/* ScummVM - Scumm Interpreter * Copyright (C) 2001 Ludvig Strigeus * Copyright (C) 2001-2003 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ * */ #include "stdafx.h" #include "scumm.h" #include "actor.h" #include "bomp.h" #include "charset.h" #include "resource.h" #include "usage_bits.h" #include "util.h" enum { kScrolltime = 500, // ms scrolling is supposed to take kPictureDelay = 20 }; #define NUM_SHAKE_POSITIONS 8 static const int8 shake_positions[NUM_SHAKE_POSITIONS] = { 0, 1 * 2, 2 * 2, 1 * 2, 0 * 2, 2 * 2, 3 * 2, 1 * 2 }; /** * The following structs define four basic fades/transitions used by * transitionEffect(), each looking differently to the user. * Note that the stripTables contain strip numbers, and they assume * that the screen has 40 vertical strips (i.e. 320 pixel), and 25 horizontal * strips (i.e. 200 pixel). There is a hack in transitionEffect that * makes it work correctly in games which have a different screen height * (for example, 240 pixel), but nothing is done regarding the width, so this * code won't work correctly in COMI. Also, the number of iteration depends * on min(vertStrips, horizStrips}. So the 13 is derived from 25/2, rounded up. * And the 25 = min(25,40). Hence for Zak256 instead of 13 and 25, the values * 15 and 30 should be used, and for COMI probably 30 and 60. */ struct TransitionEffect { byte numOfIterations; int8 deltaTable[16]; // four times l / t / r / b byte stripTable[16]; // ditto }; #ifdef __PALM_OS__ static const TransitionEffect *transitionEffects; #else static const TransitionEffect transitionEffects[5] = { // Iris effect (looks like an opening/closing camera iris) { 13, // Number of iterations { 1, 1, -1, 1, -1, 1, -1, -1, 1, -1, -1, -1, 1, 1, 1, -1 }, { 0, 0, 39, 0, 39, 0, 39, 24, 0, 24, 39, 24, 0, 0, 0, 24 } }, // Box wipe (a box expands from the upper-left corner to the lower-right corner) { 25, // Number of iterations { 0, 1, 2, 1, 2, 0, 2, 1, 2, 0, 2, 1, 0, 0, 0, 0 }, { 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 255, 0, 0, 0 } }, // Box wipe (a box expands from the lower-right corner to the upper-left corner) { 25, // Number of iterations { -2, -1, 0, -1, -2, -1, -2, 0, -2, -1, -2, 0, 0, 0, 0, 0 }, { 39, 24, 39, 24, 39, 24, 39, 24, 38, 24, 38, 24, 255, 0, 0, 0 } }, // Inverse box wipe { 25, // Number of iterations { 0, -1, -2, -1, -2, 0, -2, -1, -2, 0, -2, -1, 0, 0, 0, 0 }, { 0, 24, 39, 24, 39, 0, 39, 24, 38, 0, 38, 24, 255, 0, 0, 0 } }, // Inverse iris effect, specially tailored for V1/V2 games { 8, // Number of iterations { -1, -1, 1, -1, -1, 1, 1, 1, -1, -1, -1, 1, 1, -1, 1, 1 }, { 7, 7, 32, 7, 7, 8, 32, 8, 7, 8, 7, 8, 32, 7, 32, 8 } } }; #endif /* * Mouse cursor cycle colors (for the default crosshair). */ static const byte default_v1_cursor_colors[4] = { 1, 1, 12, 11 }; static const byte default_cursor_colors[4] = { 15, 15, 7, 8 }; static const uint16 default_cursor_images[5][16] = { /* cross-hair */ { 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000, 0x7e3f, 0x0000, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0080, 0x0000 }, /* hourglass */ { 0x0000, 0x7ffe, 0x6006, 0x300c, 0x1818, 0x0c30, 0x0660, 0x03c0, 0x0660, 0x0c30, 0x1998, 0x33cc, 0x67e6, 0x7ffe, 0x0000, 0x0000 }, /* arrow */ { 0x0000, 0x4000, 0x6000, 0x7000, 0x7800, 0x7c00, 0x7e00, 0x7f00, 0x7f80, 0x78c0, 0x7c00, 0x4600, 0x0600, 0x0300, 0x0300, 0x0180 }, /* hand */ { 0x1e00, 0x1200, 0x1200, 0x1200, 0x1200, 0x13ff, 0x1249, 0x1249, 0xf249, 0x9001, 0x9001, 0x9001, 0x8001, 0x8001, 0x8001, 0xffff }, /* cross-hair zak256 - chrilith palmos */ /* { 0x0080, 0x0080, 0x02a0, 0x01c0, 0x0080, 0x1004, 0x0808, 0x7c1f, 0x0808, 0x1004, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0080, 0x0000 }, */ { 0x0080, 0x02a0, 0x01c0, 0x0080, 0x0000, 0x2002, 0x1004, 0x780f, 0x1004, 0x2002, 0x0000, 0x0080, 0x01c0, 0x02a0, 0x0080, 0x0000 }, }; static const byte default_cursor_hotspots[10] = { 8, 7, 8, 7, 1, 1, 5, 0, 8, 7, //zak256 }; static inline uint colorWeight(int red, int green, int blue) { return 3 * red * red + 6 * green * green + 2 * blue * blue; } void Scumm::getGraphicsPerformance() { int i; for (i = 10; i != 0; i--) { initScreens(0, 0, _screenWidth, _screenHeight); } if (VAR_PERFORMANCE_1 != 0xFF) // Variable is reserved for game scripts in earlier games VAR(VAR_PERFORMANCE_1) = 0; for (i = 10; i != 0; i--) { virtscr[0].setDirtyRange(0, _screenHeight); //ender drawDirtyScreenParts(); } if (VAR_PERFORMANCE_2 != 0xFF) // Variable is reserved for game scripts in earlier games VAR(VAR_PERFORMANCE_2) = 0; if (_version >= 7) initScreens(0, 0, _screenWidth, _screenHeight); else initScreens(0, 16, _screenWidth, 144); } void Scumm::initScreens(int a, int b, int w, int h) { int i; for (i = 0; i < 3; i++) { nukeResource(rtBuffer, i + 1); nukeResource(rtBuffer, i + 5); } if (!getResourceAddress(rtBuffer, 4)) { if (_version >= 7) { initVirtScreen(3, 0, (_screenHeight / 2) - 10, _screenWidth, 13, false, false); } else { initVirtScreen(3, 0, 80, _screenWidth, 13, false, false); } } initVirtScreen(0, 0, b, _screenWidth, h - b, true, true); initVirtScreen(1, 0, 0, _screenWidth, b, false, false); initVirtScreen(2, 0, h, _screenWidth, _screenHeight - h, false, false); _screenB = b; _screenH = h; } void Scumm::initVirtScreen(int slot, int number, int top, int width, int height, bool twobufs, bool scrollable) { VirtScreen *vs = &virtscr[slot]; int size; assert(height >= 0); assert(slot >= 0 && slot < 4); if (_version >= 7) { if (slot == 0 && (_roomHeight != 0)) height = _roomHeight; } vs->number = slot; vs->width = _screenWidth; vs->topline = top; vs->height = height; vs->alloctwobuffers = twobufs; vs->scrollable = scrollable; vs->xstart = 0; size = vs->width * vs->height; vs->size = size; vs->backBuf = NULL; if (vs->scrollable) { if (_version >= 7) { size += _screenWidth * 8; } else { size += _screenWidth * 4; } } createResource(rtBuffer, slot + 1, size); vs->screenPtr = getResourceAddress(rtBuffer, slot + 1); memset(vs->screenPtr, 0, size); // reset background if (twobufs) { createResource(rtBuffer, slot + 5, size); } if (slot != 3) { virtscr[slot].setDirtyRange(0, height); } } VirtScreen *Scumm::findVirtScreen(int y) { VirtScreen *vs = virtscr; int i; for (i = 0; i < 3; i++, vs++) { if (y >= vs->topline && y < vs->topline + vs->height) { return vs; } } return NULL; } void Scumm::updateDirtyRect(int virt, int left, int right, int top, int bottom, int dirtybit) { VirtScreen *vs = &virtscr[virt]; int lp, rp; if (left > right || top > bottom) return; if (top > vs->height || bottom < 0) return; if (top < 0) top = 0; if (bottom > vs->height) bottom = vs->height; if (virt == 0 && dirtybit) { lp = (left >> 3) + _screenStartStrip; if (lp < 0) lp = 0; if (_version >= 7) { #ifdef V7_SMOOTH_SCROLLING_HACK rp = (right + vs->xstart) >> 3; #else rp = (right >> 3) + _screenStartStrip; #endif if (rp > 409) rp = 409; } else { rp = (right >> 3) + _screenStartStrip; if (rp >= 200) rp = 200; } for (; lp <= rp; lp++) setGfxUsageBit(lp, dirtybit); } // The following code used to be in the seperate method setVirtscreenDirty lp = left >> 3; rp = right >> 3; if ((lp >= gdi._numStrips) || (rp < 0)) return; if (lp < 0) lp = 0; if (rp >= gdi._numStrips) rp = gdi._numStrips - 1; while (lp <= rp) { if (top < vs->tdirty[lp]) vs->tdirty[lp] = top; if (bottom > vs->bdirty[lp]) vs->bdirty[lp] = bottom; lp++; } } void Scumm::drawDirtyScreenParts() { int i; VirtScreen *vs; byte *src; updateDirtyScreen(2); if (_version <= 3) updateDirtyScreen(1); if (camera._last.x == camera._cur.x && (camera._last.y == camera._cur.y || !(_features & GF_NEW_CAMERA))) { updateDirtyScreen(0); } else { vs = &virtscr[0]; src = vs->screenPtr + vs->xstart + _screenTop * _screenWidth; _system->copy_rect(src, _screenWidth, 0, vs->topline, _screenWidth, vs->height - _screenTop); for (i = 0; i < gdi._numStrips; i++) { vs->tdirty[i] = vs->height; vs->bdirty[i] = 0; } } /* Handle shaking */ if (_shakeEnabled) { _shakeFrame = (_shakeFrame + 1) & (NUM_SHAKE_POSITIONS - 1); _system->set_shake_pos(shake_positions[_shakeFrame]); } else if (!_shakeEnabled &&_shakeFrame != 0) { _shakeFrame = 0; _system->set_shake_pos(shake_positions[_shakeFrame]); } } void Scumm::updateDirtyScreen(int slot) { gdi.updateDirtyScreen(&virtscr[slot]); } /** * Blit the data from the given VirtScreen to the display. If the camera moved, * a full blit is done, otherwise only the visible dirty areas are updated. */ void Gdi::updateDirtyScreen(VirtScreen *vs) { if (vs->height == 0) return; if (_vm->_features & GF_NEW_CAMERA && (_vm->camera._cur.y != _vm->camera._last.y)) { drawStripToScreen(vs, 0, _numStrips << 3, 0, vs->height); } else { int i; int start, w, top, bottom; w = 8; start = 0; for (i = 0; i < _numStrips; i++) { bottom = vs->bdirty[i]; if (bottom) { top = vs->tdirty[i]; vs->tdirty[i] = vs->height; vs->bdirty[i] = 0; if (i != (_numStrips - 1) && vs->bdirty[i + 1] == bottom && vs->tdirty[i + 1] == top) { // Simple optimizations: if two or more neighbouring strips form one bigger rectangle, // blit them all at once. w += 8; continue; } // handle vertically scrolling rooms if (_vm->_features & GF_NEW_CAMERA) drawStripToScreen(vs, start * 8, w, 0, vs->height); else drawStripToScreen(vs, start * 8, w, top, bottom); w = 8; } start = i + 1; } } } /** * Blit the specified rectangle from the given virtual screen to the display. */ void Gdi::drawStripToScreen(VirtScreen *vs, int x, int w, int t, int b) { byte *ptr; int height; if (b <= t) return; if (t > vs->height) t = 0; if (b > vs->height) b = vs->height; height = b - t; if (height > _vm->_screenHeight) height = _vm->_screenHeight; // Normally, _vm->_screenTop should always be >= 0, but for some old save games // it is not, hence we check & correct it here. if (_vm->_screenTop < 0) _vm->_screenTop = 0; ptr = vs->screenPtr + (x + vs->xstart) + (_vm->_screenTop + t) * _vm->_screenWidth; _vm->_system->copy_rect(ptr, _vm->_screenWidth, x, vs->topline + t, w, height); } void Gdi::clearCharsetMask() { memset(_vm->getResourceAddress(rtBuffer, 9), 0, _imgBufOffs[1]); _mask.top = _mask.left = 32767; _mask.right = _mask.bottom = 0; } /** * Reset the background behind an actor or blast object. */ void Gdi::resetBackground(int top, int bottom, int strip) { VirtScreen *vs = &_vm->virtscr[0]; byte *backbuff_ptr, *bgbak_ptr; int offs, numLinesToProcess; assert(0 <= strip && strip < _numStrips); if (top < vs->tdirty[strip]) vs->tdirty[strip] = top; if (bottom > vs->bdirty[strip]) vs->bdirty[strip] = bottom; offs = (top * _numStrips + _vm->_screenStartStrip + strip) << 3; byte *mask_ptr = _vm->getMaskBuffer(strip * 8, top, 0); bgbak_ptr = _vm->getResourceAddress(rtBuffer, 5) + offs; backbuff_ptr = vs->screenPtr + offs; numLinesToProcess = bottom - top; if (numLinesToProcess) { if ((_vm->_features & GF_NEW_OPCODES) || (_vm->VAR(_vm->VAR_CURRENT_LIGHTS) & LIGHTMODE_screen)) { if (_vm->hasCharsetMask(strip << 3, top, (strip + 1) << 3, bottom)) draw8ColWithMasking(backbuff_ptr, bgbak_ptr, numLinesToProcess, mask_ptr); else draw8Col(backbuff_ptr, bgbak_ptr, numLinesToProcess); } else { clear8Col(backbuff_ptr, numLinesToProcess); } } } void Scumm::blit(byte *dst, const byte *src, int w, int h) { assert(h > 0); assert(src != NULL); assert(dst != NULL); if (w==_screenWidth) memcpy (dst, src, w*h); else { do { memcpy(dst, src, w); dst += _screenWidth; src += _screenWidth; } while (--h); } } void Scumm::drawBox(int x, int y, int x2, int y2, int color) { int width, height; VirtScreen *vs; byte *backbuff, *bgbuff; if ((vs = findVirtScreen(y)) == NULL) return; if (x > x2) SWAP(x, x2); if (y > y2) SWAP(y, y2); x2++; y2++; // Adjust for the topline of the VirtScreen y -= vs->topline; y2 -= vs->topline; // Clip the coordinates if (x < 0) x = 0; else if (x >= vs->width) return; if (x2 < 0) return; else if (x2 > vs->width) x2 = vs->width; if (y < 0) y = 0; else if (y > vs->height) return; if (y2 < 0) return; else if (y2 > vs->height) y2 = vs->height; updateDirtyRect(vs->number, x, x2, y, y2, 0); backbuff = vs->screenPtr + vs->xstart + y * _screenWidth + x; width = x2 - x; height = y2 - y; if (color == -1) { if (vs->number != 0) error("can only copy bg to main window"); bgbuff = getResourceAddress(rtBuffer, vs->number + 5) + vs->xstart + y * _screenWidth + x; blit(backbuff, bgbuff, width, height); } else { while (height--) { memset(backbuff, color, width); backbuff += _screenWidth; } } } #pragma mark - void Scumm::initBGBuffers(int height) { const byte *ptr; int size, itemsize, i; byte *room; if (_version >= 7) { initVirtScreen(0, 0, virtscr[0].topline, _screenWidth, height, 1, 1); } room = getResourceAddress(rtRoom, _roomResource); if (_version <= 3) { gdi._numZBuffer = 2; } else if (_features & GF_SMALL_HEADER) { int off; ptr = findResourceData(MKID('SMAP'), room); gdi._numZBuffer = 0; if (_gameId == GID_MONKEY_EGA || _gameId == GID_PASS) off = READ_LE_UINT16(ptr); else off = READ_LE_UINT32(ptr); while (off && gdi._numZBuffer < 4) { gdi._numZBuffer++; ptr += off; off = READ_LE_UINT16(ptr); } } else if (_version == 8) { // in V8 there is no RMIH and num z buffers is in RMHD ptr = findResource(MKID('RMHD'), room); gdi._numZBuffer = READ_LE_UINT32(ptr + 24) + 1; } else { ptr = findResource(MKID('RMIH'), findResource(MKID('RMIM'), room)); gdi._numZBuffer = READ_LE_UINT16(ptr + 8) + 1; } assert(gdi._numZBuffer >= 1 && gdi._numZBuffer <= 8); if (_version >= 7) itemsize = (_roomHeight + 10) * gdi._numStrips; else itemsize = (_roomHeight + 4) * gdi._numStrips; size = itemsize * gdi._numZBuffer; memset(createResource(rtBuffer, 9, size), 0, size); for (i = 0; i < (int)ARRAYSIZE(gdi._imgBufOffs); i++) { if (i < gdi._numZBuffer) gdi._imgBufOffs[i] = i * itemsize; else gdi._imgBufOffs[i] = (gdi._numZBuffer - 1) * itemsize; } } void Scumm::drawFlashlight() { int i, j, offset, x, y; // Remove the flash light first if it was previously drawn if (_flashlight.isDrawn) { updateDirtyRect(0, _flashlight.x, _flashlight.x + _flashlight.w, _flashlight.y, _flashlight.y + _flashlight.h, USAGE_BIT_DIRTY); if (_flashlight.buffer) { i = _flashlight.h; do { memset(_flashlight.buffer, 0, _flashlight.w); _flashlight.buffer += _screenWidth; } while (--i); } _flashlight.isDrawn = false; } if (_flashlight.xStrips == 0 || _flashlight.yStrips == 0) return; // Calculate the area of the flashlight if (_gameId == GID_ZAK256 || _version <= 2) { x = _mouse.x + virtscr[0].xstart; y = _mouse.y - virtscr[0].topline; } else { Actor *a = derefActor(VAR(VAR_EGO), "drawFlashlight"); x = a->x; y = a->y; } _flashlight.w = _flashlight.xStrips * 8; _flashlight.h = _flashlight.yStrips * 8; _flashlight.x = x - _flashlight.w / 2 - _screenStartStrip * 8; _flashlight.y = y - _flashlight.h / 2; if (_gameId == GID_LOOM || _gameId == GID_LOOM256) _flashlight.y -= 12; // Clip the flashlight at the borders if (_flashlight.x < 0) _flashlight.x = 0; else if (_flashlight.x + _flashlight.w > gdi._numStrips * 8) _flashlight.x = gdi._numStrips * 8 - _flashlight.w; if (_flashlight.y < 0) _flashlight.y = 0; else if (_flashlight.y + _flashlight.h> virtscr[0].height) _flashlight.y = virtscr[0].height - _flashlight.h; // Redraw any actors "under" the flashlight for (i = _flashlight.x / 8; i < (_flashlight.x + _flashlight.w) / 8; i++) { assert(0 <= i && i < gdi._numStrips); setGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY); virtscr[0].tdirty[i] = 0; virtscr[0].bdirty[i] = virtscr[0].height; } byte *bgbak; offset = _flashlight.y * _screenWidth + virtscr[0].xstart + _flashlight.x; _flashlight.buffer = virtscr[0].screenPtr + offset; bgbak = getResourceAddress(rtBuffer, 5) + offset; blit(_flashlight.buffer, bgbak, _flashlight.w, _flashlight.h); // Round the corners. To do so, we simply hard-code a set of nicely // rounded corners. int corner_data[] = { 8, 6, 4, 3, 2, 2, 1, 1 }; int minrow = 0; int maxcol = _flashlight.w - 1; int maxrow = (_flashlight.h - 1) * _screenWidth; for (i = 0; i < 8; i++, minrow += _screenWidth, maxrow -= _screenWidth) { int d = corner_data[i]; for (j = 0; j < d; j++) { _flashlight.buffer[minrow + j] = 0; _flashlight.buffer[minrow + maxcol - j] = 0; _flashlight.buffer[maxrow + j] = 0; _flashlight.buffer[maxrow + maxcol - j] = 0; } } _flashlight.isDrawn = true; } /** * Redraw background as needed, i.e. the left/right sides if scrolling took place etc. * Note that this only updated the virtual screen, not the actual display. */ void Scumm::redrawBGAreas() { int i; int val; int diff; if (!(_features & GF_NEW_CAMERA)) if (camera._cur.x != camera._last.x && _charset->_hasMask) stopTalk(); val = 0; // Redraw parts of the background which are marked as dirty. if (!_fullRedraw && _BgNeedsRedraw) { for (i = 0; i != gdi._numStrips; i++) { if (testGfxUsageBit(_screenStartStrip + i, USAGE_BIT_DIRTY)) { redrawBGStrip(i, 1); } } } if (_features & GF_NEW_CAMERA) { diff = (camera._cur.x >> 3) - (camera._last.x >> 3); if (_fullRedraw == 0 && diff == 1) { val = 2; redrawBGStrip(gdi._numStrips - 1, 1); } else if (_fullRedraw == 0 && diff == -1) { val = 1; redrawBGStrip(0, 1); } else if (_fullRedraw != 0 || diff != 0) { _BgNeedsRedraw = false; redrawBGStrip(0, gdi._numStrips); } } else { if (_fullRedraw == 0 && camera._cur.x - camera._last.x == 8) { val = 2; redrawBGStrip(gdi._numStrips - 1, 1); } else if (_fullRedraw == 0 && camera._cur.x - camera._last.x == -8) { val = 1; redrawBGStrip(0, 1); } else if (_fullRedraw != 0 || camera._cur.x != camera._last.x) { _BgNeedsRedraw = false; _flashlight.isDrawn = false; redrawBGStrip(0, gdi._numStrips); } } drawRoomObjects(val); _BgNeedsRedraw = false; } void Scumm::redrawBGStrip(int start, int num) { int s = _screenStartStrip + start; assert(s >= 0 && (size_t) s < sizeof(gfxUsageBits) / (3 * sizeof(gfxUsageBits[0]))); for (int i = 0; i < num; i++) setGfxUsageBit(s + i, USAGE_BIT_DIRTY); if (_version == 1) { gdi._C64ObjectMode = false; } gdi.drawBitmap(getResourceAddress(rtRoom, _roomResource) + _IM00_offs, &virtscr[0], s, 0, _roomWidth, virtscr[0].height, s, num, 0, _roomStrips); } void Scumm::restoreCharsetBg() { if (_charset->_hasMask) { restoreBG(gdi._mask); _charset->_hasMask = false; gdi._mask.top = gdi._mask.left = 32767; gdi._mask.right = gdi._mask.bottom = 0; _charset->_str.left = -1; _charset->_left = -1; } _charset->_nextLeft = _string[0].xpos; _charset->_nextTop = _string[0].ypos; } void Scumm::restoreBG(ScummVM::Rect rect, byte backColor) { VirtScreen *vs; int topline, height, width; byte *backbuff, *bgbak; bool lightsOn; if (rect.top < 0) rect.top = 0; if (rect.left >= rect.right || rect.top >= rect.bottom) return; if ((vs = findVirtScreen(rect.top)) == NULL) return; topline = vs->topline; height = topline + vs->height; if (rect.left < 0) rect.left = 0; if (rect.right < 0) rect.right = 0; if (rect.left > _screenWidth) return; if (rect.right > _screenWidth) rect.right = _screenWidth; if (rect.bottom >= height) rect.bottom = height; updateDirtyRect(vs->number, rect.left, rect.right, rect.top - topline, rect.bottom - topline, USAGE_BIT_RESTORED); int offset = (rect.top - topline) * _screenWidth + vs->xstart + rect.left; backbuff = vs->screenPtr + offset; bgbak = getResourceAddress(rtBuffer, vs->number + 5) + offset; height = rect.height(); width = rect.width(); // Check whether lights are turned on or not lightsOn = (_features & GF_NEW_OPCODES) || (vs->number != 0) || (VAR(VAR_CURRENT_LIGHTS) & LIGHTMODE_screen); if (vs->alloctwobuffers && _currentRoom != 0 && lightsOn ) { blit(backbuff, bgbak, width, height); if (vs->number == 0 && _charset->_hasMask && height) { byte *mask; // Note: At first sight it may look as if this could // be