/* ScummVM - Scumm Interpreter * Copyright (C) 2002-2003 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ */ #include "stdafx.h" #include "scumm.h" #include "scummsys.h" #include "bundle.h" #include "file.h" const int16 imcTable[] = { 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x0010, 0x0011, 0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F, 0x0022, 0x0025, 0x0029, 0x002D, 0x0032, 0x0037, 0x003C, 0x0042, 0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076, 0x0082, 0x008F, 0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133, 0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292, 0x02D4, 0x031C, 0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583, 0x0610, 0x06AB, 0x0756, 0x0812, 0x08E0, 0x09C3, 0x0ABD, 0x0BD0, 0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE, 0x1706, 0x1954, 0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B, 0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462, 0x7FFF }; const byte imxOtherTable[6][128] = { { 0xFF, 0x04, 0xFF, 0x04 }, { 0xFF, 0xFF, 0x02, 0x08, 0xFF, 0xFF, 0x02, 0x08 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20 } }; const byte imxShortTable[] = { 0, 0, 1, 3, 7, 15, 31, 63 }; Bundle::Bundle() { _lastSong = -1; _initializedImcTables = false; _bundleVoiceTable = NULL; _bundleMusicTable = NULL; } Bundle::~Bundle() { if (_bundleVoiceTable) free(_bundleVoiceTable); if (_bundleMusicTable) free(_bundleMusicTable); } void Bundle::initializeImcTables() { if (_initializedImcTables == true) return; int32 destTablePos = 0; int32 imcTable1Pos = 0; do { byte put = 1; int32 tableValue = ((imcTable[imcTable1Pos] << 2) / 7) >> 1; if (tableValue != 0) { do { tableValue >>= 1; put++; } while (tableValue != 0); } if (put < 3) { put = 3; } if (put > 8) { put = 8; } put--; _destImcTable[destTablePos] = put; destTablePos++; } while (++imcTable1Pos <= 88); _destImcTable[89] = 0; for (int n = 0; n < 64; n++) { imcTable1Pos = 0; destTablePos = n; do { int32 count = 32; int32 put = 0; int32 tableValue = imcTable[imcTable1Pos]; do { if ((count & n) != 0) { put += tableValue; } count >>= 1; tableValue >>= 1; } while (count != 0); _destImcTable2[destTablePos] = put; destTablePos += 64; } while (++imcTable1Pos <= 88); } _initializedImcTables = true; } bool Bundle::openVoiceFile(const char *filename, const char *directory) { int32 tag, offset; initializeImcTables(); if (_voiceFile.isOpen() == true) return true; if (_voiceFile.open(filename, directory) == false) { warning("Bundle: Can't open voice bundle file: %s", filename); return false; } tag = _voiceFile.readUint32BE(); offset = _voiceFile.readUint32BE(); _numVoiceFiles = _voiceFile.readUint32BE(); _bundleVoiceTable = (BundleAudioTable *) malloc(_numVoiceFiles * sizeof(BundleAudioTable)); _voiceFile.seek(offset, SEEK_SET); for (int32 i = 0; i < _numVoiceFiles; i++) { char name[13], c; int32 z = 0; int32 z2; for (z2 = 0; z2 < 8; z2++) if ((c = _voiceFile.readByte()) != 0) name[z++] = c; name[z++] = '.'; for (z2 = 0; z2 < 4; z2++) if ((c = _voiceFile.readByte()) != 0) name[z++] = c; name[z] = '\0'; strcpy(_bundleVoiceTable[i].filename, name); _bundleVoiceTable[i].offset = _voiceFile.readUint32BE(); _bundleVoiceTable[i].size = _voiceFile.readUint32BE(); } return true; } bool Bundle::openMusicFile(const char *filename, const char *directory) { int32 tag, offset; initializeImcTables(); if (_musicFile.isOpen() == true) return true; if (_musicFile.open(filename, directory) == false) { warning("Bundle: Can't open music bundle file: %s", filename); return false; } tag = _musicFile.readUint32BE(); offset = _musicFile.readUint32BE(); _numMusicFiles = _musicFile.readUint32BE(); _bundleMusicTable = (BundleAudioTable *) malloc(_numMusicFiles * sizeof(BundleAudioTable)); _musicFile.seek(offset, SEEK_SET); for (int32 i = 0; i < _numMusicFiles; i++) { char name[13], c; int z = 0; int z2; for (z2 = 0; z2 < 8; z2++) if ((c = _musicFile.readByte()) != 0) name[z++] = c; name[z++] = '.'; for (z2 = 0; z2 < 4; z2++) if ((c = _musicFile.readByte()) != 0) name[z++] = c; name[z] = '\0'; strcpy(_bundleMusicTable[i].filename, name); _bundleMusicTable[i].offset = _musicFile.readUint32BE(); _bundleMusicTable[i].size = _musicFile.readUint32BE(); } return true; } int32 Bundle::decompressVoiceSampleByIndex(int32 