/* ScummVM - Scumm Interpreter * Copyright (C) 2001-2003 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ * */ #include "stdafx.h" #include "scummsys.h" #include "common/system.h" #include "common/file.h" #include "sound/mixer.h" #include "simon/simon.h" // MidiParser_S1D is not considered part of the standard // MidiParser suite, but we still try to mask its details // and just provide a factory function. extern MidiParser *MidiParser_createS1D(); MidiPlayer::MidiPlayer (OSystem *system) { // Since initialize() is called every time the music changes, // this is where we'll initialize stuff that must persist // between songs. _system = system; _mutex = system->create_mutex(); _driver = 0; _enable_sfx = true; _current = 0; memset(_volumeTable, 127, sizeof(_volumeTable)); _masterVolume = 255; _paused = false; _currentTrack = 255; _loopTrack = 0; _queuedTrack = 255; _loopQueuedTrack = 0; } MidiPlayer::~MidiPlayer() { _system->lock_mutex (_mutex); close(); _system->unlock_mutex (_mutex); _system->delete_mutex (_mutex); } int MidiPlayer::open() { // Don't ever call open without first setting the output driver! if (!_driver) return 255; int ret = _driver->open(); if (ret) return ret; _driver->setTimerCallback (this, &onTimer); return 0; } void MidiPlayer::close() { _system->lock_mutex (_mutex); stop(); if (_driver) _driver->close(); _driver = NULL; clearConstructs(); _system->unlock_mutex (_mutex); } void MidiPlayer::send (uint32 b) { if (!_current) return; byte volume; if ((b & 0xFFF0) == 0x07B0) { // Adjust volume changes by master volume. volume = (byte) ((b >> 16) & 0xFF) * _masterVolume / 255; _volumeTable [b & 0xF] = volume; b = (b & 0xFF00FFFF) | (volume << 16); } else if ((b & 0xFFF0) == 0x007BB0) { // Only respond to an All Notes Off if this channel // has already been allocated. if (!_current->channel [b & 0x0F]) return; } byte channel = (byte) (b & 0x0F); if (!_current->channel [channel]) _current->channel[channel] = (channel == 9) ? _driver->getPercussionChannel() : _driver->allocateChannel(); if (_current->channel [channel]) _driver->send ((b & 0xFFFFFFF0) | _current->channel[channel]->getNumber()); } void MidiPlayer::metaEvent (byte type, byte *data, uint16 length) { // Only thing we care about is End of Track. if (!_current || type != 0x2F || _current == &_sfx) return; if (_loopTrack) { _current->parser->jumpToTick (0); } else if (_queuedTrack != 255) { _currentTrack = 255; byte destination = _queuedTrack; _queuedTrack = 255; _loopTrack = _loopQueuedTrack; _loopQueuedTrack = false; // Remember, we're still inside the locked mutex. // Have to unlock it before calling jump() // (which locks it itself), and then relock it // upon returning. _system->unlock_mutex (_mutex); startTrack (destination); _system->lock_mutex (_mutex); } else { stop(); } } void MidiPlayer::onTimer (void *data) { MidiPlayer *p = (MidiPlayer *) data; p->_system->lock_mutex (p->_mutex); if (!p->_paused) { if (p->_music.parser && p->_currentTrack != 255) { p->_current = &p->_music; p->_music.parser->onTimer(); } if (p->_sfx.parser) { p->_current = &p->_sfx; p->_sfx.parser->onTimer(); } p->_current = 0; } p->_system->unlock_mutex (p->_mutex); } void MidiPlayer::startTrack (int track) { if (track == _currentTrack) return; if (_music.num_songs > 0) { if (track >= _music.num_songs) return; _system->lock_mutex (_mutex); if (_music.parser) { _current = &_music; delete _music.parser; _current = 0; _music.parser = 0; } MidiParser *parser = MidiParser::createParser_SMF(); parser->property (MidiParser::mpMalformedPitchBends, 1); parser->setMidiDriver (this); parser->setTimerRate (_driver->getBaseTempo()); if (!parser->loadMusic (_music.songs[track], _music.song_sizes[track])) { printf ("Error reading track!