/* ScummVM - Scumm Interpreter * Copyright (C) 2005 The ScummVM project * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $Header$ * */ #include "common/stdafx.h" #include "sound/adpcm.h" // Routines to convert 12 bit linear samples to the // Dialogic or Oki ADPCM coding format aka VOX. // See also // // In addition, also IMA ADPCM is supported. See // . ADPCMInputStream::ADPCMInputStream(Common::SeekableReadStream *stream, uint32 size, typesADPCM type, int channels, uint32 blockAlign) : _stream(stream), _channels(channels), _type(type), _blockAlign(blockAlign) { _status.last = 0; _status.stepIndex = 0; _endpos = stream->pos() + size; if (type == kADPCMIma && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specifiled for MS ADPCM IMA"); } int ADPCMInputStream::readBuffer(int16 *buffer, const int numSamples) { switch (_type) { case kADPCMOki: return readBufferOKI(buffer, numSamples); break; case kADPCMIma: if (_channels == 1) return readBufferMSIMA1(buffer, numSamples); else return readBufferMSIMA2(buffer, numSamples); break; default: error("Unsupported ADPCM encoding"); break; } return 0; } int ADPCMInputStream::readBufferOKI(int16 *buffer, const int numSamples) { int samples; byte data; assert(numSamples % 2 == 0); for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) { data = _stream->readByte(); buffer[samples] = TO_LE_16(decodeOKI((data >> 4) & 0x0f)); buffer[samples + 1] = TO_LE_16(decodeOKI(data & 0x0f)); } return samples; } int ADPCMInputStream::readBufferMSIMA1(int16 *buffer, const int numSamples) { int samples; byte data; int blockLen; int i; assert(numSamples % 2 == 0); samples = 0; while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { // read block header _status.last = _stream->readSint16LE(); _status.stepIndex = _stream->readSint16LE(); blockLen = MIN(_endpos - _stream->pos(), _blockAlign - 4); for (i = 0; i < blockLen && !_stream->eos() && _stream->pos() < _endpos; i++, samples += 2) { data = _stream->readByte(); buffer[samples] = TO_LE_16(decodeMSIMA(data & 0x0f)); buffer[samples + 1] = TO_LE_16(decodeMSIMA((data >> 4) & 0x0f)); } } return samples; } // Microsoft as usual tries to implement it differently. This method // is used for stereo data. int ADPCMInputStream::readBufferMSIMA2(int16 *buffer, const int numSamples) { int samples; uint32 data; int nibble; for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos;) { for (int channel = 0; channel < 2; channel++) { data = _stream->readUint32LE(); for (nibble = 0; nibble < 8; nibble++) { byte k = ((data & 0xf0000000) >> 28); buffer[samples + channel + nibble * 2] = TO_LE_16(decodeMSIMA(k)); data <<= 4; } } samples += 16; } return samples; } // adjust the step for use on the next sample. int16 ADPCMInputStream::stepAdjust(byte code) { static const int16 adjusts[] = {-1, -1, -1, -1, 2, 4, 6, 8}; return adjusts[code & 0x07]; } static const int16 okiStepSize[49] = { 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552 }; // Decode Linear to ADPCM int16 ADPCMInputStream::decodeOKI(byte code) { int16 diff, E, SS, samp; SS = okiStepSize[_status.stepIndex]; E = SS/8; if (code & 0x01) E += SS/4; if (code & 0x02) E += SS/2; if (code & 0x04) E += SS; diff = (code & 0x08) ? -E : E; samp = _status.last + diff; // Clip the values to +/- 2^11 (supposed to be 12 bits) if (samp > 2048) samp = 2048; if (samp < -2048) samp = -2048; _status.last = samp; _status.stepIndex += stepAdjust(code); if (_status.stepIndex < 0) _status.stepIndex = 0; if (_status.stepIndex > ARRAYSIZE(okiStepSize) - 1) _status.stepIndex = ARRAYSIZE(okiStepSize) - 1; // * 16 effectively converts 12-bit input to 16-bit output return samp * 16; } static const uint16 imaStepTable[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,11487,12635,13899, 15289,16818,18500,20350,22385,24623,27086,29794, 32767 }; int16 ADPCMInputStream::decodeMSIMA(byte code) { int32 diff, E, SS, samp; SS = imaStepTable[_status.stepIndex]; E = SS >> 3; if (code & 0x04) E += SS; if (code & 0x02) E += SS >> 1; if (code & 0x01) E += SS >> 2; diff = (code & 0x08) ? -E : E; samp = _status.last + diff; if (samp < -0x8000) samp = -0x8000; else if (samp > 0x7fff) samp = 0x7fff; _status.last = samp; _status.stepIndex += stepAdjust(code); if (_status.stepIndex < 0) _status.stepIndex = 0; if (_status.stepIndex > ARRAYSIZE(imaStepTable) - 1) _status.stepIndex = ARRAYSIZE(imaStepTable) - 1; return samp; }