optimized to (rect.right - rect.left) >> 3 and // thus to width >> 3, but that's not the case since // we are dealing with integer math here. int mask_width = (rect.right >> 3) - (rect.left >> 3); if (rect.right & 0x07) mask_width++; mask = getMaskBuffer(rect.left, rect.top, 0); if (vs->number == 0) mask += vs->topline * gdi._numStrips; do { memset(mask, 0, mask_width); mask += gdi._numStrips; } while (--height); } } else { while (height--) { memset(backbuff, backColor, width); backbuff += _screenWidth; } } } bool Scumm::hasCharsetMask(int left, int top, int right, int bottom) { ScummVM::Rect rect(left, top, right, bottom); return _charset->_hasMask && rect.intersects(gdi._mask); } byte *Scumm::getMaskBuffer(int x, int y, int z) { return getResourceAddress(rtBuffer, 9) + _screenStartStrip + (x / 8) + y * gdi._numStrips + gdi._imgBufOffs[z]; } #pragma mark - #pragma mark --- Image drawing --- #pragma mark - /** * Draw a bitmap onto a virtual screen. This is main drawing method for room backgrounds * and objects, used throughout all SCUMM versions. */ void Gdi::drawBitmap(const byte *ptr, VirtScreen *vs, int x, int y, const int width, const int height, int stripnr, int numstrip, byte flag, StripTable *table) { assert(ptr); assert(height > 0); byte *backbuff_ptr, *bgbak_ptr; const byte *smap_ptr; const byte *z_plane_ptr; byte *mask_ptr; int i; const byte *zplane_list[9]; int bottom; int numzbuf; int sx; bool lightsOn; bool useOrDecompress = false; // Check whether lights are turned on or not lightsOn = (_vm->_features & GF_NEW_OPCODES) || (vs->number != 0) || (_vm->VAR(_vm->VAR_CURRENT_LIGHTS) & LIGHTMODE_screen); CHECK_HEAP; if (_vm->_features & GF_SMALL_HEADER) smap_ptr = ptr; else if (_vm->_version == 8) smap_ptr = ptr; else smap_ptr = findResource(MKID('SMAP'), ptr); assert(smap_ptr); zplane_list[0] = smap_ptr; if (_zbufferDisabled) numzbuf = 0; else if (_numZBuffer <= 1 || (_vm->_version <= 2)) numzbuf = _numZBuffer; else { numzbuf = _numZBuffer; assert(numzbuf <= ARRAYSIZE(zplane_list)); if (_vm->_features & GF_OLD256) { zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr); if (0 == READ_LE_UINT32(zplane_list[1])) zplane_list[1] = 0; } else if (_vm->_features & GF_SMALL_HEADER) { if (_vm->_features & GF_16COLOR) zplane_list[1] = smap_ptr + READ_LE_UINT16(smap_ptr); else zplane_list[1] = smap_ptr + READ_LE_UINT32(smap_ptr); for (i = 2; i < numzbuf; i++) { zplane_list[i] = zplane_list[i-1] + READ_LE_UINT16(zplane_list[i-1]); } } else if (_vm->_version == 8) { // Find the OFFS chunk of the ZPLN chunk const byte *zplnOffsChunkStart = smap_ptr + READ_BE_UINT32(smap_ptr + 12) + 24; // Each ZPLN contains a WRAP chunk, which has (as always) an OFFS subchunk pointing // at ZSTR chunks. These once more contain a WRAP chunk which contains nothing but // an OFFS chunk. The content of this OFFS chunk contains the offsets to the // Z-planes. // We do not directly make use of this, but rather hard code offsets (like we do // for all other Scumm-versions, too). Clearly this is a bit hackish, but works // well enough, and there is no reason to assume that there are any cases where it // might fail. Still, doing this properly would have the advantage of catching // invalid/damaged data files, and allow us to exit gracefully instead of segfaulting. for (i = 1; i < numzbuf; i++) { zplane_list[i] = zplnOffsChunkStart + READ_LE_UINT32(zplnOffsChunkStart + 4 + i*4) + 16; } } else { const uint32 zplane_tags[] = { MKID('ZP00'), MKID('ZP01'), MKID('ZP02'), MKID('ZP03'), MKID('ZP04') }; for (i = 1; i < numzbuf; i++) { zplane_list[i] = findResource(zplane_tags[i], ptr); } } } if (_vm->_version == 8) { // A small hack to skip to the BSTR->WRAP->OFFS chunk. Note: order matters, we do this // *after* the Z buffer code because that assumes' the orginal value of smap_ptr. smap_ptr += 24; } bottom = y + height; if (bottom > vs->height) { warning("Gdi::drawBitmap, strip drawn to %d below window bottom %d", bottom, vs->height); } _vertStripNextInc = height * _vm->_screenWidth - 1; sx = x; if (vs->scrollable) sx -= vs->xstart >> 3; // // Since V3, all graphics data was encoded in strips, which is very efficient // for redrawing only parts of the screen. However, V2 is different: here // the whole graphics are encoded as one big chunk. That makes it rather // dificult to draw only parts of a room/object. We handle the V2 graphics // differently from all other (newer) graphic formats for this reason. // if (_vm->_version == 2) { if (vs->alloctwobuffers) bgbak_ptr = _vm->getResourceAddress(rtBuffer, vs->number + 5) + (y * _numStrips + x) * 8; else bgbak_ptr = vs->screenPtr + (y * _numStrips + x) * 8; mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + (y * _numStrips + x) + _imgBufOffs[1]; const int left = (stripnr << 3); const int right = left + (numstrip << 3); byte *dst = bgbak_ptr; const byte *src; byte color, data = 0; int run; bool dither = false; byte dither_table[128]; byte *ptr_dither_table; memset(dither_table, 0, sizeof(dither_table)); int theX, theY, maxX; if (table) { run = table->run[stripnr]; color = table->color[stripnr]; src = smap_ptr + table->offsets[stripnr]; theX = left; maxX = right; } else { run = 1; color = 0; src = smap_ptr; theX = 0; maxX = width; } // Draw image data. To do this, we decode the full RLE graphics data, // but only draw those parts we actually want to display. assert(height <= 128); for (; theX < maxX; theX++) { ptr_dither_table = dither_table; for (theY = 0; theY < height; theY++) { if (--run == 0) { data = *src++; if (data & 0x80) { run = data & 0x7f; dither = true; } else { run = data >> 4; dither = false; } color = _vm->_roomPalette[data & 0x0f]; if (run == 0) { run = *src++; } } if (!dither) { *ptr_dither_table = color; } if (left <= theX && theX < right) { *dst = *ptr_dither_table++; dst += _vm->_screenWidth; } } if (left <= theX && theX < right) { dst -= _vertStripNextInc; } } // Draw mask (zplane) data theY = 0; if (table) { src = smap_ptr + table->zoffsets[stripnr]; run = table->zrun[stripnr]; theX = left; } else { run = *src++; theX = 0; } while (theX < right) { const byte runFlag = run & 0x80; if (runFlag) { run &= 0x7f; data = *src++; } do { if (!runFlag) data = *src++; if (left <= theX) { *mask_ptr = data; mask_ptr += _numStrips; } theY++; if (theY >= height) { if (left <= theX) { mask_ptr -= _numStrips * height - 1; } theY = 0; theX += 8; if (theX >= right) break; } } while (--run); run = *src++; } } while (numstrip--) { CHECK_HEAP; if (sx < 0) goto next_iter; if (sx >= _numStrips) return; if (y < vs->tdirty[sx]) vs->tdirty[sx] = y; if (bottom > vs->bdirty[sx]) vs->bdirty[sx] = bottom; backbuff_ptr = vs->screenPtr + (y * _numStrips + x) * 8; if (vs->alloctwobuffers) bgbak_ptr = _vm->getResourceAddress(rtBuffer, vs->number + 5) + (y * _numStrips + x) * 8; else bgbak_ptr = backbuff_ptr; if (_vm->_version == 1) { if (_C64ObjectMode) drawStripC64Object(bgbak_ptr, stripnr, width, height); else drawStripC64Background(bgbak_ptr, stripnr, height); } else if (_vm->_version > 2) { if (_vm->_features & GF_16COLOR) { decodeStripEGA(bgbak_ptr, smap_ptr + READ_LE_UINT16(smap_ptr + stripnr * 2 + 2), height); } else if (_vm->_features & GF_SMALL_HEADER) { useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 4), height); } else { useOrDecompress = decompressBitmap(bgbak_ptr, smap_ptr + READ_LE_UINT32(smap_ptr + stripnr * 4 + 8), height); } } mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + (y * _numStrips + x); CHECK_HEAP; if (vs->alloctwobuffers) { if (_vm->hasCharsetMask(sx << 3, y, (sx + 1) << 3, bottom)) { if (flag & dbClear || !lightsOn) clear8ColWithMasking(backbuff_ptr, height, mask_ptr); else draw8ColWithMasking(backbuff_ptr, bgbak_ptr, height, mask_ptr); } else { if (flag & dbClear || !lightsOn) clear8Col(backbuff_ptr, height); else draw8Col(backbuff_ptr, bgbak_ptr, height); } } CHECK_HEAP; if (_vm->_version == 1) { mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[1]; drawStripC64Mask(mask_ptr, stripnr, width, height); } else if (_vm->_version == 2) { // Do nothing here for V2 games - zplane was handled already. } else if (flag & dbDrawMaskOnAll) { // Sam & Max uses dbDrawMaskOnAll for things like the inventory // box and the speech icons. While these objects only have one // mask, it should be applied to all the Z-planes in the room, // i.e. they should mask every actor. // // This flag used to be called dbDrawMaskOnBoth, and all it // would do was to mask Z-plane 0. (Z-plane 1 would also be // masked, because what is now the else-clause used to be run // always.) While this seems to be the only way there is to // mask Z-plane 0, this wasn't good enough since actors in // Z-planes >= 2 would not be masked. // // The flag is also used by The Dig and Full Throttle, but I // don't know what for. At the time of writing, these games // are still too unstable for me to investigate. if (_vm->_version == 8) z_plane_ptr = zplane_list[1] + READ_LE_UINT32(zplane_list[1] + stripnr * 4 + 8); else z_plane_ptr = zplane_list[1] + READ_LE_UINT16(zplane_list[1] + stripnr * 2 + 8); for (i = 0; i < numzbuf; i++) { mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i]; if (useOrDecompress && (flag & dbAllowMaskOr)) decompressMaskImgOr(mask_ptr, z_plane_ptr, height); else decompressMaskImg(mask_ptr, z_plane_ptr, height); } } else { for (i = 1; i < numzbuf; i++) { uint16 offs; if (!zplane_list[i]) continue; if (_vm->_features & GF_OLD_BUNDLE) offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2); else if (_vm->_features & GF_OLD256) offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 4); else if (_vm->_features & GF_SMALL_HEADER) offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 2); else if (_vm->_version == 8) offs = (uint16) READ_LE_UINT32(zplane_list[i] + stripnr * 4 + 8); else offs = READ_LE_UINT16(zplane_list[i] + stripnr * 2 + 8); mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + y * _numStrips + x + _imgBufOffs[i]; if (offs) { z_plane_ptr = zplane_list[i] + offs; if (useOrDecompress && (flag & dbAllowMaskOr)) { decompressMaskImgOr(mask_ptr, z_plane_ptr, height); } else { decompressMaskImg(mask_ptr, z_plane_ptr, height); } } else { if (!