/* ScummVM - Scumm Interpreter * Copyright (C) 2001-2005 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $Header$ */ #include "common/stdafx.h" #include "common/scummsys.h" #include "common/util.h" namespace Scumm { namespace BundleCodecs { uint32 decode12BitsSample(const byte *src, byte **dst, uint32 size) { uint32 loop_size = size / 3; uint32 s_size = loop_size * 4; byte *ptr = *dst = (byte *)malloc(s_size); uint32 tmp; while (loop_size--) { byte v1 = *src++; byte v2 = *src++; byte v3 = *src++; tmp = ((((v2 & 0x0f) << 8) | v1) << 4) - 0x8000; WRITE_BE_UINT16(ptr, tmp); ptr += 2; tmp = ((((v2 & 0xf0) << 4) | v3) << 4) - 0x8000; WRITE_BE_UINT16(ptr, tmp); ptr += 2; } return s_size; } /* * The "IMC" codec below (see cases 13 & 15 in decompressCodec) is actually a * variant of the IMA codec, see also * * * It is somewhat different, though: the standard ADPCM codecs use a fixed * size for their data packets (4 bits), while the codec implemented here * varies the size of each "packet" between 2 and 7 bits. */ #ifdef PALMOS_68K static byte *_destImcTable = NULL; // save 23k of memory ! static uint32 *_destImcTable2 = NULL; static const int16 *imcTable; #else static byte _destImcTable[89]; static uint32 _destImcTable2[89 * 64]; static const int16 imcTable[] = { 0x0007, 0x0008, 0x0009, 0x000A, 0x000B, 0x000C, 0x000D, 0x000E, 0x0010, 0x0011, 0x0013, 0x0015, 0x0017, 0x0019, 0x001C, 0x001F, 0x0022, 0x0025, 0x0029, 0x002D, 0x0032, 0x0037, 0x003C, 0x0042, 0x0049, 0x0050, 0x0058, 0x0061, 0x006B, 0x0076, 0x0082, 0x008F, 0x009D, 0x00AD, 0x00BE, 0x00D1, 0x00E6, 0x00FD, 0x0117, 0x0133, 0x0151, 0x0173, 0x0198, 0x01C1, 0x01EE, 0x0220, 0x0256, 0x0292, 0x02D4, 0x031C, 0x036C, 0x03C3, 0x0424, 0x048E, 0x0502, 0x0583, 0x0610, 0x06AB, 0x0756, 0x0812, 0x08E0, 0x09C3, 0x0ABD, 0x0BD0, 0x0CFF, 0x0E4C, 0x0FBA, 0x114C, 0x1307, 0x14EE, 0x1706, 0x1954, 0x1BDC, 0x1EA5, 0x21B6, 0x2515, 0x28CA, 0x2CDF, 0x315B, 0x364B, 0x3BB9, 0x41B2, 0x4844, 0x4F7E, 0x5771, 0x602F, 0x69CE, 0x7462, 0x7FFF }; #endif static const byte imxOtherTable[6][64] = { { 0xFF, 0x04 }, { 0xFF, 0xFF, 0x02, 0x08 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0C, 0x10, 0x20 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x04, 0x06, 0x08, 0x0A, 0x0C, 0x0E, 0x10, 0x12, 0x14, 0x16, 0x18, 0x1A, 0x1C, 0x20 }, { 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1A, 0x1B, 0x1C, 0x1D, 0x1E, 0x1F, 0x20 } }; #ifdef PALMOS_68K void releaseImcTables() { free(_destImcTable); free(_destImcTable2); } #endif void initializeImcTables() { int pos; #ifdef PALMOS_68K if (!_destImcTable) _destImcTable = (byte *)calloc(89, sizeof(byte)); if (!_destImcTable2) _destImcTable2 = (uint32 *)calloc(89 * 64, sizeof(uint32)); #endif for (pos = 0; pos <= 88; ++pos) { byte put = 1; int32 tableValue = ((imcTable[pos] * 4) / 7) / 2; while (tableValue != 0) { tableValue /= 2; put++; } if (put < 3) { put = 3; } if (put > 8) { put = 8; } _destImcTable[pos] = put - 1; } for (int n = 0; n < 64; n++) { for (pos = 0; pos <= 88; ++pos) { int32 count = 32; int32 put = 0; int32 tableValue = imcTable[pos]; do { if ((count & n) != 0) { put += tableValue; } count /= 2; tableValue /= 2; } while (count != 0); _destImcTable2[n + pos * 64] = put; } } } #define NextBit \ do { \ bit = mask & 1; \ mask >>= 1; \ if (!