPtOnLine(gateA[1].x, gateA[1].y, gateB[1].x, gateB[1].y, gateLoc[1].x, gateLoc[1].y); gateLoc[3].x = pt.x; gateLoc[3].y = pt.y; if (compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[3].x, gateLoc[3].y, gateA[0].x, gateA[0].y) == compareSlope(gateLoc[1].x, gateLoc[1].y, gateLoc[3].x, gateLoc[3].y, gateB[0].x, gateB[0].y)) { closestPtOnLine(gateA[0].x, gateA[0].y, gateB[0].x, gateB[0].y, gateLoc[1].x, gateLoc[1].y); gateLoc[2].x = pt.x; /* if point 2 between gates, ignore! */ gateLoc[2].y = pt.y; } return; } void Scumm::getGates(int trap1, int trap2, ScummPoint gateA[2], ScummPoint gateB[2]) { int i, j; int dist[8]; int minDist[3]; int closest[3]; int box[3]; BoxCoords coords; ScummPoint Clo[8]; ScummPoint poly[8]; AdjustBoxResult abr; int line1, line2; // For all corner coordinates of the first box, compute the point cloest // to them on the second box (and also compute the distance of these points). getBoxCoordinates(trap1, &coords); poly[0] = coords.ul; poly[1] = coords.ur; poly[2] = coords.lr; poly[3] = coords.ll; for (i = 0; i < 4; i++) { abr = getClosestPtOnBox(trap2, poly[i].x, poly[i].y); dist[i] = abr.dist; Clo[i].x = abr.x; Clo[i].y = abr.y; } // Now do the same but with the roles of the first and second box swapped. getBoxCoordinates(trap2, &coords); poly[4] = coords.ul; poly[5] = coords.ur; poly[6] = coords.lr; poly[7] = coords.ll; for (i = 4; i < 8; i++) { abr = getClosestPtOnBox(trap1, poly[i].x, poly[i].y); dist[i] = abr.dist; Clo[i].x = abr.x; Clo[i].y = abr.y; } // Find the three closest "close" points between the two boxes. for (j = 0; j < 3; j++) { minDist[j] = 0xFFFF; for (i = 0; i < 8; i++) { if (dist[i] < minDist[j]) { minDist[j] = dist[i]; closest[j] = i; } } dist[closest[j]] = 0xFFFF; minDist[j] = (int)sqrt((double)minDist[j]); box[j] = (closest[j] > 3); // Is the poin on the first or on the second box? } // Finally, compute the "gate". That's a pair of two points that are // in the same box (actually, on the border of that box), which both have // "minimal" distance to the other box in a certain sense. if (box[0] == box[1] && abs(minDist[0] - minDist[1]) < 4) { line1 = closest[0]; line2 = closest[1]; } else if (box[0] == box[1] && minDist[0] == minDist[1]) { /* parallel */ line1 = closest[0]; line2 = closest[1]; } else if (box[0] == box[2] && minDist[0] == minDist[2]) { /* parallel */ line1 = closest[0]; line2 = closest[2]; } else if (box[1] == box[2] && minDist[1] == minDist[2]) { /* parallel */ line1 = closest[1]; line2 = closest[2]; } else if (box[0] == box[2] && abs(minDist[0] - minDist[2]) < 4) { line1 = closest[0]; line2 = closest[2]; } else if (abs(minDist[0] - minDist[2]) < 4) { /* if 1 close to 3 then use 2-3 */ line1 = closest[1]; line2 = closest[2]; } else if (abs(minDist[0] - minDist[1]) < 4) { line1 = closest[0]; line2 = closest[1]; } else { line1 = closest[0]; line2 = closest[0]; } // Set the gate if (line1 < 4) { /* from box 1 to box 2 */ gateA[0] = poly[line1]; gateA[1] = Clo[line1]; } else { gateA[1] = poly[line1]; gateA[0] = Clo[line1]; } if (line2 < 4) { /* from box */ gateB[0] = poly[line2]; gateB[1] = Clo[line2]; } else { gateB[1] = poly[line2]; gateB[0] = Clo[line2]; } } bool Scumm::compareSlope(int X1, int Y1, int X2, int Y2, int X3, int Y3) { return (Y2 - Y1) * (X3 - X1) <= (Y3 - Y1) * (X2 - X1); }