(useOrDecompress && (flag & dbAllowMaskOr))) for (int h = 0; h < height; h++) mask_ptr[h * _numStrips] = 0; // FIXME: needs better abstraction } } } #if 0 // HACK: blit mask(s) onto normal screen. Useful to debug masking for (i = 0; i < numzbuf; i++) { mask_ptr = _vm->getResourceAddress(rtBuffer, 9) + x + _imgBufOffs[i] + (y * _numStrips); byte *dst = backbuff_ptr; byte *dst2 = bgbak_ptr; for (int h = 0; h < height; h++) { int maskbits = *mask_ptr; for (int j = 0; j < 8; j++) { if (maskbits & 0x80) dst[j] = dst2[j] = 12+i; maskbits <<= 1; } dst += _vm->_screenWidth; dst2 += _vm->_screenWidth; mask_ptr += _numStrips; } } #endif next_iter: CHECK_HEAP; x++; sx++; stripnr++; } } /** * Create and fill a table with offsets to the graphic and mask strips in the * given V2 EGA bitmap. * @param src the V2 EGA bitmap * @param width the width of the bitmap * @param height the height of the bitmap * @param table the strip table to fill * @return filled strip table */ StripTable *Gdi::generateStripTable(const byte *src, int width, int height, StripTable *table) { // If no strip table was given to use, allocate a new one if (table == 0) table = (StripTable *)calloc(1, sizeof(StripTable)); const byte *bitmapStart = src; byte color = 0, data = 0; int x, y, length = 0; byte run = 1; // Decode the graphics strips, and memorize the run/color values // as well as the byte offset. for (x = 0 ; x < width; x++) { if ((x % 8) == 0) { assert(x/8 < 160); table->run[x/8] = run; table->color[x/8] = color; table->offsets[x/8] = src - bitmapStart; } for (y = 0; y < height; y++) { if (--run == 0) { data = *src++; if (data & 0x80) { run = data & 0x7f; } else { run = data >> 4; } if (run == 0) { run = *src++; } color = data & 0x0f; } } } // The mask data follows immediately after the graphics. x = 0; y = height; width /= 8; for (;;) { length = *src++; const byte runFlag = length & 0x80; if (runFlag) { length &= 0x7f; data = *src++; } do { if (!runFlag) data = *src++; if (y == height) { assert(x < 120); table->zoffsets[x] = src - bitmapStart - 1; table->zrun[x] = length | runFlag; } if (--y == 0) { if (--width == 0) return table; x++; y = height; } } while (--length); } return table; } void Gdi::drawStripC64Background(byte *dst, int stripnr, int height) { int charIdx; height >>= 3; for (int y = 0; y < height; y++) { _C64Colors[3] = (_C64ColorMap[y + stripnr * height] & 7); if (_vm->_roomPalette[0] == 255) { _vm->_roomPalette[0] = 0; _C64Colors[2] = _vm->_roomPalette[2]; _C64Colors[1] = _vm->_roomPalette[1]; } charIdx = _C64PicMap[y + stripnr * height] * 8; for (int i = 0; i < 8; i++) { byte c = _C64CharMap[charIdx + i]; dst[0] = dst[1] = _C64Colors[(c >> 6) & 3]; dst[2] = dst[3] = _C64Colors[(c >> 4) & 3]; dst[4] = dst[5] = _C64Colors[(c >> 2) & 3]; dst[6] = dst[7] = _C64Colors[(c >> 0) & 3]; dst += _vm->_screenWidth; } } } void Gdi::drawStripC64Object(byte *dst, int stripnr, int width, int height) { int charIdx; height >>= 3; width >>= 3; for (int y = 0; y < height; y++) { _C64Colors[3] = (_C64ObjectMap[(y + height) * width + stripnr] & 7); charIdx = _C64ObjectMap[y * width + stripnr] * 8; for (int i = 0; i < 8; i++) { byte c = _C64CharMap[charIdx + i]; dst[0] = dst[1] = _C64Colors[(c >> 6) & 3]; dst[2] = dst[3] = _C64Colors[(c >> 4) & 3]; dst[4] = dst[5] = _C64Colors[(c >> 2) & 3]; dst[6] = dst[7] = _C64Colors[(c >> 0) & 3]; dst += _vm->_screenWidth; } } } void Gdi::drawStripC64Mask(byte *dst, int stripnr, int width, int height) { int maskIdx; height >>= 3; width >>= 3; for (int y = 0; y < height; y++) { if (_C64ObjectMode) maskIdx = _C64ObjectMap[(y + 2 * height) * width + stripnr] * 8; else maskIdx = _C64MaskMap[y + stripnr * height] * 8; for (int i = 0; i < 8; i++) { byte c = _C64MaskChar[maskIdx + i]; // V1/C64 masks are inverted compared to what ScummVM expects *dst = c ^ 0xFF; dst += _numStrips; } } } void Gdi::decodeC64Gfx(const byte *src, byte *dst, int size) { int x, z; byte color, run, common[4]; for (z = 0; z < 4; z++) { common[z] = *src++; } x = 0; while (x < size) { run = *src++; if (run & 0x80) { color = common[(run >> 5) & 3]; run &= 0x1F; for (z = 0; z <= run; z++) { dst[x++] = color; } } else if (run & 0x40) { run &= 0x3F; color = *src++; for (z = 0; z <= run; z++) { dst[x++] = color; } } else { for (z = 0; z <= run; z++) { dst[x++] = *src++; } } } } void Gdi::decodeStripEGA(byte *dst, const byte *src, int height) { byte color = 0; int run = 0, x = 0, y = 0, z; while (x < 8) { color = *src++; if (color & 0x80) { run = color & 0x3f; if (color & 0x40) { color = *src++; if (run == 0) { run = *src++; } for (z = 0; z < run; z++) { *(dst + y * _vm->_screenWidth + x) = (z&1) ? _vm->_roomPalette[((color & 0xf) + _palette_mod)] : _vm->_roomPalette[((color >> 4) + _palette_mod)]; y++; if (y >= height) { y = 0; x++; } } } else { if (run == 0) { run = *src++; } for (z = 0; z < run; z++) { *(dst + y * _vm->_screenWidth + x) = *(dst + y * _vm->_screenWidth + x - 1); y++; if (y >= height) { y = 0; x++; } } } } else { run = color >> 4; if (run == 0) { run = *src++; } for (z = 0; z < run; z++) { *(dst + y * _vm->_screenWidth + x) = _vm->_roomPalette[(color & 0xf) + _palette_mod]; y++; if (y >= height) { y = 0; x++; } } } } } bool Gdi::decompressBitmap(byte *bgbak_ptr, const byte *src, int numLinesToProcess) { assert(numLinesToProcess); byte code = *src++; if (_vm->_features & GF_AMIGA) _palette_mod = 16; else _palette_mod = 0; bool useOrDecompress = false; _decomp_shr = code % 10; _decomp_mask = 0xFF >> (8 - _decomp_shr); switch (code) { case 1: unkDecode7(bgbak_ptr, src, numLinesToProcess); break; case 2: unkDecode8(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */ break; case 3: unkDecode9(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */ break; case 4: unkDecode10(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */ break; case 7: unkDecode11(bgbak_ptr, src, numLinesToProcess); /* Ender - Zak256/Indy256 */ break; // FIXME implement these codecs... // 8/9 used in 3do version of puttputt joins the parade maybe others case 8: case 9: error("decompressBitmap: Graphics codec %d not yet supported\n", code); // used in amiga version of Monkey Island case 10: decodeStripEGA(bgbak_ptr, src, numLinesToProcess); break; case 14: case 15: case 16: case 17: case 18: unkDecodeC(bgbak_ptr, src, numLinesToProcess); break; case 24: case 25: case 26: case 27: case 28: unkDecodeB(bgbak_ptr, src, numLinesToProcess); break; case 34: case 35: case 36: case 37: case 38: useOrDecompress = true; unkDecodeC_trans(bgbak_ptr, src, numLinesToProcess); break; case 44: case 45: case 46: case 47: case 48: useOrDecompress = true; unkDecodeB_trans(bgbak_ptr, src, numLinesToProcess); break; case 64: case 65: case 66: case 67: case 68: case 104: case 105: case 106: case 107: case 108: unkDecodeA(bgbak_ptr, src, numLinesToProcess); break; case 84: case 85: case 86: case 87: case 88: case 124: case 125: case 126: case 127: case 128: useOrDecompress = true; unkDecodeA_trans(bgbak_ptr, src, numLinesToProcess); break; default: error("Gdi::decompressBitmap: default case %d", code); } return useOrDecompress; } void Gdi::draw8ColWithMasking(byte *dst, const byte *src, int height, byte *mask) { byte maskbits; do { maskbits = *mask; if (maskbits) { if (!(maskbits & 0x80)) dst[0] = src[0]; if (!(maskbits & 0x40)) dst[1] = src[1]; if (!(maskbits & 0x20)) dst[2] = src[2]; if (!(maskbits & 0x10)) dst[3] = src[3]; if (!(maskbits & 0x08)) dst[4] = src[4]; if (!(maskbits & 0x04)) dst[5] = src[5]; if (!(maskbits & 0x02)) dst[6] = src[6]; if (!(maskbits & 0x01)) dst[7] = src[7]; } else { #if defined(SCUMM_NEED_ALIGNMENT) memcpy(dst, src, 8); #else ((uint32 *)dst)[0] = ((const uint32 *)src)[0]; ((uint32 *)dst)[1] = ((const uint32 *)src)[1]; #endif } src += _vm->_screenWidth; dst += _vm->_screenWidth; mask += _numStrips; } while (--height); } void Gdi::clear8ColWithMasking(byte *dst, int height, byte *mask) { byte maskbits; do { maskbits = *mask; if (maskbits) { if (!(maskbits & 0x80)) dst[0] = 0; if (!(maskbits & 0x40)) dst[1] = 0; if (!(maskbits & 0x20)) dst[2] = 0; if (!(maskbits & 0x10)) dst[3] = 0; if (!(maskbits & 0x08)) dst[4] = 0; if (!(maskbits & 0x04)) dst[5] = 0; if (!(maskbits & 0x02)) dst[6] = 0; if (!(maskbits & 0x01)) dst[7] = 0; } else { #if defined(SCUMM_NEED_ALIGNMENT) memset(dst, 0, 8); #else ((uint32 *)dst)[0] = 0; ((uint32 *)dst)[1] = 0; #endif } dst += _vm->_screenWidth; mask += _numStrips; } while (--height); } void Gdi::draw8Col(byte *dst, const byte *src, int height) { do { #if defined(SCUMM_NEED_ALIGNMENT) memcpy(dst, src, 8); #else ((uint32 *)dst)[0] = ((const uint32 *)src)[0]; ((uint32 *)dst)[1] = ((const uint32 *)src)[1]; #endif dst += _vm->_screenWidth; src += _vm->_screenWidth; } while (--height); } void Gdi::clear8Col(byte *dst, int height) { do { #if defined(SCUMM_NEED_ALIGNMENT) memset(dst, 0, 8); #else ((uint32 *)dst)[0] = 0; ((uint32 *)dst)[1] = 0; #endif dst += _vm->_screenWidth; } while (--height); } void Gdi::decompressMaskImg(byte *dst, const byte *src, int height) { byte b, c; while (height) { b = *src++; if (b & 0x80) { b &= 0x7F; c = *src++; do { *dst = c; dst += _numStrips; --height; } while (--b && height); } else { do { *dst = *src++; dst += _numStrips; --height; } while (--b && height); } } } void Gdi::decompressMaskImgOr(byte *dst, const byte *src, int height) { byte b, c; while (height) { b = *src++; if (b & 0x80) { b &= 0x7F; c = *src++; do { *dst |= c; dst += _numStrips; --height; } while (--b && height); } else { do { *dst |= *src++; dst += _numStrips; --height; } while (--b && height); } } } #define READ_BIT (cl--, bit = bits&1, bits>>=1,bit) #define FILL_BITS do { \ if (cl <= 8) { \ bits |= (*src++ << cl); \ cl += 8; \ } \ } while (0) void Gdi::unkDecodeA(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; byte incm, reps; do { int x = 8; do { FILL_BITS; *dst++ = color + _palette_mod; againPos: if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; } else { incm = (bits & 7) - 4; cl -= 3; bits >>= 3; if (incm) { color = (byte)((color+incm)&0xFF); } else { FILL_BITS; reps = bits & 0xFF; do { if (!