index, byte **comp_final) { int32 i, tag, num, final_size, output_size; byte *comp_input, *comp_output; if (_voiceFile.isOpen() == false) { warning("Bundle: voice file is not open!"); return 0; } _voiceFile.seek(_bundleVoiceTable[index].offset, SEEK_SET); tag = _voiceFile.readUint32BE(); num = _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); if (tag != MKID_BE('COMP')) { warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag); return 0; } if (_compVoiceTable) free(_compVoiceTable); _compVoiceTable = (CompTable *)malloc(sizeof(CompTable) * num); for (i = 0; i < num; i++) { _compVoiceTable[i].offset = _voiceFile.readUint32BE(); _compVoiceTable[i].size = _voiceFile.readUint32BE(); _compVoiceTable[i].codec = _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); } final_size = 0; comp_output = (byte *)malloc(0x2000); *comp_final = (byte *)malloc(0x2000 * num); for (i = 0; i < num; i++) { // CMI hack: one more zero byte at the end of input buffer comp_input = (byte *)malloc(_compVoiceTable[i].size + 1); comp_input[_compVoiceTable[i].size] = 0; _voiceFile.seek(_bundleVoiceTable[index].offset + _compVoiceTable[i].offset, SEEK_SET); _voiceFile.read(comp_input, _compVoiceTable[i].size); output_size = decompressCodec(_compVoiceTable[i].codec, comp_input, comp_output, _compVoiceTable[i].size); assert(output_size <= 0x2000); memcpy(*comp_final + final_size, comp_output, output_size); final_size += output_size; free(comp_input); } free(comp_output); return final_size; } int32 Bundle::decompressMusicSampleByIndex(int32 index, int32 number, byte *comp_final) { int32 i = 0; int tag, num, final_size; byte *comp_input; if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } if (_lastSong != index) { _musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET); tag = _musicFile.readUint32BE(); num = _musicFile.readUint32BE(); _musicFile.readUint32BE(); _musicFile.readUint32BE(); if (tag != MKID_BE('COMP')) { warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag); return 0; } if (_compMusicTable) free(_compMusicTable); _compMusicTable = (CompTable *)malloc(sizeof(CompTable) * num); for (i = 0; i < num; i++) { _compMusicTable[i].offset = _musicFile.readUint32BE(); _compMusicTable[i].size = _musicFile.readUint32BE(); _compMusicTable[i].codec = _musicFile.readUint32BE(); _musicFile.readUint32BE(); } _lastSong = index; } // CMI hack: one more zero byte at the end of input buffer comp_input = (byte *)malloc(_compMusicTable[number].size + 1); comp_input[_compMusicTable[number].size] = 0; _musicFile.seek(_bundleMusicTable[index].offset + _compMusicTable[number].offset, SEEK_SET); _musicFile.read(comp_input, _compMusicTable[number].size); final_size = decompressCodec(_compMusicTable[number].codec, comp_input, comp_final, _compMusicTable[number].size); free(comp_input); return final_size; } int32 Bundle::decompressVoiceSampleByName(char *name, byte **comp_final) { int32 final_size = 0, i; if (_voiceFile.isOpen() == false) { warning("Bundle: voice file is not open!"); return 0; } for (i = 0; i < _numVoiceFiles; i++) { if (!scumm_stricmp(name, _bundleVoiceTable[i].filename)) { final_size = decompressVoiceSampleByIndex(i, comp_final); return final_size; } } debug(2, "Failed finding voice %s", name); return final_size; } int32 Bundle::decompressMusicSampleByName(char *name, int32 number, byte *comp_final) { int32 final_size = 0, i; if (!name) { warning("Bundle: decompressMusicSampleByName called with no name!"); return 0; } if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } for (i = 0; i < _numMusicFiles; i++) { if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) { final_size = decompressMusicSampleByIndex(i, number, comp_final); return final_size; } } warning("Couldn't find sample %s", name); return final_size; } int32 Bundle::getNumberOfMusicSamplesByIndex(int32 index) { if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } _musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET); _musicFile.readUint32BE(); return _musicFile.readUint32BE(); } int32 Bundle::getNumberOfMusicSamplesByName(char *name) { int32 number = 0, i; if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } for (i = 0; i < _numMusicFiles; i++) { if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) { number = getNumberOfMusicSamplesByIndex(i); return number; } } warning("Couldn't find numsample %s", name); return number; } #define NextBit bit = mask & 1; mask >>= 1; \ if (!