/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * * $URL$ * $Id$ * */ #include "common/util.h" #include "common/system.h" #include "sound/mixer_intern.h" #include "sound/rate.h" #include "sound/audiostream.h" namespace Audio { #pragma mark - #pragma mark --- Channel classes --- #pragma mark - /** * Channels used by the sound mixer. */ class Channel { public: const Mixer::SoundType _type; SoundHandle _handle; private: Mixer *_mixer; bool _autofreeStream; bool _permanent; byte _volume; int8 _balance; int _pauseLevel; int _id; uint32 _samplesConsumed; uint32 _samplesDecoded; uint32 _mixerTimeStamp; uint32 _pauseStartTime; uint32 _pauseTime; protected: RateConverter *_converter; AudioStream *_input; public: Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *input, bool autofreeStream, bool reverseStereo = false, int id = -1, bool permanent = false); virtual ~Channel(); void mix(int16 *data, uint len); bool isPermanent() const { return _permanent; } bool isFinished() const { return _input->endOfStream(); } void pause(bool paused) { //assert((paused && _pauseLevel >= 0) || (!paused && _pauseLevel)); if (paused) _pauseLevel++; else if (_pauseLevel > 0) _pauseLevel--; if (_pauseLevel > 0) _pauseStartTime = g_system->getMillis(); else _pauseTime += (g_system->getMillis() - _pauseStartTime); } bool isPaused() { return _pauseLevel != 0; } void setVolume(const byte volume) { _volume = volume; } void setBalance(const int8 balance) { _balance = balance; } int getId() const { return _id; } uint32 getElapsedTime(); }; #pragma mark - #pragma mark --- Mixer --- #pragma mark - MixerImpl::MixerImpl(OSystem *system) : _syst(system), _sampleRate(0), _mixerReady(false), _handleSeed(0) { int i; for (i = 0; i < ARRAYSIZE(_volumeForSoundType); i++) _volumeForSoundType[i] = kMaxMixerVolume; for (i = 0; i != NUM_CHANNELS; i++) _channels[i] = 0; } MixerImpl::~MixerImpl() { for (int i = 0; i != NUM_CHANNELS; i++) delete _channels[i]; } void MixerImpl::setReady(bool ready) { _mixerReady = ready; } uint MixerImpl::getOutputRate() const { return _sampleRate; } void MixerImpl::setOutputRate(uint sampleRate) { if (_sampleRate != 0 && _sampleRate != sampleRate) error("Changing the Audio::Mixer output sample rate is not supported"); _sampleRate = sampleRate; } void MixerImpl::insertChannel(SoundHandle *handle, Channel *chan) { int index = -1; for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] == 0) { index = i; break; } } if (index == -1) { warning("MixerImpl::out of mixer slots"); delete chan; return; } _channels[index] = chan; chan->_handle._val = index + (_handleSeed * NUM_CHANNELS); _handleSeed++; if (handle) { *handle = chan->_handle; } } void MixerImpl::playRaw( SoundType type, SoundHandle *handle, void *sound, uint32 size, uint rate, byte flags, int id, byte volume, int8 balance, uint32 loopStart, uint32 loopEnd) { // Create the input stream AudioStream *input = makeLinearInputStream((byte *)sound, size, rate, flags, loopStart, loopEnd); // Play it playInputStream(type, handle, input, id, volume, balance, true, false, ((flags & Mixer::FLAG_REVERSE_STEREO) != 0)); } void MixerImpl::playInputStream( SoundType type, SoundHandle *handle, AudioStream *input, int id, byte volume, int8 balance, bool autofreeStream, bool permanent, bool reverseStereo) { Common::StackLock lock(_mutex); if (input == 0) { warning("input stream is 0"); return; } // Prevent duplicate sounds if (id != -1) { for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] != 0 && _channels[i]->getId() == id) { if (autofreeStream) delete input; return; } } // Create the channel Channel *chan = new Channel(this, type, input, autofreeStream, reverseStereo, id, permanent); chan->setVolume(volume); chan->setBalance(balance); insertChannel(handle, chan); } void MixerImpl::mixCallback(byte *samples, uint len) { assert(samples); Common::StackLock lock(_mutex); int16 *buf = (int16 *)samples; len >>= 2; // Since the mixer callback has been called, the mixer must be ready... _mixerReady = true; // zero the buf memset(buf, 0, 2 * len * sizeof(int16)); // mix all channels for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i]) { if (_channels[i]->isFinished()) { delete _channels[i]; _channels[i] = 0; } else if (!_channels[i]->isPaused()) _channels[i]->mix(buf, len); } } void MixerImpl::stopAll() { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && !_channels[i]->isPermanent()) { delete _channels[i]; _channels[i] = 0; } } } void MixerImpl::stopID(int id) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && _channels[i]->getId() == id) { delete _channels[i]; _channels[i] = 0; } } } void MixerImpl::stopHandle(SoundHandle handle) { Common::StackLock lock(_mutex); // Simply ignore stop requests for handles of sounds that already terminated const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->_handle._val != handle._val) return; delete _channels[index]; _channels[index] = 0; } void MixerImpl::setChannelVolume(SoundHandle handle, byte volume) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->_handle._val != handle._val) return; _channels[index]->setVolume(volume); } void MixerImpl::setChannelBalance(SoundHandle handle, int8 