--x) { x = 8; dst += _vm->_screenWidth - 8; if (!--height) return; } *dst++ = color + _palette_mod; } while (--reps); bits >>= 8; bits |= (*src++) << (cl - 8); goto againPos; } } } while (--x); dst += _vm->_screenWidth - 8; } while (--height); } void Gdi::unkDecodeA_trans(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; byte incm, reps; do { int x = 8; do { FILL_BITS; if (color != _transparentColor) *dst = color + _palette_mod; dst++; againPos: if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; } else { incm = (bits & 7) - 4; cl -= 3; bits >>= 3; if (incm) { color += incm; } else { FILL_BITS; reps = bits & 0xFF; do { if (!--x) { x = 8; dst += _vm->_screenWidth - 8; if (!--height) return; } if (color != _transparentColor) *dst = color + _palette_mod; dst++; } while (--reps); bits >>= 8; bits |= (*src++) << (cl - 8); goto againPos; } } } while (--x); dst += _vm->_screenWidth - 8; } while (--height); } void Gdi::unkDecodeB(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; int8 inc = -1; do { int x = 8; do { FILL_BITS; *dst++ = color + _palette_mod; if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; inc = -1; } else if (!READ_BIT) { color += inc; } else { inc = -inc; color += inc; } } while (--x); dst += _vm->_screenWidth - 8; } while (--height); } void Gdi::unkDecodeB_trans(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; int8 inc = -1; do { int x = 8; do { FILL_BITS; if (color != _transparentColor) *dst = (_vm->_features & GF_SMALL_HEADER) ? _vm->_roomPalette[color + _palette_mod] : color + _palette_mod; dst++; if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; inc = -1; } else if (!READ_BIT) { color += inc; } else { inc = -inc; color += inc; } } while (--x); dst += _vm->_screenWidth - 8; } while (--height); } void Gdi::unkDecodeC(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; int8 inc = -1; int x = 8; do { int h = height; do { FILL_BITS; *dst = (_vm->_features & GF_SMALL_HEADER) ? _vm->_roomPalette[color + _palette_mod] : color + _palette_mod; dst += _vm->_screenWidth; if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; inc = -1; } else if (!READ_BIT) { color += inc; } else { inc = -inc; color += inc; } } while (--h); dst -= _vertStripNextInc; } while (--x); } void Gdi::unkDecodeC_trans(byte *dst, const byte *src, int height) { byte color = *src++; uint bits = *src++; byte cl = 8; byte bit; int8 inc = -1; int x = 8; do { int h = height; do { FILL_BITS; if (color != _transparentColor) *dst = color + _palette_mod; dst += _vm->_screenWidth; if (!READ_BIT) { } else if (!READ_BIT) { FILL_BITS; color = bits & _decomp_mask; bits >>= _decomp_shr; cl -= _decomp_shr; inc = -1; } else if (!READ_BIT) { color += inc; } else { inc = -inc; color += inc; } } while (--h); dst -= _vertStripNextInc; } while (--x); } #undef READ_BIT #undef FILL_BITS /* Ender - Zak256/Indy256 decoders */ #define READ_256BIT \ if ((mask <<= 1) == 256) { \ buffer = *src++; \ mask = 1; \ } \ bits = ((buffer & mask) != 0); #define NEXT_ROW \ dst += _vm->_screenWidth; \ if (--h == 0) { \ if (!--x) \ return; \ dst -= _vertStripNextInc; \ h = height; \ } void Gdi::unkDecode7(byte *dst, const byte *src, int height) { uint h = height; if (_vm->_features & GF_OLD256) { int x = 8; for (;;) { *dst = *src++; NEXT_ROW } return; } do { #if defined(SCUMM_NEED_ALIGNMENT) memcpy(dst, src, 8); #else ((uint32 *)dst)[0] = ((const uint32 *)src)[0]; ((uint32 *)dst)[1] = ((const uint32 *)src)[1]; #endif dst += _vm->_screenWidth; src += 8; } while (--height); } void Gdi::unkDecode8(byte *dst, const byte *src, int height) { uint h = height; int x = 8; for (;;) { uint run = (*src++) + 1; byte color = *src++; do { *dst = _vm->_roomPalette[color]; NEXT_ROW } while (--run); } } void Gdi::unkDecode9(byte *dst, const byte *src, int height) { unsigned char c, bits, color, run; int i, j; uint buffer = 0, mask = 128; int h = height; i = j = run = 0; int x = 8; for (;;) { c = 0; for (i = 0; i < 4; i++) { READ_256BIT; c += (bits << i); } switch (c >> 2) { case 0: color = 0; for (i = 0; i < 4; i++) { READ_256BIT; color += bits << i; } for (i = 0; i < ((c & 3) + 2); i++) { *dst = (run * 16 + _vm->_roomPalette[color]); NEXT_ROW } break; case 1: for (i = 0; i < ((c & 3) + 1); i++) { color = 0; for (j = 0; j < 4; j++) { READ_256BIT; color += bits << j; } *dst = (run * 16 + _vm->_roomPalette[color]); NEXT_ROW } break; case 2: run = 0; for (i = 0; i < 4; i++) { READ_256BIT; run += bits << i; } break; } } } void Gdi::unkDecode10(byte *dst, const byte *src, int height) { int i; unsigned char local_palette[256], numcolors = *src++; uint h = height; for (i = 0; i < numcolors; i++) local_palette[i] = *src++; int x = 8; for (;;) { byte color = *src++; if (color < numcolors) { *dst = local_palette[_vm->_roomPalette[color]]; NEXT_ROW } else { uint run = color - numcolors + 1; color = *src++; do { *dst = _vm->_roomPalette[color]; NEXT_ROW } while (--run); } } } void Gdi::unkDecode11(byte *dst, const byte *src, int height) { int bits, i; uint buffer = 0, mask = 128; unsigned char inc = 1, color = *src++; int x = 8; do { int h = height; do { *dst = _vm->_roomPalette[color]; dst += _vm->_screenWidth; for (i = 0; i < 3; i++) { READ_256BIT if (!bits) break; } switch (i) { case 1: inc = -inc; color -= inc; break; case 2: color -= inc; break; case 3: color = 0; inc = 1; for (i = 0; i < 8; i++) { READ_256BIT color += bits << i; } break; } } while (--h); dst -= _vertStripNextInc; } while (--x); } #undef NEXT_ROW #undef READ_256BIT #pragma mark - #pragma mark --- Transition effects --- #pragma mark - void Scumm::fadeIn(int effect) { updatePalette(); switch (effect) { case 0: // seems to do nothing break; case 1: case 2: case 3: case 4: case 5: // Some of the transition effects won't work properly unless // the screen is marked as clean first. At first I thought I // could safely do this every time fadeIn() was called, but // that broke the FOA intro. Probably other things as well. // // Hopefully it's safe to do it at this point, at least. virtscr[0].setDirtyRange(0, 0); transitionEffect(effect - 1); break; case 128: unkScreenEffect6(); break; case 129: break; case 130: case 131: case 132: case 133: scrollEffect(133 - effect); break; case 134: dissolveEffect(1, 1); break; case 135: unkScreenEffect5(1); break; default: warning("Unknown screen effect, %d", effect); } _screenEffectFlag = true; } void Scumm::fadeOut(int effect) { VirtScreen *vs = &virtscr[0]; vs->setDirtyRange(0, 0); if (!(_features & GF_NEW_CAMERA)) camera._last.x = camera._cur.x; if (_screenEffectFlag && effect != 0) { // Fill screen 0 with black memset(vs->screenPtr + vs->xstart, 0, vs->size); // Fade to black with the specified effect, if any. switch (effect) { case 1: case 2: case 3: case 4: case 5: transitionEffect(effect - 1); break; case 128: unkScreenEffect6(); break; case 129: // Just blit screen 0 to the display (i.e. display will be black) vs->setDirtyRange(0, vs->height); updateDirtyScreen(0); break; case 134: dissolveEffect(1, 1); break; case 135: unkScreenEffect5(1); break; default: warning("fadeOut: default case %d", effect); } } // Update the palette at the end (once we faded to black) to avoid // some nasty effects when the palette is changed updatePalette(); _screenEffectFlag = false; } /** * Perform a transition effect. There are four different effects possible: * 0: Iris effect * 1: Box wipe (a black box expands from the upper-left corner to the lower-right corner) * 2: Box wipe (a black box expands from the lower-right corner to the upper-left corner) * 3: Inverse box wipe * All effects operate on 8x8 blocks of the screen. These blocks are updated * in a certain order; the exact order determines how the effect appears to the user. * @param a the transition effect to perform */ void Scumm::transitionEffect(int a) { int delta[16]; // Offset applied during each iteration int tab_2[16]; int i, j; int bottom; int l, t, r, b; for (i = 0; i < 16; i++) { delta[i] = transitionEffects[a].deltaTable[i]; j = transitionEffects[a].stripTable[i]; if (j == 24) j = (virtscr[0].height >> 3) - 1; tab_2[i] = j; } bottom = virtscr[0].height >> 3; for (j = 0; j < transitionEffects[a].numOfIterations; j++) { for (i = 0; i < 4; i++) { l = tab_2[i * 4]; t = tab_2[i * 4 + 1]; r = tab_2[i * 4 + 2]; b = tab_2[i * 4 + 3]; if (t == b) { while (l <= r) { if (l >= 0 && l < gdi._numStrips && (uint) t < (uint) bottom) { virtscr[0].tdirty[l] = t << 3; virtscr[0].bdirty[l] = (t + 1) << 3; } l++; } } else { if (l < 0 || l >= gdi._numStrips || b <= t) continue; if (b > bottom) b = bottom; if (t < 0) t = 0; virtscr[0].tdirty[l] = t << 3; virtscr[0].bdirty[l] = (b + 1) << 3; } updateDirtyScreen(0); } for (i = 0; i < 16; i++) tab_2[i] += delta[i]; // Draw the current state to the screen and wait half a sec so the user // can watch the effect taking place. _system->update_screen(); waitForTimer(30); } } /** * Update width*height areas of the screen, in random order, until the whole * screen has been updated. For instance: * * dissolveEffect(1, 1) produces a pixel-by-pixel dissolve * dissolveEffect(8, 8) produces