/* ScummVM - Scumm Interpreter * Copyright (C) 2002 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ */ #include "stdafx.h" #include "scumm.h" #include "scummsys.h" #include "bundle.h" #include "file.h" uint16 imcTable1[] = { 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x0010, 0x0011, 0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F, 0x0022, 0x0025, 0x0029, 0x002D, 0x0032, 0x0037, 0x003C, 0x0042, 0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076, 0x0082, 0x008F, 0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133, 0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292, 0x02D4, 0x031C, 0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583, 0x0610, 0x06AB, 0x0756, 0x0812, 0x08E0, 0x09C3, 0x0ABD, 0x0BD0, 0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE, 0x1706, 0x1954, 0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B, 0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462, 0x7FFF }; byte imxOtherTable1[] = { 0xFF, 0x04, 0xFF, 0x04 }; byte imxOtherTable2[] = { 0xFF, 0xFF, 0x02, 0x08, 0xFF, 0xFF, 0x02, 0x08 }; byte imxOtherTable3[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06 }; byte imxOtherTable4[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20 }; byte imxOtherTable5[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20 }; byte imxOtherTable6[] = { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20 }; uint16 imxShortTable[] = { 0x0000, 0x0000, 0x0001, 0x0003, 0x0007, 0x000F, 0x001F, 0x003F }; Bundle::Bundle() { _lastSong = -1; _initializedImcTables = false; } Bundle::~Bundle() { } void Bundle::initializeImcTables() { if (_initializedImcTables == true) return; int32 destTablePos = 0; int32 imcTable1Pos = 0; do { int16 put = 1; int32 tableValue = ((imcTable1[imcTable1Pos] << 2) / 7) / 2; if (tableValue != 0) { do { tableValue /= 2; put++; } while (tableValue != 0); } if (put < 3) { put = 3; } if (put > 8) { put = 8; } put--; imcTable1Pos++; _destImcTable[destTablePos] = (byte)put; destTablePos++; } while (imcTable1Pos <= 88); _destImcTable[89] = 0; for (int n = 0; n < 63; n++) { imcTable1Pos = 0; int32 destTable2Pos = n; do { int32 count = 32; int32 putD = 0; int32 tableValue = imcTable1[imcTable1Pos]; do { if ((count & n) != 0) { putD = putD + tableValue; } count >>= 1; tableValue >>= 1; } while (count != 0); _destImcTable2[destTable2Pos] = putD; destTable2Pos += 64; imcTable1Pos++; } while (imcTable1Pos <= 88); } _initializedImcTables = true; } bool Bundle::openVoiceFile(const char *filename, const char *directory) { int32 tag, offset; initializeImcTables(); if (_voiceFile.isOpen() == true) return true; if (_voiceFile.open(filename, directory) == false) { warning("Bundle: Can't open voice bundle file: %s", filename); return false; } tag = _voiceFile.readUint32BE(); offset = _voiceFile.readUint32BE(); _numVoiceFiles = _voiceFile.readUint32BE(); _bundleVoiceTable = (BundleAudioTable *) malloc(_numVoiceFiles * sizeof(BundleAudioTable)); _voiceFile.seek(offset, SEEK_SET); for (int32 i = 0; i < _numVoiceFiles; i++) { char name[13], c; int32 z = 0; int32 z2; for (z2 = 0; z2 < 8; z2++) if ((c = _voiceFile.readByte()) != 0) name[z++] = c; name[z++] = '.'; for (z2 = 0; z2 < 4; z2++) if ((c = _voiceFile.readByte()) != 0) name[z++] = c; name[z] = '\0'; strcpy(_bundleVoiceTable[i].filename, name); _bundleVoiceTable[i].offset = _voiceFile.readUint32BE(); _bundleVoiceTable[i].size = _voiceFile.readUint32BE(); } return true; } bool Bundle::openMusicFile(const