--bitsleft) { \ mask = READ_LE_UINT16(srcptr); \ srcptr += 2; \ bitsleft = 16; \ } int32 Bundle::compDecode(byte *src, byte *dst) { byte *result, *srcptr = src, *dstptr = dst; int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr); srcptr += 2; while (1) { NextBit if (bit) { *dstptr++ = *srcptr++; } else { NextBit if (!bit) { NextBit size = bit << 1; NextBit size = (size | bit) + 3; data = *srcptr++ | 0xffffff00; } else { data = *srcptr++; size = *srcptr++; data |= 0xfffff000 + ((size & 0xf0) << 4); size = (size & 0x0f) + 3; if (size == 3) if (((*srcptr++) + 1) == 1) return dstptr - dst; } result = dstptr + data; while (size--) *dstptr++ = *result++; } } } #undef NextBit int32 Bundle::decompressCodec(int32 codec, byte *comp_input, byte *comp_output, int32 input_size) { int32 output_size, channels; int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z; byte *src, *t_table, *p, *ptr; byte t_tmp1, t_tmp2; switch (codec) { case 0: memcpy(comp_output, comp_input, input_size); output_size = input_size; break; case 1: output_size = compDecode(comp_input, comp_output); break; case 2: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 3: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 4: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 0; if (length > 0) { c = -12; s = 0; j = 0; do { ptr = src + length + (k >> 1); if (k & 1) { r = c >> 3; t_table[r + 2] = ((src[j] & 0x0f) << 4) | (ptr[1] >> 4); t_table[r + 1] = (src[j] & 0xf0) | (t_table[r + 1]); } else { r = s >> 3; t_table[r + 0] = ((src[j] & 0x0f) << 4) | (ptr[0] & 0x0f); t_table[r + 1] = src[j] >> 4; } s += 12; c += 12; k++; j++; } while (k < length); } offset1 = ((length - 1) * 3) / 2; t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0); memcpy(src, t_table, output_size); free(t_table); break; case 5: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 1; c = 0; s = 12; t_table[0] = src[length] / 16; t = length + k; j = 1; if (t > k) { do { ptr = src + length + (k >> 1); if (k & 1) { r = c >> 3; t_table[r + 0] = (src[j - 1] & 0xf0) | t_table[r]; t_table[r + 1] = ((src[j - 1] & 0x0f) << 4) | (ptr[0] & 0x0f); } else { r = s >> 3; t_table[r + 0] = src[j - 1] >> 4; t_table[r - 1] = ((src[j - 1] & 0x0f) << 4) | (ptr[0] >> 4); } s += 12; c += 12; k++; j++; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 6: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 0; c = 0; j = 0; s = -12; t_table[0] = src[output_size - 1]; t_table[output_size - 1] = src[length - 1]; t = length - 1; if (t > 0) { do { ptr = src + length + (k >> 1); if (k & 1) { r = s >> 3; t_table[r + 2] = (src[j] & 0xf0) | *(t_table + r + 2); t_table[r + 3] = ((src[j] & 0x0f) << 4) | (ptr[0] >> 4); } else { r = c >> 3; t_table[r + 2] = src[j] >> 4; t_table[r + 1] = ((src[j] & 0x0f) << 4) | (ptr[0] & 0x0f); } s += 12; c += 12; k++; j++; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 10: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } while (1); src = comp_output; length = (output_size * 8) / 12; k = 0; if (length > 0) { c = -12; s = 0; do { j = length + (k >> 1); if (k & 1) { r = c >> 3; t_tmp1 = t_table[k]; t_tmp2 = t_table[j + 1]; src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0); } else { r = s >> 3; t_tmp1 = t_table[k]; t_tmp2 = t_table[j]; src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); src[r + 1] = t_tmp1 >> 4; } s += 12; c += 12; k++; } while (k < length); } offset1 = ((length - 1) * 3) / 2; src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1]; free(t_table); break; case 11: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } while (1); src = comp_output; length = (output_size * 8) / 12; k = 1; c = 0; s = 12; t_tmp1 = t_table[length] / 16; src[0] = t_tmp1; t = length + k; if (t > k) { do { j = length + (k / 2); if (k & 1) { r = c >> 3; t_tmp1 = t_table[k - 1]; t_tmp2 = t_table[j]; src[r + 0] = (src[r]) | (t_tmp1 & 0xf0); src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } else { r = s >> 3; t_tmp1 = t_table[k - 1]; t_tmp2 = t_table[j]; src[r + 0] = t_tmp1 >> 4; src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); } s += 12; c += 