#include "stdafx.h" #include #include "sound/resample.h" #include "sound/audiostream.h" #pragma mark - /** * Calculates the filter coeffs for a Kaiser-windowed low-pass filter with a * given roll-off frequency. These coeffs are stored into a array of doubles. * * reference: "Digital Filters, 2nd edition" * R.W. Hamming, pp. 178-179 * * LpFilter() computes the coeffs of a Kaiser-windowed low pass filter with * the following characteristics: * * c[] = array in which to store computed coeffs * frq = roll-off frequency of filter * N = Half the window length in number of coeffs * Beta = parameter of Kaiser window * Num = number of coeffs before 1/frq * * Beta trades the rejection of the lowpass filter against the transition * width from passband to stopband. Larger Beta means a slower * transition and greater stopband rejection. See Rabiner and Gold * (Theory and Application of DSP) under Kaiser windows for more about * Beta. The following table from Rabiner and Gold gives some feel * for the effect of Beta: * * All ripples in dB, width of transition band = D*N where N = window length * * BETA D PB RIP SB RIP * 2.120 1.50 +-0.27 -30 * 3.384 2.23 0.0864 -40 * 4.538 2.93 0.0274 -50 * 5.658 3.62 0.00868 -60 * 6.764 4.32 0.00275 -70 * 7.865 5.0 0.000868 -80 * 8.960 5.7 0.000275 -90 * 10.056 6.4 0.000087 -100 */ static void LpFilter(double c[], int N, double frq, double Beta, int Num); /** * Calls LpFilter() to create a filter, then scales the double coeffs into an * array of half words. * ERROR return codes: * 0 - no error * 1 - Nwing too large (Nwing is > MAXNWING) * 2 - Froll is not in interval [0:1) * 3 - Beta is < 1.0 * 4 - LpScl will not fit in 16-bits */ static int makeFilter(HWORD Imp[], HWORD ImpD[], UHWORD *LpScl, UHWORD Nwing, double Froll, double Beta); static WORD FilterUp(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp, HWORD *Xp, HWORD Inc, HWORD Ph); static WORD FilterUD(HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp, HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb); #pragma mark - /* * * The configuration constants below govern * the number of bits in the input sample and filter coefficients, the * number of bits to the right of the binary-point for fixed-point math, etc. * */ /* Conversion constants */ #define Nhc 8 #define Na 7 #define Np (Nhc+Na) #define Npc (1<> NLpScl; // Round & scale if (v>MAX_HWORD) { v = MAX_HWORD; } else if (v < MIN_HWORD) { v = MIN_HWORD; } out = (HWORD) v; return out; } /* Sampling rate up-conversion only subroutine; * Slightly faster than down-conversion; */ static int SrcUp(HWORD X[], HWORD Y[], double factor, UWORD *Time, UHWORD Nx, UHWORD Nwing, UHWORD LpScl, HWORD Imp[], HWORD ImpD[], bool Interp) { HWORD *Xp, *Ystart; WORD v; double dt; /* Step through input signal */ UWORD dtb; /* Fixed-point version of Dt */ UWORD endTime; /* When Time reaches EndTime, return to user */ dt = 1.0/factor; /* Output sampling period */ dtb = (UWORD)(dt*(1<>Np]; /* Ptr to current input sample */ /* Perform left-wing inner product */ v = FilterUp(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask),-1); /* Perform right-wing inner product */ v += FilterUp(Imp, ImpD, Nwing, Interp, Xp+1, /* previous (triggers warning): (HWORD)((-*Time)&Pmask),1); */ (HWORD)((((*Time)^Pmask)+1)&Pmask),1); v >>= Nhg; /* Make guard bits */ v *= LpScl; /* Normalize for unity filter gain */ *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */ *Time += dtb; /* Move to next sample by time increment */ } return (Y - Ystart); /* Return the number of output samples */ } /* Sampling rate conversion subroutine */ static int SrcUD(HWORD X[], HWORD Y[], double factor, UWORD *Time, UHWORD Nx, UHWORD Nwing, UHWORD LpScl, HWORD Imp[], HWORD ImpD[], bool Interp) { HWORD *Xp, *Ystart; WORD v; double dh; /* Step through filter impulse response */ double dt; /* Step through input signal */ UWORD endTime; /* When Time reaches EndTime, return to user */ UWORD dhb, dtb; /* Fixed-point versions of Dh,Dt */ dt = 1.0/factor; /* Output sampling period */ dtb = (UWORD)(dt*(1<>Np]; /* Ptr to current input sample */ v = FilterUD(Imp, ImpD, Nwing, Interp, Xp, (HWORD)(*Time&Pmask), -1, dhb); /* Perform left-wing inner product */ v += FilterUD(Imp, ImpD, Nwing, Interp, Xp+1, /* previous (triggers warning): (HWORD)((-*Time)&Pmask), */ (HWORD)((((*Time)^Pmask)+1)&Pmask), 1, dhb); /* Perform right-wing inner product */ v >>= Nhg; /* Make guard bits */ v *= LpScl; /* Normalize for unity filter gain */ *Y++ = WordToHword(v,NLpScl); /* strip guard bits, deposit output */ *Time += dtb; /* Move to next sample by time increment */ } return (Y - Ystart); /* Return the number of output samples */ } #pragma mark - #define IzeroEPSILON 1E-21 /* Max error acceptable in Izero */ static double Izero(double x) { double sum, u, halfx, temp; int n; sum = u = n = 1; halfx = x/2.0; do { temp = halfx/(double)n; n += 1; temp *= temp; u *= temp; sum += u; } while (u >= IzeroEPSILON*sum); return(sum); } void LpFilter(double c[], int N, double frq, double Beta, int Num) { double IBeta, temp, inm1; int i; /* Calculate ideal lowpass filter impulse response coefficients: */ c[0] = 2.0*frq; for (i=1; i MAXNWING) /* Check for valid parameters */ return(1); if ((Froll<=0) || (Froll>1)) return(2); if (Beta < 1) return(3); /* * Design Kaiser-windowed sinc-function low-pass filter */ LpFilter(ImpR, (int)Nwing, 0.5*Froll, Beta, Npc); /* Compute the DC gain of the lowpass filter, and its maximum coefficient * magnitude. Scale the coefficients so that the maximum coeffiecient just * fits in Nh-bit fixed-point, and compute LpScl as the NLpScl-bit (signed) * scale factor which when multiplied by the output of the lowpass filter * gives unity gain. */ DCgain = 0; Dh = Npc; /* Filter sampling period for factors>=1 */ for (i=Dh; i= 1<<16) return(4); /* Filter scale factor overflows UHWORD */ *LpScl = temp; /* Scale filter coefficients for Nh bits and convert to integer */ if (ImpR[0] < 0) /* Need pos 1st value for LpScl storage */ Scl = -Scl; for (i=0; i>Na]; End = &Imp[Nwing]; if (Interp) { Hdp = &ImpD[Ph>>Na]; a = Ph & Amask; } if (Inc == 1) /* If doing right wing... */ { /* ...drop extra coeff, so when Ph is */ End--; /* 0.5, we don't do too many mult's */ if (Ph == 0) /* If the phase is zero... */ { /* ...then we've already skipped the */ Hp += Npc; /* first sample, so we must also */ Hdp += Npc; /* skip ahead in Imp[] and ImpD[] */ } } if (Interp) while (Hp < End) { t = *Hp; /* Get filter coeff */ t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */ Hdp += Npc; /* Filter coeff differences step */ t *= *Xp; /* Mult coeff by input sample */ if (t & (1<<(Nhxn-1))) /* Round, if needed */ t += (1<<(Nhxn-1)); t >>= Nhxn; /* Leave some guard bits, but come back some */ v += t; /* The filter output */ Hp += Npc; /* Filter coeff step */ Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */ } else while (Hp < End) { t = *Hp; /* Get filter coeff */ t *= *Xp; /* Mult coeff by input sample */ if (t & (1<<(Nhxn-1))) /* Round, if needed */ t += (1<<(Nhxn-1)); t >>= Nhxn; /* Leave some guard bits, but come back some */ v += t; /* The