\n"); delete parser; parser = 0; } _currentTrack = (byte) track; _music.parser = parser; // That plugs the power cord into the wall } else if (_music.parser) { _system->lock_mutex (_mutex); if (!_music.parser->setTrack (track)) { _system->unlock_mutex (_mutex); return; } _currentTrack = (byte) track; _current = &_music; _music.parser->jumpToTick (0); _current = 0; } _system->unlock_mutex (_mutex); } void MidiPlayer::stop() { _system->lock_mutex (_mutex); if (_music.parser) { _current = &_music; _music.parser->jumpToTick(0); } _current = 0; _currentTrack = 255; _system->unlock_mutex (_mutex); } void MidiPlayer::pause (bool b) { if (_paused == b || !_driver) return; _paused = b; _system->lock_mutex (_mutex); for (int i = ARRAYSIZE (_volumeTable); i; --i) _driver->send (((_paused ? 0 : (_volumeTable[i-1] * _masterVolume / 255)) << 16) | (7 << 8) | 0xB0 | i); _system->unlock_mutex (_mutex); } void MidiPlayer::set_volume (int volume) { if (volume < 0) volume = 0; else if (volume > 255) volume = 255; if (_masterVolume == volume) return; _masterVolume = volume; // Now tell all the channels this. _system->lock_mutex (_mutex); if (_driver && !_paused) { for (int i = ARRAYSIZE (_volumeTable); i; --i) { _driver->send (((_volumeTable[i-1] * _masterVolume / 255) << 16) | (7 << 8) | 0xB0 | i); } } _system->unlock_mutex (_mutex); } void MidiPlayer::set_driver(MidiDriver *md) { // Don't try to set this more than once. if (_driver) return; _driver = md; } void MidiPlayer::setLoop (bool loop) { _system->lock_mutex (_mutex); _loopTrack = loop; _system->unlock_mutex (_mutex); } void MidiPlayer::queueTrack (int track, bool loop) { _system->lock_mutex (_mutex); if (_currentTrack == 255) { _system->unlock_mutex (_mutex); setLoop (loop); startTrack (track); } else { _queuedTrack = track; _loopQueuedTrack = loop; _system->unlock_mutex (_mutex); } } void MidiPlayer::clearConstructs() { clearConstructs (_music); clearConstructs (_sfx); } void MidiPlayer::clearConstructs (MusicInfo &info) { int i; if (info.num_songs > 0) { for (i = 0; i < info.num_songs; ++i) free (info.songs [i]); } if (info.data) free (info.data); if (info.parser) delete info.parser; if (_driver) { for (i = 0; i < 16; ++i) { if (info.channel[i]) { _driver->send (0x007BB0 | info.channel[i]->getNumber()); // All Notes Off info.channel[i]->release(); } } } info.clear(); } static int simon1_gmf_size[] = { 8900, 12166, 2848, 3442, 4034, 4508, 7064, 9730, 6014, 4742, 3138, 6570, 5384, 8909, 6457, 16321, 2742, 8968, 4804, 8442, 7717, 9444, 5800, 1381, 5660, 6684, 2456, 4744, 2455, 1177, 1232, 17256, 5103, 8794, 4884, 16 }; void MidiPlayer::loadSMF (File *in, int song, bool sfx) { _system->lock_mutex (_mutex); MusicInfo *p = sfx ? &_sfx : &_music; clearConstructs (*p); uint32 size = in->size() - in->pos(); if (size > 64000) size = 64000; // When allocating space, add 4 bytes in case // this is a GMF and we have to tack on our own // End of Track event. p->data = (byte *) calloc (size + 4, 1); in->read (p->data, size); if (!memcmp (p->data, "GMF\x1", 4)) { // BTW, here's what we know about the GMF header, // the 7 bytes preceding the actual MIDI events. // 3 BYTES: 'GMF' // 1 BYTE : Always seems to be 0x01 // 1 BYTE : Always seems to be 0x00 // 1 BYTE : Ranges from 0x02 to 0x08 (always 0x02 for SFX, though) // 1 BYTE : Loop control. 0 = no loop, 1 = loop if (!sfx) setLoop (p->data[6] != 0); // For GMF files, we're going to have to use // hardcoded size tables. if (size == 64000) size = simon1_gmf_size [song]; } MidiParser *parser = MidiParser::createParser_SMF(); parser->property (MidiParser::mpMalformedPitchBends, 1); parser->setMidiDriver (this); parser->setTimerRate (_driver->getBaseTempo()); if (!parser->loadMusic (p->data, size)) { printf ("Error reading track!