12; k++; } while (k < t); } free(t_table); break; case 12: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } while (1); src = comp_output; length = (output_size * 8) / 12; k = 0; c = 0; s = -12; src[0] = t_table[output_size - 1]; src[output_size - 1] = t_table[length - 1]; t = length - 1; if (t > 0) { do { j = length + (k >> 1); if (k & 1) { r = s >> 3; t_tmp1 = t_table[k]; t_tmp2 = t_table[j]; src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0); src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); } else { r = c >> 3; t_tmp1 = t_table[k]; t_tmp2 = t_table[j]; src[r + 2] = t_tmp1 >> 4; src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } s += 12; c += 12; k++; } while (k < t); } free(t_table); break; case 13: case 15: if (codec == 13) { channels = 1; } else { channels = 2; } { const int MAX_CHANNELS = 2; int32 left, startPos, origLeft, curTableEntry, destPos, esiReg; int16 firstWord; byte sByte[MAX_CHANNELS] = {0, 0}; int32 sDWord1[MAX_CHANNELS] = {0, 0}; int32 sDWord2[MAX_CHANNELS] = {0, 0}; int32 tableEntrySum, imcTableEntry, curTablePos, outputWord, adder; byte decompTable, otherTablePos, bitMask; byte *readPos, *dst; uint16 readWord; assert(0 <= channels && channels <= MAX_CHANNELS); src = comp_input; dst = comp_output; if (channels == 2) { output_size = left = 0x2000; } else { left = 0x1000; output_size = 0x2000; } firstWord = READ_BE_UINT16(src); src += 2; if (firstWord != 0) { memcpy(dst, src, firstWord); dst += firstWord; src += firstWord; startPos = 0; if (channels == 2) { left = 0x2000 - firstWord; output_size = left; } else { left = 0x1000 - (firstWord >> 1); output_size = left << 1; } } else { startPos = 1; for (int i = 0; i < channels; i++) { sByte[i] = *(src++); sDWord1[i] = READ_BE_UINT32(src); src += 4; sDWord2[i] = READ_BE_UINT32(src); src += 4; } } origLeft = left >> (channels - 1); tableEntrySum = 0; for (int l = 0; l < channels; l++) { if (startPos != 0) { curTablePos = sByte[l]; imcTableEntry = sDWord1[l]; outputWord = sDWord2[l]; } else { curTablePos = 0; imcTableEntry = 7; outputWord = 0; } left = origLeft; destPos = l * 2; if (channels == 2) { if (l == 0) left++; left >>= 1; } while (left--) { curTableEntry = _destImcTable[curTablePos]; decompTable = curTableEntry - 2; bitMask = 2 << decompTable; readPos = src + (tableEntrySum >> 3); // FIXME - it seems the decoder often reads exactly one byte too // far - that is, it reads 2 bytes at once, and the second byte // is just outside the buffer. However, it seems of these two bytes, // only the upper one is actually used, so this should be fine. // Still, I put this error message into place. If somebody one day // encounters a situation where the second byte would be used, too, // then this would indicate there is a bug in the decoder... if (readPos + 1 >= comp_input + input_size) { // OK an overflow... if it is more than one byte or if we // need more than 8 bit of data -> error if (readPos + 1 > comp_input + input_size || curTableEntry + (tableEntrySum & 7) > 8) { error("decompressCodec: input buffer overflow: %d bytes over (we need %d bits of data)", (int)((readPos+1) - (comp_input+input_size))+1, curTableEntry + (tableEntrySum & 7) ); } } readWord = (uint16)(READ_BE_UINT16(readPos) << (tableEntrySum & 7)); otherTablePos = (byte)(readWord >> (16 - curTableEntry)); tableEntrySum += curTableEntry; esiReg = ((imxShortTable[curTableEntry] & otherTablePos) << (7 - curTableEntry)) + (curTablePos << 6); imcTableEntry >>= (curTableEntry - 1); adder = imcTableEntry + _destImcTable2[esiReg]; if ((otherTablePos & bitMask) != 0) { adder = -adder; } outputWord += adder; // Clip outputWord to 16 bit signed, and write it into the destination stream if (outputWord > 0x7fff) outputWord = 0x7fff; if (outputWord < -0x8000) outputWord = -0x8000; dst[destPos] = ((int16)outputWord) >> 8; dst[destPos + 1] = (byte)(outputWord); // Adjust the curTablePos / imcTableEntry assert(decompTable < 6); curTablePos += (signed char)imxOtherTable[decompTable][otherTablePos]; if (curTablePos > 88) curTablePos = 88; if (curTablePos < 0) curTablePos = 0; imcTableEntry = imcTable[curTablePos]; destPos += channels << 1; } } } break; default: warning("Bundle: Unknown codec %d!", (int)codec); output_size = 0; break; } return output_size; }