char *filename, const char *directory) { int32 tag, offset; initializeImcTables(); if (_musicFile.isOpen() == true) return true; if (_musicFile.open(filename, directory) == false) { warning("Bundle: Can't open music bundle file: %s", filename); return false; } tag = _musicFile.readUint32BE(); offset = _musicFile.readUint32BE(); _numMusicFiles = _musicFile.readUint32BE(); _bundleMusicTable = (BundleAudioTable *) malloc(_numMusicFiles * sizeof(BundleAudioTable)); _musicFile.seek(offset, SEEK_SET); for (int32 i = 0; i < _numMusicFiles; i++) { char name[13], c; int z = 0; int z2; for (z2 = 0; z2 < 8; z2++) if ((c = _musicFile.readByte()) != 0) name[z++] = c; name[z++] = '.'; for (z2 = 0; z2 < 4; z2++) if ((c = _musicFile.readByte()) != 0) name[z++] = c; name[z] = '\0'; strcpy(_bundleMusicTable[i].filename, name); _bundleMusicTable[i].offset = _musicFile.readUint32BE(); _bundleMusicTable[i].size = _musicFile.readUint32BE(); } return true; } int32 Bundle::decompressVoiceSampleByIndex(int32 index, byte *comp_final, int32 & channels) { int32 i, tag, num, final_size, output_size; byte *comp_input, *comp_output; if (_voiceFile.isOpen() == false) { warning("Bundle: voice file is not open!"); return 0; } _voiceFile.seek(_bundleVoiceTable[index].offset, SEEK_SET); tag = _voiceFile.readUint32BE(); num = _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); if (tag != MKID_BE('COMP')) { warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag); return 0; } for (i = 0; i < num; i++) { _compVoiceTable[i].offset = _voiceFile.readUint32BE(); _compVoiceTable[i].size = _voiceFile.readUint32BE(); _compVoiceTable[i].codec = _voiceFile.readUint32BE(); _voiceFile.readUint32BE(); } final_size = 0; comp_output = (byte *)malloc(10000); for (i = 0; i < num; i++) { comp_input = (byte *)malloc(_compVoiceTable[i].size); _voiceFile.seek(_bundleVoiceTable[index].offset + _compVoiceTable[i].offset, SEEK_SET); _voiceFile.read(comp_input, _compVoiceTable[i].size); output_size = decompressCodec(_compVoiceTable[i].codec, comp_input, comp_output, _compVoiceTable[i].size, i, channels); memcpy((byte *)&comp_final[final_size], comp_output, output_size); final_size += output_size; free(comp_input); } free(comp_output); return final_size; } int32 Bundle::decompressMusicSampleByIndex(int32 index, int32 number, byte *comp_final, int32 & channels) { int32 i = 0; int tag, num, final_size; byte *comp_input; if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } if (_lastSong != index) { _musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET); tag = _musicFile.readUint32BE(); num = _musicFile.readUint32BE(); _musicFile.readUint32BE(); _musicFile.readUint32BE(); if (tag != MKID_BE('COMP')) { warning("Bundle: Compressed sound %d invalid (%c%c%c%c)", index, tag >> 24, tag >> 16, tag >> 8, tag); return 0; } for (i = 0; i < num; i++) { _compMusicTable[i].offset = _musicFile.readUint32BE(); _compMusicTable[i].size = _musicFile.readUint32BE(); _compMusicTable[i].codec = _musicFile.readUint32BE(); _musicFile.readUint32BE(); } } comp_input = (byte *)malloc(_compMusicTable[number].size); _musicFile.seek(_bundleMusicTable[index].offset + _compMusicTable[number].offset, SEEK_SET); _musicFile.read(comp_input, _compMusicTable[number].size); // FIXME - if _lastSong == index then i will be 0 - is the right / the desired behaviour?!? final_size = decompressCodec(_compMusicTable[number].codec, comp_input, comp_final, _compMusicTable[number].size, number, channels); free(comp_input); _lastSong = index; return final_size; } int32 Bundle::decompressVoiceSampleByName(char *name, byte *comp_final, int32 & channels) { int32 final_size = 0, i; if (_voiceFile.isOpen() == false) { warning("Bundle: voice file is not open!"); return 0; } for (i = 0; i < _numVoiceFiles; i++) { if (!scumm_stricmp(name, _bundleVoiceTable[i].filename)) { final_size = decompressVoiceSampleByIndex(i, comp_final, channels); return final_size; } } warning("Failed finding voice %s", name); return final_size; } int32 Bundle::decompressMusicSampleByName(char *name, int32 number, byte *comp_final, int32 & channels) { int32 final_size = 0, i; if (!name) { warning("Bundle: decompressMusicSampleByName called with no name!"); return 0; } if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } for (i = 0; i < _numMusicFiles; i++) { if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) { final_size = decompressMusicSampleByIndex(i, number, comp_final, channels); return final_size; } } warning("Couldn't find sample %s", name); return final_size; } int32 Bundle::getNumberOfMusicSamplesByIndex(int32 index) { if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } _musicFile.seek(_bundleMusicTable[index].offset, SEEK_SET); _musicFile.readUint32BE(); return _musicFile.readUint32BE(); } int32 Bundle::getNumberOfMusicSamplesByName(char *name) { int32 number = 0, i; if (_musicFile.isOpen() == false) { warning("Bundle: music file is not open!"); return 0; } for (i = 0; i < _numMusicFiles; i++) { if (!scumm_stricmp(name, _bundleMusicTable[i].filename)) { number = getNumberOfMusicSamplesByIndex(i); return number; } } warning("Couldn't find numsample %s\n", name); return number; } #define NextBit bit = mask & 1; mask >>= 1; if (!--bitsleft) {mask = READ_LE_UINT16(srcptr); srcptr += 2; bitsleft=16;} int32 Bundle::compDecode(byte *src, byte *dst) { byte *result, *srcptr = src, *dstptr = dst; int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr); srcptr += 2; while (1) { NextBit if (bit) { *dstptr++ = *srcptr++; } else { NextBit if (!bit) { NextBit size = bit << 1; NextBit size = (size | bit) + 3; data = *srcptr++ | 0xffffff00; } else { data = *srcptr++; size = *srcptr++; data |= 0xfffff000 + ((size & 0xf0) << 4); size = (size & 0x0f) + 3; if (size == 3) if (((*srcptr++) + 1) == 1) return dstptr - dst; } result = dstptr + data; while (size--) *dstptr++ = *result++; } } } #undef NextBit int32 Bundle::decompressCodec(int32 codec, byte *comp_input, byte *comp_output, int32 input_size, int32 index, int32 & channels) { int32 output_size = input_size; int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z; byte *src, *t_table, *p, *ptr; byte t_tmp1, t_tmp2; switch (codec) { case 0: memcpy(comp_output, comp_input, output_size); break; case 1: output_size = compDecode(comp_input, comp_output); break; case 2: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 3: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 4: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 0; if (length > 0) { c = -12; s = 0; j = 0; do { ptr = src + length + (k / 2); if (k & 1) { r = c / 8; *(t_table + r + 2) = ((*(src + j) & 0x0f) << 4) | ((*(ptr + 1) & 0xf0) >> 4); *(t_table + r + 1) = (*(src + j) & 0xf0) | (*(t_table + r + 1)); } else { r = s / 8; *(t_table + r + 0) = ((*(src + j) & 0x0f) << 4) | (*ptr & 0x0f); *(t_table + r + 1) = (*(src + j) & 0xf0) >> 4; } s += 12; k++; j++; c += 12; } while (k < length); } offset1 = ((length - 1) * 3) / 2; *(t_table + offset1 + 1) = (*(t_table + offset1 + 1)) | *(src + length - 1) & 0xf0; memcpy(src, t_table, output_size); free(t_table); break; case 5: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 1; c = 0; s = 12; *t_table = (*(src + length)) >> 4; t = length + k; j = 1; if (t > k) { do { ptr = src + length + (k / 2); if (k & 1) { r = c / 8; *(t_table + r + 0) = (*(src + j - 1) & 0xf0) | (*(t_table + r)); *(t_table + r + 1) = ((*(src + j - 1) & 0x0f) << 4) | (*ptr & 0x0f); } else { r = s / 8; *(t_table + r + 0) = (*(src + j - 1) & 0xf0) >> 4; *(t_table + r - 1) = ((*(src + j - 1) & 0x0f) << 4) | ((*ptr & 0xf0) >> 4); } s += 12; k++; j++; c += 12; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 6: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size * 8) / 12; k = 0; c = 0; j = 0; s = -12; *t_table = *(output_size + src - 1); *(t_table + output_size - 1) = *(src + length - 1); t = length - 1; if (t > 0) { do { ptr = src + length + (k / 2); if (k & 1) { r = s / 8; *(t_table + r + 2) = (*(src + j) & 0xf0) | *(t_table + r + 2); *(t_table + r + 3) = ((*(src + j) & 0x0f) << 4) | ((*ptr & 0xf0) >> 4); } else { r = c / 8; *(t_table + r + 2) = (*(src + j) & 0xf0) >> 4; *(t_table + r + 1) = ((*(src + j) & 0x0f) << 4) | (*ptr & 0x0f); } s += 12; k++; j++; c += 12; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 10: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; *(t_table + offset2 + 0) = *(src + offset1); *(t_table + offset2 + 1) = *(src + offset3); } while (1); src = comp_output; length = (output_size * 8) / 12; k = 0; if (length > 0) { c = -12; s = 0; do { j = length + (k / 2); if (k & 1) { r = c / 8; t_tmp1 = *(t_table + k); t_tmp2 = *(t_table + j + 1); *(src + r + 2) = ((t_tmp1 & 0x0f) << 4) | ((t_tmp2 & 0xf0) >> 4); *(src + r + 1) = (*(src + r + 1)) | (t_tmp1 & 0xf0); } else { r = s / 8; t_tmp1 = *(t_table + k); t_tmp2 = *(t_table + j); *(src + r + 0) = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); *(src + r + 1) = ((t_tmp1 & 0xf0) >> 4); } s += 12; k++; c += 12; } while (k < length); } offset1 = ((length - 1) * 3) / 2; *(src + offset1 + 1) = (*(t_table + length) & 0xf0) | *(src + offset1 + 1); free(t_table); break; case 11: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; *(t_table + offset2 + 0) = *(src + offset1); *(t_table + offset2 + 1) = *(src + offset3); } while (1); src = comp_output; length = (output_size * 8) / 12; k = 1; c = 0; s = 12; t_tmp1 = (*(t_table + length)) >> 4; *(src) = t_tmp1; t = length + k; if (t > k) { do { j = length + (k / 2); if (k & 1) { r = c / 8; t_tmp1 = *(t_table + k - 1); t_tmp2 = *(t_table + j); *(src + r + 0) = (*(src + r)) | (t_tmp1 & 0xf0); *(src + r + 1) = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } else { r = s / 8; t_tmp1 = *(t_table + k - 1); t_tmp2 = *(t_table + j); *(src + r + 0) = (t_tmp1 & 0xf0) >> 4; *(src + r - 1) = ((t_tmp1 & 0x0f) << 4) | ((t_tmp2 & 0xf0) >> 4); } s += 12; k++; c += 12; } while (k < t); } free(t_table); break; case 12: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 * 2; offset3 = offset2; src = comp_output; do { if (offset1 == 0) break; offset1--; offset2 -= 2; offset3--; *(t_table + offset2 + 0) = *(src + offset1); *(t_table + offset2 + 1) = *(src + offset3); } while (1); src = comp_output; length = (output_size * 8) / 12; k = 0; c = 0; s = -12; *(src) = *(output_size + t_table - 1); *(src + output_size - 1) = *(t_table + length - 1); t = length - 1; if (t > 0) { do { j = length + (k / 2); if (k & 1) { r = s / 8; t_tmp1 = *(t_table + k); t_tmp2 = *(t_table + j); *(src + r + 2) = (*(src + r + 2)) | (t_tmp1 & 0xf0); *(src + r + 3) = ((t_tmp1 & 0x0f) << 4) | ((t_tmp2 & 0xf0) >> 4); } else { r = c / 8; t_tmp1 = *(t_table + k); t_tmp2 = *(t_table + j); *(src + r + 2) = (t_tmp1 & 0xf0) >> 4; *(src + r + 1) = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } s += 12; k++; c += 12; } while (k < t); } free(t_table); break; case 13: case 15: { uint16 firstWord; int32 startPos; byte sByte[4]; int32 sDWord[4]; int32 channel; int32 left; int32 tableEntrySum; int32 curTablePos; int32 outputWord; int32 imcTableEntry; int32 destPos; int32 curTableEntry; byte decompTable; uint16 readWord; byte * readPos; byte otherTablePos; int32 esiReg; byte var3b; int32 adder; src = comp_input; memset (comp_output, 0, 0x2000); firstWord = READ_BE_UINT16(src); src += 2; if (firstWord != 0) { if (index != 0) { startPos = 0; } else { memcpy(comp_output, src, firstWord); startPos = firstWord; uint32 tag; ptr = src; do { tag = READ_BE_UINT32(ptr); ptr += 4; } while (tag != MKID_BE('FRMT')); channels = READ_BE_UINT32(ptr + 20); } src += firstWord; left = 0x2000 - firstWord; // At this point we are at the start of the content of the 'DATA' chunk. } else { sByte[0] = *src++; sDWord[0] = (int32)READ_BE_UINT32(src); src += 4; sDWord[1] = (int32)READ_BE_UINT32(src); src += 4; if (channels > 1) { sByte[1] = *src++; sDWord[2] = (int32)READ_BE_UINT32(src); src += 4; sDWord[3] = (int32)READ_BE_UINT32(src); src += 4; } startPos = 0; left = 0x2000; } tableEntrySum = 0; for (channel = 0; channel < channels; channel++) { if (firstWord == 0) { curTablePos = sByte[channel]; outputWord = sDWord[channel * 2 + 1]; imcTableEntry = sDWord[channel * 2]; } else { curTablePos = 0; outputWord = 0; imcTableEntry = 7; } left = ((left / 2) + 1) / channels; destPos = startPos + 2 * channel; while (left--) { curTableEntry = _destImcTable[curTablePos]; decompTable = curTableEntry - 2; var3b = (1 << decompTable) << 1; readPos = src + (tableEntrySum >> 3); readWord = (uint16)(READ_BE_UINT16(readPos) << (tableEntrySum & 7)); otherTablePos = (byte)(readWord >> (16 - curTableEntry)); tableEntrySum += curTableEntry; esiReg = imxShortTable[curTableEntry]; esiReg = (esiReg & otherTablePos) << (7 - curTableEntry); esiReg += (curTablePos << 6); imcTableEntry >>= (curTableEntry - 1); adder = imcTableEntry + _destImcTable2[esiReg]; if ((otherTablePos & var3b) != 0) { adder = -adder; } outputWord += adder; if (outputWord > 0x7fff) outputWord = 0x7fff; if (outputWord < -0x8000) outputWord = -0x8000; comp_output[destPos] = (byte)(outputWord >> 8); comp_output[destPos + 1] = (byte)(outputWord); switch (decompTable) { case 0: curTablePos += (signed char)imxOtherTable1[otherTablePos]; break; case 1: curTablePos += (signed char)imxOtherTable2[otherTablePos]; break; case 2: curTablePos += (signed char)imxOtherTable3[otherTablePos]; break; case 3: curTablePos += (signed char)imxOtherTable4[otherTablePos]; break; case 4: curTablePos += (signed char)imxOtherTable5[otherTablePos]; break; case 5: curTablePos += (signed char)imxOtherTable6[otherTablePos]; break; } if (curTablePos < 0) curTablePos = 0; if (curTablePos > 88) curTablePos = 88; destPos += 2 * channels; imcTableEntry = imcTable1[curTablePos]; } } if (index == 0) { output_size = 0x2000 - firstWord; } else { output_size = 0x2000; } } break; default: warning("Bundle: Unknown codec %d!", (int)codec); output_size = 0; break; } return output_size; }