a square-by-square dissolve * dissolveEffect(virtsrc[0].width, 1) produces a line-by-line dissolve */ void Scumm::dissolveEffect(int width, int height) { VirtScreen *vs = &virtscr[0]; int *offsets; int blits_before_refresh, blits; int x, y; int w, h; int i; // There's probably some less memory-hungry way of doing this. But // since we're only dealing with relatively small images, it shouldn't // be too bad. w = vs->width / width; h = vs->height / height; // When used correctly, vs->width % width and vs->height % height // should both be zero, but just to be safe... if (vs->width % width) w++; if (vs->height % height) h++; offsets = (int *) malloc(w * h * sizeof(int)); if (offsets == NULL) { warning("dissolveEffect: out of memory"); return; } // Create a permutation of offsets into the frame buffer if (width == 1 && height == 1) { // Optimized case for pixel-by-pixel dissolve for (i = 0; i < vs->size; i++) offsets[i] = i; for (i = 1; i < w * h; i++) { int j; j = _rnd.getRandomNumber(i - 1); offsets[i] = offsets[j]; offsets[j] = i; } } else { int *offsets2; for (i = 0, x = 0; x < vs->width; x += width) for (y = 0; y < vs->height; y += height) offsets[i++] = y * vs->width + x; offsets2 = (int *) malloc(w * h * sizeof(int)); if (offsets2 == NULL) { warning("dissolveEffect: out of memory"); free(offsets); return; } memcpy(offsets2, offsets, w * h * sizeof(int)); for (i = 1; i < w * h; i++) { int j; j = _rnd.getRandomNumber(i - 1); offsets[i] = offsets[j]; offsets[j] = offsets2[i]; } free(offsets2); } // Blit the image piece by piece to the screen. The idea here is that // the whole update should take about a quarter of a second, assuming // most of the time is spent in waitForTimer(). It looks good to me, // but might still need some tuning. blits = 0; blits_before_refresh = (3 * w * h) / 25; // Speed up the effect for CD Loom since it uses it so often. I don't // think the original had any delay at all, so on modern hardware it // wasn't even noticeable. if (_gameId == GID_LOOM256) blits_before_refresh *= 2; for (i = 0; i < w * h; i++) { x = offsets[i] % vs->width; y = offsets[i] / vs->width; _system->copy_rect(vs->screenPtr + vs->xstart + y * vs->width + x, vs->width, x, y + vs->topline, width, height); if (++blits >= blits_before_refresh) { blits = 0; _system->update_screen(); waitForTimer(30); } } free(offsets); if (blits != 0) { _system->update_screen(); waitForTimer(30); } } void Scumm::scrollEffect(int dir) { VirtScreen *vs = &virtscr[0]; int x, y; int step; if ((dir == 0) || (dir == 1)) step = vs->height; else step = vs->width; step = (step * kPictureDelay) / kScrolltime; switch (dir) { case 0: //up y = 1 + step; while (y < vs->height) { _system->move_screen(0, -step, vs->height); _system->copy_rect(vs->screenPtr + vs->xstart + (y - step) * vs->width, vs->width, 0, vs->height - step, vs->width, step); _system->update_screen(); waitForTimer(kPictureDelay); y += step; } break; case 1: // down y = 1 + step; while (y < vs->height) { _system->move_screen(0, step, vs->height); _system->copy_rect(vs->screenPtr + vs->xstart + vs->width * (vs->height-y), vs->width, 0, 0, vs->width, step); _system->update_screen(); waitForTimer(kPictureDelay); y += step; } break; case 2: // left x = 1 + step; while (x < vs->width) { _system->move_screen(-step, 0, vs->height); _system->copy_rect(vs->screenPtr + vs->xstart + x - step, vs->width, vs->width - step, 0, step, vs->height); _system->update_screen(); waitForTimer(kPictureDelay); x += step; } break; case 3: // right x = 1 + step; while (x < vs->width) { _system->move_screen(step, 0, vs->height); _system->copy_rect(vs->screenPtr + vs->xstart + vs->width - x, vs->width, 0, 0, step, vs->height); _system->update_screen(); waitForTimer(kPictureDelay); x += step; } break; } } void Scumm::unkScreenEffect6() { // CD Loom (but not EGA Loom!) uses a more fine-grained dissolve if (_gameId == GID_LOOM256) dissolveEffect(1, 1); else dissolveEffect(8, 4); } void Scumm::unkScreenEffect5(int a) { // unkScreenEffect5(0), which is used by FOA during the opening // cutscene when Indy opens the small statue, has been replaced by // dissolveEffect(1, 1). // // I still don't know what unkScreenEffect5(1) is supposed to do. /* XXX: not implemented */ warning("stub unkScreenEffect(%d)", a); } void Scumm::setShake(int mode) { if (_shakeEnabled != (mode != 0)) _fullRedraw = true; _shakeEnabled = mode != 0; _shakeFrame = 0; _system->set_shake_pos(0); } #pragma mark - #pragma mark --- Palette --- #pragma mark - void Scumm::setupAmigaPalette() { setPalColor( 0, 0, 0, 0); setPalColor( 1, 0, 0, 187); setPalColor( 2, 0, 187, 0); setPalColor( 3, 0, 187, 187); setPalColor( 4, 187, 0, 0); setPalColor( 5, 187, 0, 187); setPalColor( 6, 187, 119, 0); setPalColor( 7, 187, 187, 187); setPalColor( 8, 119, 119, 119); setPalColor( 9, 119, 119, 255); setPalColor(10, 0, 255, 0); setPalColor(11, 0, 255, 255); setPalColor(12, 255, 136, 136); setPalColor(13, 255, 0, 255); setPalColor(14, 255, 255, 0); setPalColor(15, 255, 255, 255); } void Scumm::setupEGAPalette() { setPalColor( 0, 0, 0, 0); setPalColor( 1, 0, 0, 168); setPalColor( 2, 0, 168, 0); setPalColor( 3, 0, 168, 168); setPalColor( 4, 168, 0, 0); setPalColor( 5, 168, 0, 168); setPalColor( 6, 168, 84, 0); setPalColor( 7, 168, 168, 168); setPalColor( 8, 84, 84, 84); setPalColor( 9, 84, 84, 252); setPalColor(10, 84, 252, 84); setPalColor(11, 84, 252, 252); setPalColor(12, 252, 84, 84); setPalColor(13, 252, 84, 252); setPalColor(14, 252, 252, 84); setPalColor(15, 252, 252, 252); } void Scumm::setupV1ManiacPalette() { setPalColor( 0, 0, 0, 0); setPalColor( 1, 252, 252, 252); setPalColor( 2, 168, 0, 0); setPalColor( 3, 0, 168, 168); setPalColor( 4, 168, 0, 168); setPalColor( 5, 0, 168, 0); setPalColor( 6, 0, 0, 168); setPalColor( 7, 252, 252, 84); setPalColor( 8, 252, 84, 84); setPalColor( 9, 168, 84, 0); setPalColor(10, 252, 84, 84); setPalColor(11, 84, 84, 84); setPalColor(12, 168, 168, 168); setPalColor(13, 84, 252, 84); setPalColor(14, 84, 84, 252); setPalColor(15, 84, 84, 84); } void Scumm::setupV1ZakPalette() { setPalColor( 0, 0, 0, 0); setPalColor( 1, 252, 252, 252); setPalColor( 2, 168, 0, 0); setPalColor( 3, 0, 168, 168); setPalColor( 4, 168, 0, 168); setPalColor( 5, 0, 168, 0); setPalColor( 6, 0, 0, 168); setPalColor( 7, 252, 252, 84); setPalColor( 8, 252, 84, 84); setPalColor( 9, 168, 84, 0); setPalColor(10, 252, 84, 84); setPalColor(11, 84, 84, 84); setPalColor(12, 168, 168, 168); setPalColor(13, 84, 252, 84); setPalColor(14, 84, 84, 252); setPalColor(15, 168, 168, 168); } /* Old palette used in Commodore 64 versions void Scumm::setupC64Palette() { setPalColor( 0, 0, 0, 0); setPalColor( 1, 252, 252, 252); setPalColor( 2, 204, 0, 0); setPalColor( 3, 0, 252, 204); setPalColor( 4, 252, 0, 252); setPalColor( 5, 0, 204, 0); setPalColor( 6, 0, 0, 204); setPalColor( 7, 252, 252, 0); setPalColor( 8, 252, 136, 0); setPalColor( 9, 136, 68, 0); setPalColor(10, 252, 136, 136); setPalColor(11, 68, 68, 68); setPalColor(12, 136, 136, 136); setPalColor(13, 136, 252, 136); setPalColor(14, 136, 136, 252); setPalColor(15, 204, 204, 204); } */ void Scumm::setPaletteFromPtr(const byte *ptr) { int i; byte *dest, r, g, b; int numcolor; if (_features & GF_SMALL_HEADER) { if (_features & GF_OLD256) numcolor = 256; else numcolor = READ_LE_UINT16(ptr + 6) / 3; ptr += 8; } else { numcolor = getResourceDataSize(ptr) / 3; } checkRange(256, 0, numcolor, "Too many colors (%d) in Palette"); dest = _currentPalette; for (i = 0; i < numcolor; i++) { r = *ptr++; g = *ptr++; b = *ptr++; // This comparison might look weird, but it's what the disassembly (DOTT) says! // FIXME: Fingolfin still thinks it looks weird: the value 252 = 4*63 clearly comes from // the days 6/6/6 palettes were used, OK. But it breaks MonkeyVGA, so I had to add a // check for that. And somebody before me added a check for V7 games, turning this // off there, too... I wonder if it hurts other games, too? What exactly is broken // if we remove this patch? // Since it also causes problems in Zak256, I am turning it off for all V4 games and older. if ((_version <= 4) || (_version >= 7) || (i <= 15 || r < 252 || g < 252 || b < 252)) { *dest++ = r; *dest++ = g; *dest++ = b; } else { dest += 3; } } setDirtyColors(0, numcolor - 1); } void Scumm::setPaletteFromRes() { byte *ptr; ptr = getResourceAddress(rtRoom, _roomResource) + _CLUT_offs; setPaletteFromPtr(ptr); } void Scumm::setDirtyColors(int min, int max) { if (_palDirtyMin > min) _palDirtyMin = min; if (_palDirtyMax < max) _palDirtyMax = max; } void Scumm::initCycl(const byte *ptr) { int j; ColorCycle *cycl; memset(_colorCycle, 0, sizeof(_colorCycle)); while ((j = *ptr++) != 0) { if (j < 1 || j > 16) { error("Invalid color cycle index %d", j); } cycl = &_colorCycle[j - 1]; ptr += 2; cycl->counter = 0; cycl->delay = 16384 / READ_BE_UINT16(ptr); ptr += 2; cycl->flags = READ_BE_UINT16(ptr); ptr += 2; cycl->start = *ptr++; cycl->end = *ptr++; } } void Scumm::stopCycle(int i) { ColorCycle *cycl; checkRange(16, 0, i, "Stop Cycle %d Out Of Range"); if (i != 0) { _colorCycle[i - 1].delay = 0; return; } for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++) cycl->delay = 0; } /** * Cycle the colors in the given palette in the intervael [cycleStart, cycleEnd] * either one step forward or backward. */ static void cyclePalette(byte *palette, int cycleStart, int cycleEnd, int size, bool forward) { byte *start = palette + cycleStart * size; byte *end = palette + cycleEnd * size; int num = cycleEnd - cycleStart; byte tmp[6]; assert(size <= 6); if (forward) { memmove(tmp, end, size); memmove(start + size, start, num * size); memmove(start, tmp, size); } else { memmove(tmp, start, size); memmove(start, start + size, num * size); memmove(end, tmp, size); } } /** * Adjust an 'indirect' color palette for the color cycling performed on its master * palette. An indirect palette is a palette which contains indices pointing into * another palette - it provides a level of indirection to map palette colors to * other colors. Now when the target palette is cycled, the indirect palette suddenly * point at the wrong color(s). This function takes care of adjusting an indirect * palette by searching through it and replacing all indices that are in the * cycle range by the new (cycled) index. */ static void cycleIndirectPalette(byte *palette, int cycleStart, int cycleEnd, bool forward) { int num = cycleEnd - cycleStart + 1; int i; int offset = forward ? 