/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/endian.h" #include "sound/decoders/adpcm.h" #include "sound/audiostream.h" namespace Audio { class ADPCMInputStream : public RewindableAudioStream { private: Common::SeekableReadStream *_stream; bool _disposeAfterUse; int32 _startpos; int32 _endpos; int _channels; typesADPCM _type; uint32 _blockAlign; uint32 _blockPos[2]; uint8 _chunkPos; uint16 _chunkData; int _blockLen; int _rate; struct ADPCMChannelStatus { byte predictor; int16 delta; int16 coeff1; int16 coeff2; int16 sample1; int16 sample2; }; struct adpcmStatus { // OKI/IMA struct { int32 last; int32 stepIndex; } ima_ch[2]; // Apple QuickTime IMA ADPCM int32 streamPos[2]; // MS ADPCM ADPCMChannelStatus ch[2]; // Tinsel double predictor; double K0, K1; double d0, d1; } _status; void reset(); int16 stepAdjust(byte); int16 decodeOKI(byte); int16 decodeIMA(byte code, int channel = 0); // Default to using the left channel/using one channel int16 decodeMS(ADPCMChannelStatus *c, byte); int16 decodeTinsel(int16, double); public: ADPCMInputStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign); ~ADPCMInputStream(); int readBuffer(int16 *buffer, const int numSamples); int readBufferOKI(int16 *buffer, const int numSamples); int readBufferIMA(int16 *buffer, const int numSamples); int readBufferMSIMA1(int16 *buffer, const int numSamples); int readBufferMSIMA2(int16 *buffer, const int numSamples); int readBufferMS(int channels, int16 *buffer, const int numSamples); void readBufferTinselHeader(); int readBufferTinsel4(int channels, int16 *buffer, const int numSamples); int readBufferTinsel6(int channels, int16 *buffer, const int numSamples); int readBufferTinsel8(int channels, int16 *buffer, const int numSamples); int readBufferApple(int16 *buffer, const int numSamples); bool endOfData() const { return (_stream->eos() || _stream->pos() >= _endpos); } bool isStereo() const { return _channels == 2; } int getRate() const { return _rate; } bool rewind(); }; // Routines to convert 12 bit linear samples to the // Dialogic or Oki ADPCM coding format aka VOX. // See also // // IMA ADPCM support is based on // // // In addition, also MS IMA ADPCM is supported. See // . ADPCMInputStream::ADPCMInputStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign) : _stream(stream), _disposeAfterUse(disposeAfterUse), _channels(channels), _type(type), _blockAlign(blockAlign), _rate(rate) { if (type == kADPCMMSIma && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specified for MS IMA ADPCM"); if (type == kADPCMMS && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specified for MS ADPCM"); if (type == kADPCMTinsel4 && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 4-bit ADPCM"); if (type == kADPCMTinsel6 && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 6-bit ADPCM"); if (type == kADPCMTinsel8 && blockAlign == 0) error("ADPCMInputStream(): blockAlign isn't specified for Tinsel 8-bit ADPCM"); if (type == kADPCMTinsel4 && channels != 1) error("ADPCMInputStream(): Tinsel 4-bit ADPCM only supports mono"); if (type == kADPCMTinsel6 && channels != 1) error("ADPCMInputStream(): Tinsel 6-bit ADPCM only supports mono"); if (type == kADPCMTinsel8 && channels != 1) error("ADPCMInputStream(): Tinsel 8-bit ADPCM only supports mono"); _startpos = stream->pos(); _endpos = _startpos + size; reset(); } ADPCMInputStream::~ADPCMInputStream() { if (_disposeAfterUse) delete _stream; } void ADPCMInputStream::reset() { memset(&_status, 0, sizeof(_status)); _blockLen = 0; _blockPos[0] = _blockPos[1] = _blockAlign; // To make sure first header is read _status.streamPos[0] = 0; _status.streamPos[1] = _blockAlign; _chunkPos = 0; } bool ADPCMInputStream::rewind() { // TODO: Error checking. reset(); _stream->seek(_startpos); return true; } int ADPCMInputStream::readBuffer(int16 *buffer, const int numSamples) { int samplesDecoded = 