\n"); delete parser; parser = 0; } if (!sfx) { _currentTrack = 255; memset(_volumeTable, 127, sizeof(_volumeTable)); } p->parser = parser; // That plugs the power cord into the wall _system->unlock_mutex (_mutex); } void MidiPlayer::loadMultipleSMF (File *in, bool sfx) { // This is a special case for Simon 2 Windows. // Instead of having multiple sequences as // separate tracks in a Type 2 file, simon2win // has multiple songs, each of which is a Type 1 // file. Thus, preceding the songs is a single // byte specifying how many songs are coming. // We need to load ALL the songs and then // treat them as separate tracks -- for the // purpose of jumps, anyway. _system->lock_mutex (_mutex); MusicInfo *p = sfx ? &_sfx : &_music; clearConstructs (*p); p->num_songs = in->readByte(); if (p->num_songs > 16) { printf ("playMultipleSMF: %d is too many songs to keep track of!\n", (int) p->num_songs); _system->unlock_mutex (_mutex); return; } byte i; for (i = 0; i < p->num_songs; ++i) { byte buf[5]; uint32 pos = in->pos(); // Make sure there's a MThd in->read (buf, 4); if (memcmp (buf, "MThd", 4)) { printf ("Expected MThd but found '%c%c%c%c' instead!\n", buf[0], buf[1], buf[2], buf[3]); _system->unlock_mutex (_mutex); return; } in->seek (in->readUint32BE() + in->pos(), SEEK_SET); // Now skip all the MTrk blocks while (true) { in->read (buf, 4); if (memcmp (buf, "MTrk", 4)) break; in->seek (in->readUint32BE() + in->pos(), SEEK_SET); } uint32 pos2 = in->pos() - 4; uint32 size = pos2 - pos; p->songs[i] = (byte *) calloc (size, 1); in->seek (pos, SEEK_SET); in->read (p->songs[i], size); p->song_sizes[i] = size; } if (!sfx) { _currentTrack = 255; memset(_volumeTable, 127, sizeof(_volumeTable)); } _system->unlock_mutex (_mutex); } void MidiPlayer::loadXMIDI (File *in, bool sfx) { _system->lock_mutex (_mutex); MusicInfo *p = sfx ? &_sfx : &_music; clearConstructs (*p); char buf[4]; uint32 pos = in->pos(); uint32 size = 4; in->read (buf, 4); if (!memcmp (buf, "FORM", 4)) { int i; for (i = 0; i < 16; ++i) { if (!memcmp (buf, "CAT ", 4)) break; size += 2; memcpy (buf, &buf[2], 2); in->read (&buf[2], 2); } if (memcmp (buf, "CAT ", 4)) { printf ("ERROR! Could not find 'CAT ' tag to determine resource size!\n"); _system->unlock_mutex (_mutex); return; } size += 4 + in->readUint32BE(); in->seek (pos, 0); p->data = (byte *) calloc (size, 1); in->read (p->data, size); } else { printf ("ERROR! Expected 'FORM' tag but found '%c%c%c%c' instead!\n", buf[0], buf[1], buf[2], buf[3]); _system->unlock_mutex (_mutex); return; } MidiParser *parser = MidiParser::createParser_XMIDI(); parser->setMidiDriver (this); parser->setTimerRate (_driver->getBaseTempo()); if (!parser->loadMusic (p->data, size)) { printf ("Error reading track!\n"); delete parser; parser = 0; } if (!sfx) { _currentTrack = 255; memset(_volumeTable, 127, sizeof(_volumeTable)); } p->parser = parser; // That plugs the power cord into the wall _system->unlock_mutex (_mutex); } void MidiPlayer::loadS1D (File *in, bool sfx) { _system->lock_mutex (_mutex); MusicInfo *p = sfx ? &_sfx : &_music; clearConstructs (*p); uint16 size = in->readUint16LE(); if (size != in->size() - 2) { printf ("ERROR! Size mismatch in simon1demo MUS file (%ld versus reported %d)\n", (long) in->size() - 2, (int) size); _system->unlock_mutex (_mutex); return; } p->data = (byte *) calloc (size, 1); in->read (p->data, size); MidiParser *parser = MidiParser_createS1D(); parser->setMidiDriver (this); parser->setTimerRate (_driver->getBaseTempo()); if (!parser->loadMusic (p->data, size)) { printf ("Error reading track!\n"); delete parser; parser = 0; } if (!sfx) { _currentTrack = 255; memset(_volumeTable, 127, sizeof(_volumeTable)); } p->parser = parser; // That plugs the power cord into the wall _system->unlock_mutex (_mutex); }