1 : num - 1; for (i = 0; i < 256; i++) { if (cycleStart <= palette[i] && palette[i] <= cycleEnd) { palette[i] = (palette[i] - cycleStart + offset) % num + cycleStart; } } } void Scumm::cyclePalette() { ColorCycle *cycl; int valueToAdd; int i, j; if (VAR_TIMER == 0xFF) { // FIXME - no idea if this is right :-/ // Needed for both V2 and V8 at this time valueToAdd = VAR(VAR_TIMER_NEXT); } else { valueToAdd = VAR(VAR_TIMER); if (valueToAdd < VAR(VAR_TIMER_NEXT)) valueToAdd = VAR(VAR_TIMER_NEXT); } if (!_colorCycle) // FIXME return; for (i = 0, cycl = _colorCycle; i < 16; i++, cycl++) { if (!cycl->delay || cycl->start > cycl->end) continue; cycl->counter += valueToAdd; if (cycl->counter >= cycl->delay) { cycl->counter %= cycl->delay; setDirtyColors(cycl->start, cycl->end); moveMemInPalRes(cycl->start, cycl->end, cycl->flags & 2); ::cyclePalette(_currentPalette, cycl->start, cycl->end, 3, !(cycl->flags & 2)); // Also cycle the other, indirect palettes if (_proc_special_palette) { ::cycleIndirectPalette(_proc_special_palette, cycl->start, cycl->end, !(cycl->flags & 2)); } if (_shadowPalette) { if (_version >= 7) { for (j = 0; j < NUM_SHADOW_PALETTE; j++) ::cycleIndirectPalette(_shadowPalette + j * 256, cycl->start, cycl->end, !(cycl->flags & 2)); } else { ::cycleIndirectPalette(_shadowPalette, cycl->start, cycl->end, !(cycl->flags & 2)); } } } } } /** * Perform color cycling on the palManipulate data, too, otherwise * color cycling will be disturbed by the palette fade. */ void Scumm::moveMemInPalRes(int start, int end, byte direction) { if (!_palManipCounter) return; ::cyclePalette(_palManipPalette, start, end, 3, !direction); ::cyclePalette(_palManipIntermediatePal, start, end, 6, !direction); } void Scumm::palManipulateInit(int start, int end, int string_id, int time) { byte *pal, *target, *between; byte *string1, *string2, *string3; int i; string1 = getStringAddress(string_id); string2 = getStringAddress(string_id + 1); string3 = getStringAddress(string_id + 2); if (!string1 || !string2 || !string3) { warning("palManipulateInit(%d,%d,%d,%d): Cannot obtain string resources %d, %d and %d", start, end, string_id, time, string_id, string_id + 1, string_id + 2); return; } string1+=start; string2+=start; string3+=start; _palManipStart = start; _palManipEnd = end; _palManipCounter = 0; if (!_palManipPalette) _palManipPalette = (byte *)calloc(0x300, 1); if (!_palManipIntermediatePal) _palManipIntermediatePal = (byte *)calloc(0x600, 1); pal = _currentPalette + start * 3; target = _palManipPalette + start * 3; between = _palManipIntermediatePal + start * 6; for (i = start; i < end; ++i) { *target++ = *string1++; *target++ = *string2++; *target++ = *string3++; *(uint16 *)between = ((uint16) *pal++) << 8; between += 2; *(uint16 *)between = ((uint16) *pal++) << 8; between += 2; *(uint16 *)between = ((uint16) *pal++) << 8; between += 2; } _palManipCounter = time; } void Scumm::palManipulate() { byte *target, *pal, *between; int i, j; if (!_palManipCounter || !_palManipPalette || !_palManipIntermediatePal) return; target = _palManipPalette + _palManipStart * 3; pal = _currentPalette + _palManipStart * 3; between = _palManipIntermediatePal + _palManipStart * 6; for (i = _palManipStart; i < _palManipEnd; ++i) { j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter); *pal++ = j >> 8; between += 2; j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter); *pal++ = j >> 8; between += 2; j = (*((uint16 *)between) += ((*target++ << 8) - *((uint16 *)between)) / _palManipCounter); *pal++ = j >> 8; between += 2; } setDirtyColors(_palManipStart, _palManipEnd); _palManipCounter--; } void Scumm::setupShadowPalette(int slot, int redScale, int greenScale, int blueScale, int startColor, int endColor) { byte *table; int i; byte *curpal; if (slot < 0 || slot >= NUM_SHADOW_PALETTE) error("setupShadowPalette: invalid slot %d", slot); if (startColor < 0 || startColor > 255 || endColor < 0 || startColor > 255 || endColor < startColor) error("setupShadowPalette: invalid range from %d to %d", startColor, endColor); table = _shadowPalette + slot * 256; for (i = 0; i < 256; i++) table[i] = i; table += startColor; curpal = _currentPalette + startColor * 3; for (i = startColor; i <= endColor; i++) { *table++ = remapPaletteColor((curpal[0] * redScale) >> 8, (curpal[1] * greenScale) >> 8, (curpal[2] * blueScale) >> 8, (uint) - 1); curpal += 3; } } void Scumm::setupShadowPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) { const byte *basepal = getPalettePtr(); const byte *pal = basepal; const byte *compareptr; byte *table = _shadowPalette; int i; // This is a correction of the patch supplied for BUG #588501. // It has been tested in all four known rooms where unkRoomFunc3 is used: // // 1) FOA Room 53: subway departing Knossos for Atlantis. // 2) FOA Room 48: subway crashing into the Atlantis entrance area // 3) FOA Room 82: boat/sub shadows while diving near Thera // 4) FOA Room 23: the big machine room inside Atlantis // // The implementation behaves well in all tests. // Pixel comparisons show that the resulting palette entries being // derived from the shadow palette generated here occassionally differ // slightly from the ones derived in the LEC executable. // Not sure yet why, but the differences are VERY minor. // // There seems to be no explanation for why this function is called // from within Room 23 (the big machine), as it has no shadow effects // and thus doesn't result in any visual differences. for (i = 0; i <= 255; i++) { int r = (int) (*pal++ * redScale) >> 8; int g = (int) (*pal++ * greenScale) >> 8; int b = (int) (*pal++ * blueScale) >> 8; // The following functionality is similar to remapPaletteColor, except // 1) we have to work off the original CLUT rather than the current palette, and // 2) the target shadow palette entries must be bounded to the upper and lower // bounds provided by the opcode. (This becomes significant in Room 48, but // is not an issue in all other known case studies.) int j; int ar, ag, ab; uint sum, bestsum, bestitem = 0; if (r > 255) r = 255; if (g > 255) g = 255; if (b > 255) b = 255; bestsum = (uint)-1; r &= ~3; g &= ~3; b &= ~3; compareptr = basepal + startColor * 3; for (j = startColor; j <= endColor; j++, compareptr += 3) { ar = compareptr[0] & ~3; ag = compareptr[1] & ~3; ab = compareptr[2] & ~3; if (ar == r && ag == g && ab == b) { bestitem = j; break; } sum = colorWeight(ar - r, ag - g, ab - b); if (sum < bestsum) { bestsum = sum; bestitem = j; } } *table++ = bestitem; } } /** This function create the specialPalette used for semi-transparency in SamnMax */ void Scumm::createSpecialPalette(int16 from, int16 to, int16 redScale, int16 greenScale, int16 blueScale, int16 startColor, int16 endColor) { const byte *palPtr, *curPtr; const byte *searchPtr; uint bestResult; uint currentResult; byte currentIndex; int i, j; palPtr = getPalettePtr(); for (i = 0; i < 256; i++) _proc_special_palette[i] = i; curPtr = palPtr + startColor * 3; for (i = startColor; i < endColor; i++) { int r = (int) (*curPtr++ * redScale) >> 8; int g = (int) (*curPtr++ * greenScale) >> 8; int b = (int) (*curPtr++ * blueScale) >> 8; if (r > 255) r = 255; if (g > 255) g = 255; if (b > 255) b = 255; searchPtr = palPtr + from * 3; bestResult = (uint)-1; currentIndex = (byte) from; for (j = from; j <= to; j++) { int ar = (*searchPtr++); int ag = (*searchPtr++); int ab = (*searchPtr++); currentResult = colorWeight(ar - r, ag - g, ab - b); if (currentResult < bestResult) { _proc_special_palette[i] = currentIndex; bestResult = currentResult; } currentIndex++; } } } void Scumm::darkenPalette(int redScale, int greenScale, int blueScale, int startColor, int endColor) { if (_roomResource == 0) // FIXME - HACK to get COMI demo working return; if (startColor <= endColor) { const byte *cptr; byte *cur; int j; int color; cptr = getPalettePtr() + startColor * 3; cur = _currentPalette + startColor * 3; for (j = startColor; j <= endColor; j++) { color = *cptr++; color = color * redScale / 0xFF; if (color > 255) color = 255; *cur++ = color; color = *cptr++; color = color * greenScale / 0xFF; if (color > 255) color = 255; *cur++ = color; color = *cptr++; color = color * blueScale / 0xFF; if (color > 255) color = 255; *cur++ = color; } setDirtyColors(startColor, endColor); } } static int value(int n1, int n2, int hue) { if (hue > 360) hue = hue - 360; else if (hue < 0) hue = hue + 360; if (hue < 60) return n1 + (n2 - n1) * hue / 60; if (hue < 180) return n2; if (hue < 240) return n1 + (n2 - n1) * (240 - hue) / 60; return n1; } /** * This function scales the HSL (Hue, Saturation and Lightness) * components of the palette colors. It's used in CMI when Guybrush * walks from the beach towards the swamp. */ void Scumm::desaturatePalette(int hueScale, int satScale, int lightScale, int startColor, int endColor) { if (startColor <= endColor) { const byte *cptr; byte *cur; int j; cptr = getPalettePtr() + startColor * 3; cur = _currentPalette + startColor * 3; for (j = startColor; j <= endColor; j++) { int R = *cptr++; int G = *cptr++; int B = *cptr++; // RGB to