0; switch (_type) { case kADPCMOki: samplesDecoded = readBufferOKI(buffer, numSamples); break; case kADPCMMSIma: if (_channels == 1) samplesDecoded = readBufferMSIMA1(buffer, numSamples); else samplesDecoded = readBufferMSIMA2(buffer, numSamples); break; case kADPCMMS: samplesDecoded = readBufferMS(_channels, buffer, numSamples); break; case kADPCMTinsel4: samplesDecoded = readBufferTinsel4(_channels, buffer, numSamples); break; case kADPCMTinsel6: samplesDecoded = readBufferTinsel6(_channels, buffer, numSamples); break; case kADPCMTinsel8: samplesDecoded = readBufferTinsel8(_channels, buffer, numSamples); break; case kADPCMIma: samplesDecoded = readBufferIMA(buffer, numSamples); break; case kADPCMApple: samplesDecoded = readBufferApple(buffer, numSamples); break; default: error("Unsupported ADPCM encoding"); break; } return samplesDecoded; } int ADPCMInputStream::readBufferOKI(int16 *buffer, const int numSamples) { int samples; byte data; assert(numSamples % 2 == 0); for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) { data = _stream->readByte(); buffer[samples] = decodeOKI((data >> 4) & 0x0f); buffer[samples + 1] = decodeOKI(data & 0x0f); } return samples; } int ADPCMInputStream::readBufferIMA(int16 *buffer, const int numSamples) { int samples; byte data; assert(numSamples % 2 == 0); for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos; samples += 2) { data = _stream->readByte(); buffer[samples] = decodeIMA((data >> 4) & 0x0f); buffer[samples + 1] = decodeIMA(data & 0x0f, _channels == 2 ? 1 : 0); } return samples; } int ADPCMInputStream::readBufferApple(int16 *buffer, const int numSamples) { // Need to write 2 samples per channel assert(numSamples % (2 * _channels) == 0); // Current sample positions int samples[2] = { 0, 0}; // Current data bytes byte data[2] = { 0, 0}; // Current nibble selectors bool lowNibble[2] = {true, true}; // Number of samples per channel int chanSamples = numSamples / _channels; for (int i = 0; i < _channels; i++) { _stream->seek(_status.streamPos[i]); while ((samples[i] < chanSamples) && // Last byte read and a new one needed !((_stream->eos() || (_stream->pos() >= _endpos)) && lowNibble[i])) { if (_blockPos[i] == _blockAlign) { // 2 byte header per block uint16 temp = _stream->readUint16BE(); // First 9 bits are the upper bits of the predictor _status.ima_ch[i].last = (int16) (temp & 0xFF80); // Lower 7 bits are the step index _status.ima_ch[i].stepIndex = temp & 0x007F; // Clip the step index _status.ima_ch[i].stepIndex = CLIP(_status.ima_ch[i].stepIndex, 0, 88); _blockPos[i] = 2; } // First decode the lower nibble, then the upper if (lowNibble[i]) data[i] = _stream->readByte(); int16 sample; if (lowNibble[i]) sample = decodeIMA(data[i] & 0x0F, i); else sample = decodeIMA(data[i] >> 4, i); // The original is interleaved block-wise, we want it sample-wise buffer[_channels * samples[i] + i] = sample; samples[i]++; // Different nibble lowNibble[i] = !lowNibble[i]; // We're about to decode a new lower nibble again, so advance the block position if (lowNibble[i]) _blockPos[i]++; if (_channels == 2) if (_blockPos[i] == _blockAlign) // We're at the end of the block. // Since the channels are interleaved, skip the next block _stream->skip(MIN(_blockAlign, _endpos - _stream->pos())); _status.streamPos[i] = _stream->pos(); } } return samples[0] + samples[1]; } int ADPCMInputStream::readBufferMSIMA1(int16 *buffer, const int numSamples) { int samples = 0; byte data; assert(numSamples % 2 == 0); while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { if (_blockPos[0] == _blockAlign) { // read block header _status.ima_ch[0].last = _stream->readSint16LE(); _status.ima_ch[0].stepIndex = _stream->readSint16LE(); _blockPos[0] = 4; } for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2) { data = _stream->readByte(); _blockPos[0]++; buffer[samples] = decodeIMA(data & 0x0f); buffer[samples + 1] = decodeIMA((data >> 4) & 0x0f); } } return samples; } // Microsoft as usual tries to implement it differently. This method // is used for stereo data. int ADPCMInputStream::readBufferMSIMA2(int16 *buffer, const int numSamples) { int samples; uint32 data; int nibble; byte k; for (samples = 0; samples < numSamples && !