--bitsleft) { \ mask = READ_LE_UINT16(srcptr); \ srcptr += 2; \ bitsleft = 16; \ } \ } while (0) static int32 compDecode(byte *src, byte *dst) { byte *result, *srcptr = src, *dstptr = dst; int data, size, bit, bitsleft = 16, mask = READ_LE_UINT16(srcptr); srcptr += 2; for (;;) { NextBit; if (bit) { *dstptr++ = *srcptr++; } else { NextBit; if (!bit) { NextBit; size = bit << 1; NextBit; size = (size | bit) + 3; data = *srcptr++ | 0xffffff00; } else { data = *srcptr++; size = *srcptr++; data |= 0xfffff000 + ((size & 0xf0) << 4); size = (size & 0x0f) + 3; if (size == 3) if (((*srcptr++) + 1) == 1) return dstptr - dst; } result = dstptr + data; while (size--) *dstptr++ = *result++; } } } #undef NextBit int32 decompressCodec(int32 codec, byte *comp_input, byte *comp_output, int32 input_size) { int32 output_size, channels; int32 offset1, offset2, offset3, length, k, c, s, j, r, t, z; byte *src, *t_table, *p, *ptr; byte t_tmp1, t_tmp2; switch (codec) { case 0: memcpy(comp_output, comp_input, input_size); output_size = input_size; break; case 1: output_size = compDecode(comp_input, comp_output); break; case 2: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 3: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; break; case 4: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size << 3) / 12; k = 0; if (length > 0) { c = -12; s = 0; j = 0; do { ptr = src + length + (k >> 1); t_tmp2 = src[j]; if (k & 1) { r = c >> 3; t_table[r + 2] = ((t_tmp2 & 0x0f) << 4) | (ptr[1] >> 4); t_table[r + 1] = (t_tmp2 & 0xf0) | (t_table[r + 1]); } else { r = s >> 3; t_table[r + 0] = ((t_tmp2 & 0x0f) << 4) | (ptr[0] & 0x0f); t_table[r + 1] = t_tmp2 >> 4; } s += 12; c += 12; k++; j++; } while (k < length); } offset1 = ((length - 1) * 3) >> 1; t_table[offset1 + 1] = (t_table[offset1 + 1]) | (src[length - 1] & 0xf0); memcpy(src, t_table, output_size); free(t_table); break; case 5: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size << 3) / 12; k = 1; c = 0; s = 12; t_table[0] = src[length] >> 4; t = length + k; j = 1; if (t > k) { do { t_tmp1 = *(src + length + (k >> 1)); t_tmp2 = src[j - 1]; if (k & 1) { r = c >> 3; t_table[r + 0] = (t_tmp2 & 0xf0) | t_table[r]; t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f); } else { r = s >> 3; t_table[r + 0] = t_tmp2 >> 4; t_table[r - 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4); } s += 12; c += 12; k++; j++; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 6: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memset(t_table, 0, output_size); src = comp_output; length = (output_size << 3) / 12; k = 0; c = 0; j = 0; s = -12; t_table[0] = src[output_size - 1]; t_table[output_size - 1] = src[length - 1]; t = length - 1; if (t > 0) { do { t_tmp1 = *(src + length + (k >> 1)); t_tmp2 = src[j]; if (k & 1) { r = s >> 3; t_table[r + 2] = (t_tmp2 & 0xf0) | t_table[r + 2]; t_table[r + 3] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 >> 4); } else { r = c >> 3; t_table[r + 2] = t_tmp2 >> 4; t_table[r + 1] = ((t_tmp2 & 0x0f) << 4) | (t_tmp1 & 0x0f); } s += 12; c += 12; k++; j++; } while (k < t); } memcpy(src, t_table, output_size); free(t_table); break; case 10: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 << 1; offset3 = offset2; src = comp_output; while (offset1--) { offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } src = comp_output; length = (output_size << 3) / 12; k = 0; if (length > 0) { c = -12; s = 0; do { j = length + (k >> 1); t_tmp1 = t_table[k]; if (k & 1) { r = c >> 3; t_tmp2 = t_table[j + 1]; src[r + 2] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); src[r + 1] = (src[r + 1]) | (t_tmp1 & 0xf0); } else { r = s >> 3; t_tmp2 = t_table[j]; src[r + 0] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); src[r + 1] = t_tmp1 >> 4; } s += 12; c += 12; k++; } while (k < length); } offset1 = ((length - 1) * 3) >> 1; src[offset1 + 1] = (t_table[length] & 0xf0) | src[offset1 + 1]; free(t_table); break; case 11: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 << 1; offset3 = offset2; src = comp_output; while (offset1--) { offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } src = comp_output; length = (output_size << 3) / 12; k = 1; c = 0; s = 12; t_tmp1 = t_table[length] >> 4; src[0] = t_tmp1; t = length + k; if (t > k) { do { j = length + (k >> 1); t_tmp1 = t_table[k - 1]; t_tmp2 = t_table[j]; if (k & 1) { r = c >> 3; src[r + 0] = (src[r]) | (t_tmp1 & 0xf0); src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } else { r = s >> 3; src[r + 0] = t_tmp1 >> 4; src[r - 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); } s += 12; c += 12; k++; } while (k < t); } free(t_table); break; case 12: output_size = compDecode(comp_input, comp_output); p = comp_output; for (z = 2; z < output_size; z++) p[z] += p[z - 1]; for (z = 1; z < output_size; z++) p[z] += p[z - 1]; t_table = (byte *)malloc(output_size); memcpy(t_table, p, output_size); offset1 = output_size / 3; offset2 = offset1 << 1; offset3 = offset2; src = comp_output; while (offset1--) { offset2 -= 2; offset3--; t_table[offset2 + 0] = src[offset1]; t_table[offset2 + 1] = src[offset3]; } src = comp_output; length = (output_size << 3) / 12; k = 0; c = 0; s = -12; src[0] = t_table[output_size - 1]; src[output_size - 1] = t_table[length - 1]; t = length - 1; if (t > 0) { do { j = length + (k >> 1); t_tmp1 = t_table[k]; t_tmp2 = t_table[j]; if (k & 1) { r = s >> 3; src[r + 2] = (src[r + 2]) | (t_tmp1 & 0xf0); src[r + 3] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 >> 4); } else { r = c >> 3; src[r + 2] = t_tmp1 >> 4; src[r + 1] = ((t_tmp1 & 0x0f) << 4) | (t_tmp2 & 0x0f); } s += 12; c += 12; k++; } while (k < t); } free(t_table); break; case 13: case 15: if (codec == 13) { channels = 1; } else { channels = 2; } { // Decoder for the the IMA ADPCM variants used in COMI. // Contrary to regular IMA ADPCM, this codec uses a variable // bitsize for the encoded data. const int MAX_CHANNELS = 2; int32 outputSamplesLeft; int32 destPos; int16 firstWord; byte initialTablePos[MAX_CHANNELS] = {0, 0}; int32 initialimcTableEntry[MAX_CHANNELS] = {7, 7}; int32 initialOutputWord[MAX_CHANNELS] = {0, 0}; int32 totalBitOffset, curTablePos, outputWord; byte *dst; int i; // We only support mono and stereo assert(channels == 1 || channels == 2); src = comp_input; dst = comp_output; output_size = 0x2000; outputSamplesLeft = 0x1000; // Every data packet contains 0x2000 bytes of audio data // when extracted. In order to encode bigger data sets, // one has to split the data into multiple blocks. // // Every block starts with a 2 byte word. If that word is // non-zero, it indicates the size of a block of raw audio // data (not encoded) following it. That data we simply copy // to the output buffer and the proceed by decoding the // remaining data. // // If on the other hand the word is zero, then what follows // are 7*channels bytes containing seed data for the decoder. firstWord = READ_BE_UINT16(src); src += 2; if (firstWord != 0) { // Copy raw data memcpy(dst, src, firstWord); dst += firstWord; src += firstWord; assert((firstWord & 1) == 0); outputSamplesLeft -= firstWord / 2; } else { // Read the seed values for the decoder. for (i = 0; i < channels; i++) { initialTablePos[i] = *src; src += 1; initialimcTableEntry[i] = READ_BE_UINT32(src); src += 4; initialOutputWord[i] = READ_BE_UINT32(src); src += 4; } } totalBitOffset = 0; // The channels are encoded separately. for (int chan = 0; chan < channels; chan++) { // Read initial state (this makes it possible for the data stream // to be split & spread across multiple data chunks. curTablePos = initialTablePos[chan]; //imcTableEntry = initialimcTableEntry[chan]; outputWord = initialOutputWord[chan]; // We need to interleave the channels in the output; we achieve // that by using a variables dest offset: destPos = chan * 2; const int bound = (channels == 1) ? outputSamplesLeft : ((chan == 0) ? (outputSamplesLeft+1) / 2 : outputSamplesLeft / 2); for (i = 0; i < bound; ++i) { // Determine the size (in bits) of the next data packet const int32 curTableEntryBitCount = _destImcTable[curTablePos]; assert(2 <= curTableEntryBitCount && curTableEntryBitCount <= 7); // Read the next data packet const byte *readPos = src + (totalBitOffset >> 3); const uint16 readWord = (uint16)(READ_BE_UINT16(readPos) << (totalBitOffset & 7)); const byte packet = (byte)(readWord >> (16 - curTableEntryBitCount)); // Advance read position to the next data packet totalBitOffset += curTableEntryBitCount; // Decode the data packet into a delta value for the output signal. const byte signBitMask = (1 << (curTableEntryBitCount - 1)); const byte dataBitMask = (signBitMask - 1); const byte data = (packet & dataBitMask); const int32 tmpA = (data << (7 - curTableEntryBitCount)); const int32 imcTableEntry = imcTable[curTablePos] >> (curTableEntryBitCount - 1); int32 delta = imcTableEntry + _destImcTable2[tmpA + (curTablePos * 64)]; // The topmost bit in the data packet tells is a sign bit if ((packet & signBitMask) != 0) { delta = -delta; } // Accumulate the delta onto the output data outputWord += delta; // Clip outputWord to 16 bit signed, and write it into the destination stream if (outputWord > 0x7fff) outputWord = 0x7fff; if (outputWord < -0x8000) outputWord = -0x8000; WRITE_BE_UINT16(dst + destPos, outputWord); destPos += channels << 1; // Adjust the curTablePos curTablePos += (int8)imxOtherTable[curTableEntryBitCount - 2][data]; if (curTablePos < 0) curTablePos = 0; else if (curTablePos > 88) curTablePos = 88; } } } break; default: error("BundleCodecs::decompressCodec() Unknown codec %d!", (int)codec); output_size = 0; break; } return output_size; } } // End of namespace BundleCodecs } // End of namespace Scumm #ifdef PALMOS_68K #include "scumm_globals.h" _GINIT(DimuseCodecs) _GSETPTR(Scumm::BundleCodecs::imcTable, GBVARS_IMCTABLE_INDEX, int16, GBVARS_SCUMM) _GEND _GRELEASE(DimuseCodecs) _GRELEASEPTR(GBVARS_IMCTABLE_INDEX, GBVARS_SCUMM) _GEND #endif