HLS (Foley and VanDam) const int min = MIN(R, MIN(G, B)); const int max = MAX(R, MAX(G, B)); const int diff = (max - min); const int sum = (max + min); if (diff != 0) { int H, S, L; if (sum <= 255) S = 255 * diff / sum; else S = 255 * diff / (255 * 2 - sum); if (R == max) H = 60 * (G - B) / diff; else if (G == max) H = 120 + 60 * (B - R) / diff; else H = 240 + 60 * (R - G) / diff; if (H < 0) H = H + 360; // Scale the result H = (H * hueScale) / 255; S = (S * satScale) / 255; L = (sum * lightScale) / 255; // HLS to RGB (Foley and VanDam) int m1, m2; if (L <= 255) m2 = L * (255 + S) / (255 * 2); else m2 = L * (255 - S) / (255 * 2) + S; m1 = L - m2; R = value(m1, m2, H + 120); G = value(m1, m2, H); B = value(m1, m2, H - 120); } else { // Maximal color = minimal color -> R=G=B -> it's a grayscale. R = G = B = (R * lightScale) / 255; } *cur++ = R; *cur++ = G; *cur++ = B; } setDirtyColors(startColor, endColor); } } int Scumm::remapPaletteColor(int r, int g, int b, uint threshold) { int i; int ar, ag, ab; uint sum, bestsum, bestitem = 0; byte *pal = _currentPalette; if (r > 255) r = 255; if (g > 255) g = 255; if (b > 255) b = 255; bestsum = (uint) - 1; r &= ~3; g &= ~3; b &= ~3; for (i = 0; i < 256; i++, pal += 3) { ar = pal[0] & ~3; ag = pal[1] & ~3; ab = pal[2] & ~3; if (ar == r && ag == g && ab == b) return i; sum = colorWeight(ar - r, ag - g, ab - b); if (sum < bestsum) { bestsum = sum; bestitem = i; } } if (threshold != (uint) - 1 && bestsum > colorWeight(threshold, threshold, threshold)) { // Best match exceeded threshold. Try to find an unused palette entry and // use it for our purpose. pal = _currentPalette + (256 - 2) * 3; for (i = 254; i > 48; i--, pal -= 3) { if (pal[0] >= 252 && pal[1] >= 252 && pal[2] >= 252) { setPalColor(i, r, g, b); return i; } } } return bestitem; } void Scumm::swapPalColors(int a, int b) { byte *ap, *bp; byte t; if ((uint) a >= 256 || (uint) b >= 256) error("swapPalColors: invalid values, %d, %d", a, b); ap = &_currentPalette[a * 3]; bp = &_currentPalette[b * 3]; t = ap[0]; ap[0] = bp[0]; bp[0] = t; t = ap[1]; ap[1] = bp[1]; bp[1] = t; t = ap[2]; ap[2] = bp[2]; bp[2] = t; setDirtyColors(a, a); setDirtyColors(b, b); } void Scumm::copyPalColor(int dst, int src) { byte *dp, *sp; if ((uint) dst >= 256 || (uint) src >= 256) error("copyPalColor: invalid values, %d, %d", dst, src); dp = &_currentPalette[dst * 3]; sp = &_currentPalette[src * 3]; dp[0] = sp[0]; dp[1] = sp[1]; dp[2] = sp[2]; setDirtyColors(dst, dst); } void Scumm::setPalColor(int idx, int r, int g, int b) { _currentPalette[idx * 3 + 0] = r; _currentPalette[idx * 3 + 1] = g; _currentPalette[idx * 3 + 2] = b; setDirtyColors(idx, idx); } void Scumm::setPalette(int palindex) { const byte *pals; _curPalIndex = palindex; pals = getPalettePtr(); setPaletteFromPtr(pals); } const byte *Scumm::findPalInPals(const byte *pal, int idx) { const byte *offs; uint32 size; pal = findResource(MKID('WRAP'), pal); if (pal == NULL) return NULL; offs = findResourceData(MKID('OFFS'), pal); if (offs == NULL) return NULL; size = getResourceDataSize(offs) >> 2; if ((uint32)idx >= (uint32)size) return NULL; return offs + READ_LE_UINT32(offs + idx * sizeof(uint32)); } const byte *Scumm::getPalettePtr() { const byte *cptr; cptr = getResourceAddress(rtRoom, _roomResource); assert(cptr); if (_CLUT_offs) { cptr += _CLUT_offs; } else { cptr = findPalInPals(cptr + _PALS_offs, _curPalIndex); } assert(cptr); return cptr; } void Scumm::updatePalette() { if (_palDirtyMax == -1) return; bool noir_mode = (_gameId == GID_SAMNMAX && readVar(0x8000)); int first = _palDirtyMin; int num = _palDirtyMax - first + 1; int i; byte palette_colors[1024]; byte *p = palette_colors; for (i = _palDirtyMin; i <= _palDirtyMax; i++) { byte *data; if (_features & GF_SMALL_HEADER && _version > 2) data = _currentPalette + _shadowPalette[i] * 3; else data = _currentPalette + i * 3; // Sam & Max film noir mode. Convert the colours to grayscale // before uploading them to the backend. if (noir_mode) { int r, g, b; byte brightness; r = data[0]; g = data[1]; b = data[2]; brightness = (byte)((0.299 * r + 0.587 * g + 0.114 * b) + 0.5); *p++ = brightness; *p++ = brightness; *p++ = brightness; *p++ = 0; } else { *p++ = data[0]; *p++ = data[1]; *p++ = data[2]; *p++ = 0; } } _system->set_palette(palette_colors, first, num); _palDirtyMax = -1; _palDirtyMin = 256; } #pragma mark - #pragma mark --- Cursor --- #pragma mark - void Scumm::setupCursor() { _cursor.animate = 1; if (_gameId == GID_TENTACLE) { // HACK: For DOTT we manually set the default cursor. See also bug #786994 setCursorImg(697, 60, 1); makeCursorColorTransparent(1); } } void Scumm::grabCursor(int x, int y, int w, int h) { VirtScreen *vs = findVirtScreen(y); if (vs == NULL) { warning("grabCursor: invalid Y %d", y); return; } grabCursor(vs->screenPtr + (y - vs->topline) * _screenWidth + x, w, h); } void Scumm::grabCursor(byte *ptr, int width, int height) { uint size; byte *dst; size = width * height; if (size > sizeof(_grabbedCursor)) error("grabCursor: grabbed cursor too big"); _cursor.width = width; _cursor.height = height; _cursor.animate = 0; dst = _grabbedCursor; for (; height; height--) { memcpy(dst, ptr, width); dst += width; ptr += _screenWidth; } updateCursor(); } void Scumm::useIm01Cursor(const byte *im, int w, int h) { VirtScreen *vs = &virtscr[0]; byte *buf, *dst; const byte *src; int i; w <<= 3; h <<= 3; dst = buf = (byte *) malloc(w * h); src = vs->screenPtr + vs->xstart; for (i = 0; i < h; i++) { memcpy(dst, src, w); dst += w; src += _screenWidth; } drawBox(0, 0, w - 1, h - 1, 0xFF); vs->alloctwobuffers = false; gdi.disableZBuffer(); gdi.drawBitmap(im, vs, _screenStartStrip, 0, w, h, 0, w >> 3, 0); vs->alloctwobuffers = true; gdi.enableZBuffer(); grabCursor(vs->screenPtr + vs->xstart, w, h); src = buf; dst = vs->screenPtr + vs->xstart; for (i = 0; i < h; i++) { memcpy(dst, src, w); dst += _screenWidth; src += w; } free(buf); } void Scumm::setCursor(int cursor) { if (cursor >= 0 && cursor <= 3) _currentCursor = cursor; else warning("setCursor(%d)", cursor); } void Scumm::setCursorHotspot(int x, int y) { _cursor.hotspotX = x; _cursor.hotspotY = y; // FIXME this hacks around offset cursor in the humongous games if (_features & GF_HUMONGOUS) { _cursor.hotspotX += 15; _cursor.hotspotY += 15; } } void Scumm::updateCursor() { _system->set_mouse_cursor(_grabbedCursor, _cursor.width, _cursor.height, _cursor.hotspotX, _cursor.hotspotY); } void Scumm::animateCursor() { if (_cursor.animate) { if (!(_cursor.animateIndex & 0x3)) { decompressDefaultCursor((_cursor.animateIndex >> 2) & 3); } _cursor.animateIndex++; } } void Scumm::useBompCursor(const byte *im, int width, int height) { uint size; width <<= 3; height <<= 3; size = width * height; if (size > sizeof(_grabbedCursor)) error("useBompCursor: cursor too big (%d)", size); _cursor.width = width; _cursor.height = height; _cursor.animate = 0; // Skip the header if (_version == 8) { im += 16; } else { im += 18; } decompressBomp(_grabbedCursor, im, width, height); updateCursor(); } void Scumm::decompressDefaultCursor(int idx) { int i, j; byte color; memset(_grabbedCursor, 0xFF, sizeof(_grabbedCursor)); if (_version == 1) color = default_v1_cursor_colors[idx]; else color = default_cursor_colors[idx]; // FIXME: None of the stock cursors are right for Loom. Why is that? if (_gameId == GID_LOOM || _gameId == GID_LOOM256) { int w = 0; _cursor.width = 8; _cursor.height = 8; _cursor.hotspotX = 0; _cursor.hotspotY = 0; for (i = 0; i < 8; i++) { w += (i >= 6) ? -2 : 1; for (j = 0; j < w; j++) _grabbedCursor[i * 8 + j] = color; } } else if (_version <= 2) { _cursor.width = 23; _cursor.height = 21; _cursor.hotspotX = 11; _cursor.hotspotY = 10; byte *hotspot = _grabbedCursor + _cursor.hotspotY * _cursor.width + _cursor.hotspotX; // Crosshair, slightly assymetric for (i = 0; i < 7; i++) { *(hotspot - 5 - i) = color; *(hotspot + 5 + i) = color; } for (i = 0; i < 8; i++) { *(hotspot - _cursor.width * (3 + i)) = color; *(hotspot + _cursor.width * (3 + i)) = color; } // Arrow heads, diagonal lines for (i = 1; i <= 3; i++) { *(hotspot - _cursor.width * i - 5 - i) = color; *(hotspot + _cursor.width * i - 5 - i) = color; *(hotspot - _cursor.width * i + 5 + i) = color; *(hotspot + _cursor.width * i + 5 + i) = color; *(hotspot - _cursor.width * (i + 3) - i) = color; *(hotspot - _cursor.width * (i + 3) + i) = color; *(hotspot + _cursor.width * (i + 3) - i) = color; *(hotspot + _cursor.width * (i + 3) + i) = color; } // Final touches *(hotspot - _cursor.width - 7) = color; *(hotspot - _cursor.width + 7) = color; *(hotspot + _cursor.width - 7) = color; *(hotspot + _cursor.width + 7) = color; *(hotspot - (_cursor.width * 5) - 1) = color; *(hotspot - (_cursor.width * 5) + 1) = color; *(hotspot + (_cursor.width * 5) - 1) = color; *(hotspot + (_cursor.width * 5) + 1) = color; } else { byte currentCursor = _currentCursor; #ifdef __PALM_OS__ if (_gameId == GID_ZAK256 && currentCursor == 0) currentCursor = 4; #endif _cursor.width = 16; _cursor.height = 16; _cursor.hotspotX = default_cursor_hotspots[2 * currentCursor]; _cursor.hotspotY = default_cursor_hotspots[2 * currentCursor + 1]; for (i = 0; i < 16; i++) { for (j = 0; j < 16; j++) { if (default_cursor_images[currentCursor][i] & (1 << j)) _grabbedCursor[16 * i + 15 - j] = color; } } } updateCursor(); } void Scumm::makeCursorColorTransparent(int a) { int i, size; size = _cursor.width * _cursor.height; for (i = 0; i < size; i++) if (_grabbedCursor[i] == (byte)a) _grabbedCursor[i] = 0xFF; updateCursor(); } #ifdef __PALM_OS__ #include "scumm_globals.h" _GINIT(Gfx) _GSETPTR(transitionEffects, GBVARS_TRANSITIONEFFECTS_INDEX, TransitionEffect, GBVARS_SCUMM) _GEND _GRELEASE(Gfx) _GRELEASEPTR(GBVARS_TRANSITIONEFFECTS_INDEX, GBVARS_SCUMM) _GEND #endif