_stream->eos() && _stream->pos() < _endpos;) { for (int channel = 0; channel < 2; channel++) { data = _stream->readUint32LE(); for (nibble = 0; nibble < 8; nibble++) { k = ((data & 0xf0000000) >> 28); buffer[samples + channel + nibble * 2] = decodeIMA(k); data <<= 4; } } samples += 16; } return samples; } static const int MSADPCMAdaptCoeff1[] = { 256, 512, 0, 192, 240, 460, 392 }; static const int MSADPCMAdaptCoeff2[] = { 0, -256, 0, 64, 0, -208, -232 }; int ADPCMInputStream::readBufferMS(int channels, int16 *buffer, const int numSamples) { int samples; byte data; int i = 0; samples = 0; while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { if (_blockPos[0] == _blockAlign) { // read block header for (i = 0; i < channels; i++) { _status.ch[i].predictor = CLIP(_stream->readByte(), (byte)0, (byte)6); _status.ch[i].coeff1 = MSADPCMAdaptCoeff1[_status.ch[i].predictor]; _status.ch[i].coeff2 = MSADPCMAdaptCoeff2[_status.ch[i].predictor]; } for (i = 0; i < channels; i++) _status.ch[i].delta = _stream->readSint16LE(); for (i = 0; i < channels; i++) _status.ch[i].sample1 = _stream->readSint16LE(); for (i = 0; i < channels; i++) buffer[samples++] = _status.ch[i].sample2 = _stream->readSint16LE(); for (i = 0; i < channels; i++) buffer[samples++] = _status.ch[i].sample1; _blockPos[0] = channels * 7; } for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2) { data = _stream->readByte(); _blockPos[0]++; buffer[samples] = decodeMS(&_status.ch[0], (data >> 4) & 0x0f); buffer[samples + 1] = decodeMS(&_status.ch[channels - 1], data & 0x0f); } } return samples; } static const double TinselFilterTable[4][2] = { {0, 0 }, {0.9375, 0}, {1.796875, -0.8125}, {1.53125, -0.859375} }; void ADPCMInputStream::readBufferTinselHeader() { uint8 start = _stream->readByte(); uint8 filterVal = (start & 0xC0) >> 6; if ((start & 0x20) != 0) { //Lower 6 bit are negative // Negate start = ~(start | 0xC0) + 1; _status.predictor = 1 << start; } else { // Lower 6 bit are positive // Truncate start &= 0x1F; _status.predictor = ((double) 1.0) / (1 << start); } _status.K0 = TinselFilterTable[filterVal][0]; _status.K1 = TinselFilterTable[filterVal][1]; } int ADPCMInputStream::readBufferTinsel4(int channels, int16 *buffer, const int numSamples) { int samples; uint16 data; const double eVal = 1.142822265; samples = 0; assert(numSamples % 2 == 0); while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { if (_blockPos[0] == _blockAlign) { readBufferTinselHeader(); _blockPos[0] = 0; } for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples += 2, _blockPos[0]++) { // Read 1 byte = 8 bits = two 4 bit blocks data = _stream->readByte(); buffer[samples] = decodeTinsel((data << 8) & 0xF000, eVal); buffer[samples+1] = decodeTinsel((data << 12) & 0xF000, eVal); } } return samples; } int ADPCMInputStream::readBufferTinsel6(int channels, int16 *buffer, const int numSamples) { int samples; const double eVal = 1.032226562; samples = 0; while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { if (_blockPos[0] == _blockAlign) { readBufferTinselHeader(); _blockPos[0] = 0; _chunkPos = 0; } for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples++, _chunkPos = (_chunkPos + 1) % 4) { switch (_chunkPos) { case 0: _chunkData = _stream->readByte(); buffer[samples] = decodeTinsel((_chunkData << 8) & 0xFC00, eVal); break; case 1: _chunkData = (_chunkData << 8) | (_stream->readByte()); buffer[samples] = decodeTinsel((_chunkData << 6) & 0xFC00, eVal); _blockPos[0]++; break; case 2: _chunkData = (_chunkData << 8) | (_stream->readByte()); buffer[samples] = decodeTinsel((_chunkData << 4) & 0xFC00, eVal); _blockPos[0]++; break; case 3: _chunkData = (_chunkData << 8); buffer[samples] = decodeTinsel((_chunkData << 2) & 0xFC00, eVal); _blockPos[0]++; break; } } } return samples; } int ADPCMInputStream::readBufferTinsel8(int channels, int16 *buffer, const int numSamples) { int samples; byte data; const double eVal = 1.007843258; samples = 0; while (samples < numSamples && !