balance) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->_handle._val != handle._val) return; _channels[index]->setBalance(balance); } uint32 MixerImpl::getSoundElapsedTime(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->_handle._val != handle._val) return 0; return _channels[index]->getElapsedTime(); } void MixerImpl::pauseAll(bool paused) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0) { _channels[i]->pause(paused); } } } void MixerImpl::pauseID(int id, bool paused) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) { if (_channels[i] != 0 && _channels[i]->getId() == id) { _channels[i]->pause(paused); return; } } } void MixerImpl::pauseHandle(SoundHandle handle, bool paused) { Common::StackLock lock(_mutex); // Simply ignore (un)pause requests for sounds that already terminated const int index = handle._val % NUM_CHANNELS; if (!_channels[index] || _channels[index]->_handle._val != handle._val) return; _channels[index]->pause(paused); } bool MixerImpl::isSoundIDActive(int id) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] && _channels[i]->getId() == id) return true; return false; } int MixerImpl::getSoundID(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; if (_channels[index] && _channels[index]->_handle._val == handle._val) return _channels[index]->getId(); return 0; } bool MixerImpl::isSoundHandleActive(SoundHandle handle) { Common::StackLock lock(_mutex); const int index = handle._val % NUM_CHANNELS; return _channels[index] && _channels[index]->_handle._val == handle._val; } bool MixerImpl::hasActiveChannelOfType(SoundType type) { Common::StackLock lock(_mutex); for (int i = 0; i != NUM_CHANNELS; i++) if (_channels[i] && _channels[i]->_type == type) return true; return false; } void MixerImpl::setVolumeForSoundType(SoundType type, int volume) { assert(0 <= type && type < ARRAYSIZE(_volumeForSoundType)); // Check range if (volume > kMaxMixerVolume) volume = kMaxMixerVolume; else if (volume < 0) volume = 0; // TODO: Maybe we should do logarithmic (not linear) volume // scaling? See also Player_V2::setMasterVolume _volumeForSoundType[type] = volume; } int MixerImpl::getVolumeForSoundType(SoundType type) const { assert(0 <= type && type < ARRAYSIZE(_volumeForSoundType)); return _volumeForSoundType[type]; } #pragma mark - #pragma mark --- Channel implementations --- #pragma mark - Channel::Channel(Mixer *mixer, Mixer::SoundType type, AudioStream *input, bool autofreeStream, bool reverseStereo, int id, bool permanent) : _type(type), _mixer(mixer), _autofreeStream(autofreeStream), _volume(Mixer::kMaxChannelVolume), _balance(0), _pauseLevel(0), _id(id), _samplesConsumed(0), _samplesDecoded(0), _mixerTimeStamp(0), _pauseStartTime(0), _pauseTime(0), _converter(0), _input(input), _permanent(permanent) { assert(mixer); assert(input); // Get a rate converter instance _converter = makeRateConverter(_input->getRate(), mixer->getOutputRate(), _input->isStereo(), reverseStereo); } Channel::~Channel() { delete _converter; if (_autofreeStream) delete _input; } /* len indicates the number of sample *pairs*. So a value of 10 means that the buffer contains twice 10 sample, each 16 bits, for a total of 40 bytes. */ void Channel::mix(int16 *data, uint len) { assert(_input); if (_input->endOfData()) { // TODO: call drain method } else { assert(_converter); // From the channel balance/volume and the global volume, we compute // the effective volume for the left and right channel. Note the // slightly odd divisor: the 255 reflects the fact that the maximal // value for _volume is 255, while the 127 is there because the // balance value ranges from -127 to 127. The mixer (music/sound) // volume is in the range 0 - kMaxMixerVolume. // Hence, the vol_l/vol_r values will be in that range, too int vol = _mixer->getVolumeForSoundType(_type) * _volume; st_volume_t vol_l, vol_r; if (_balance == 0) { vol_l = vol / Mixer::kMaxChannelVolume; vol_r = vol / Mixer::kMaxChannelVolume; } else if (_balance < 0) { vol_l = vol / Mixer::kMaxChannelVolume; vol_r = ((127 + _balance) * vol) / (Mixer::kMaxChannelVolume * 127); } else { vol_l = ((127 - _balance) * vol) / (Mixer::kMaxChannelVolume * 127); vol_r = vol / Mixer::kMaxChannelVolume; } _samplesConsumed = _samplesDecoded; _mixerTimeStamp = g_system->getMillis(); _pauseTime = 0; _converter->flow(*_input, data, len, vol_l, vol_r); _samplesDecoded += len; } } uint32 Channel::getElapsedTime() { if (_mixerTimeStamp == 0) return 0; // Convert the number of samples into a time duration. To avoid // overflow, this has to be done in a somewhat non-obvious way. uint32 rate = _mixer->getOutputRate(); uint32 seconds = _samplesConsumed / rate; uint32 milliseconds = (1000 * (_samplesConsumed % rate)) / rate; uint32 delta = g_system->getMillis() - _mixerTimeStamp - _pauseTime; // In theory it would seem like a good idea to limit the approximation // so that it never exceeds the theoretical upper bound set by // _samplesDecoded. Meanwhile, back in the real world, doing so makes // the Broken Sword cutscenes noticeably jerkier. I guess the mixer // isn't invoked at the regular intervals that I first imagined. return 1000 * seconds + milliseconds + delta; } } // End of namespace Audio