_stream->eos() && _stream->pos() < _endpos) { if (_blockPos[0] == _blockAlign) { readBufferTinselHeader(); _blockPos[0] = 0; } for (; samples < numSamples && _blockPos[0] < _blockAlign && !_stream->eos() && _stream->pos() < _endpos; samples++, _blockPos[0]++) { // Read 1 byte = 8 bits = one 8 bit block data = _stream->readByte(); buffer[samples] = decodeTinsel(data << 8, eVal); } } return samples; } static const int MSADPCMAdaptationTable[] = { 230, 230, 230, 230, 307, 409, 512, 614, 768, 614, 512, 409, 307, 230, 230, 230 }; int16 ADPCMInputStream::decodeMS(ADPCMChannelStatus *c, byte code) { int32 predictor; predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 256; predictor += (signed)((code & 0x08) ? (code - 0x10) : (code)) * c->delta; predictor = CLIP(predictor, -32768, 32767); c->sample2 = c->sample1; c->sample1 = predictor; c->delta = (MSADPCMAdaptationTable[(int)code] * c->delta) >> 8; if (c->delta < 16) c->delta = 16; return (int16)predictor; } // adjust the step for use on the next sample. int16 ADPCMInputStream::stepAdjust(byte code) { static const int16 adjusts[] = {-1, -1, -1, -1, 2, 4, 6, 8}; return adjusts[code & 0x07]; } static const int16 okiStepSize[49] = { 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552 }; // Decode Linear to ADPCM int16 ADPCMInputStream::decodeOKI(byte code) { int16 diff, E, samp; E = (2 * (code & 0x7) + 1) * okiStepSize[_status.ima_ch[0].stepIndex] / 8; diff = (code & 0x08) ? -E : E; samp = _status.ima_ch[0].last + diff; // Clip the values to +/- 2^11 (supposed to be 12 bits) samp = CLIP(samp, -2048, 2047); _status.ima_ch[0].last = samp; _status.ima_ch[0].stepIndex += stepAdjust(code); _status.ima_ch[0].stepIndex = CLIP(_status.ima_ch[0].stepIndex, 0, ARRAYSIZE(okiStepSize) - 1); // * 16 effectively converts 12-bit input to 16-bit output return samp * 16; } static const uint16 imaStepTable[89] = { 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 19, 21, 23, 25, 28, 31, 34, 37, 41, 45, 50, 55, 60, 66, 73, 80, 88, 97, 107, 118, 130, 143, 157, 173, 190, 209, 230, 253, 279, 307, 337, 371, 408, 449, 494, 544, 598, 658, 724, 796, 876, 963, 1060, 1166, 1282, 1411, 1552, 1707, 1878, 2066, 2272, 2499, 2749, 3024, 3327, 3660, 4026, 4428, 4871, 5358, 5894, 6484, 7132, 7845, 8630, 9493,10442,11487,12635,13899, 15289,16818,18500,20350,22385,24623,27086,29794, 32767 }; int16 ADPCMInputStream::decodeIMA(byte code, int channel) { int32 E = (2 * (code & 0x7) + 1) * imaStepTable[_status.ima_ch[channel].stepIndex] / 8; int32 diff = (code & 0x08) ? -E : E; int32 samp = CLIP(_status.ima_ch[channel].last + diff, -32768, 32767); _status.ima_ch[channel].last = samp; _status.ima_ch[channel].stepIndex += stepAdjust(code); _status.ima_ch[channel].stepIndex = CLIP(_status.ima_ch[channel].stepIndex, 0, ARRAYSIZE(imaStepTable) - 1); return samp; } int16 ADPCMInputStream::decodeTinsel(int16 code, double eVal) { double sample; sample = (double) code; sample *= eVal * _status.predictor; sample += (_status.d0 * _status.K0) + (_status.d1 * _status.K1); _status.d1 = _status.d0; _status.d0 = sample; return (int16) CLIP(sample, -32768.0, 32767.0); } RewindableAudioStream *makeADPCMStream(Common::SeekableReadStream *stream, bool disposeAfterUse, uint32 size, typesADPCM type, int rate, int channels, uint32 blockAlign) { return new ADPCMInputStream(stream, disposeAfterUse, size, type, rate, channels, blockAlign); } } // End of namespace Audio