filter output */ Hp += Npc; /* Filter coeff step */ Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */ } return(v); } WORD FilterUD( HWORD Imp[], HWORD ImpD[], UHWORD Nwing, bool Interp, HWORD *Xp, HWORD Ph, HWORD Inc, UHWORD dhb) { HWORD a; HWORD *Hp, *Hdp, *End; WORD v, t; UWORD Ho; v=0; Ho = (Ph*(UWORD)dhb)>>Np; End = &Imp[Nwing]; if (Inc == 1) /* If doing right wing... */ { /* ...drop extra coeff, so when Ph is */ End--; /* 0.5, we don't do too many mult's */ if (Ph == 0) /* If the phase is zero... */ Ho += dhb; /* ...then we've already skipped the */ } /* first sample, so we must also */ /* skip ahead in Imp[] and ImpD[] */ if (Interp) while ((Hp = &Imp[Ho>>Na]) < End) { t = *Hp; /* Get IR sample */ Hdp = &ImpD[Ho>>Na]; /* get interp (lower Na) bits from diff table*/ a = Ho & Amask; /* a is logically between 0 and 1 */ t += (((WORD)*Hdp)*a)>>Na; /* t is now interp'd filter coeff */ t *= *Xp; /* Mult coeff by input sample */ if (t & 1<<(Nhxn-1)) /* Round, if needed */ t += 1<<(Nhxn-1); t >>= Nhxn; /* Leave some guard bits, but come back some */ v += t; /* The filter output */ Ho += dhb; /* IR step */ Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */ } else while ((Hp = &Imp[Ho>>Na]) < End) { t = *Hp; /* Get IR sample */ t *= *Xp; /* Mult coeff by input sample */ if (t & 1<<(Nhxn-1)) /* Round, if needed */ t += 1<<(Nhxn-1); t >>= Nhxn; /* Leave some guard bits, but come back some */ v += t; /* The filter output */ Ho += dhb; /* IR step */ Xp += Inc; /* Input signal step. NO CHECK ON BOUNDS */ } return(v); } #pragma mark - #if 0 static int resampleWithFilter( /* number of output samples returned */ double factor, /* factor = outSampleRate/inSampleRate */ int infd, /* input and output file descriptors */ int outfd, int inCount, /* number of input samples to convert */ int outCount, /* number of output samples to compute */ int nChans, /* number of sound channels (1 or 2) */ bool interpFilt, /* TRUE means interpolate filter coeffs */ HWORD Imp[], HWORD ImpD[], UHWORD LpScl, UHWORD Nmult, UHWORD Nwing) { UWORD Time, Time2; /* Current time/pos in input sample */ UHWORD Xp, Ncreep, Xoff, Xread; int OBUFFSIZE = (int)(((double)IBUFFSIZE)*factor+2.0); HWORD X1[IBUFFSIZE], Y1[OBUFFSIZE]; /* I/O buffers */ HWORD X2[IBUFFSIZE], Y2[OBUFFSIZE]; /* I/O buffers */ UHWORD Nout, Nx; int i, Ycount, last; MUS_SAMPLE_TYPE **obufs = sndlib_allocate_buffers(nChans, OBUFFSIZE); if (obufs == NULL) return err_ret("Can't allocate output buffers"); /* Account for increased filter gain when using factors less than 1 */ if (factor < 1) LpScl = LpScl*factor + 0.5; /* Calc reach of LP filter wing & give some creeping room */ Xoff = ((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10; if (IBUFFSIZE < 2*Xoff) /* Check input buffer size */ return err_ret("IBUFFSIZE (or factor) is too small"); Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */ last = 0; /* Have not read last input sample yet */ Ycount = 0; /* Current sample and length of output file */ Xp = Xoff; /* Current "now"-sample pointer for input */ Xread = Xoff; /* Position in input array to read into */ Time = (Xoff<= 1) { /* SrcUp() is faster if we can use it */ Nout=SrcUp(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt); if (nChans==2) Nout=SrcUp(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD, interpFilt); } else { Nout=SrcUD(X1,Y1,factor,&Time,Nx,Nwing,LpScl,Imp,ImpD,interpFilt); if (nChans==2) Nout=SrcUD(X2,Y2,factor,&Time2,Nx,Nwing,LpScl,Imp,ImpD, interpFilt); } Time -= (Nx<>Np) - Xoff; /* Calc time accumulation in Time */ if (Ncreep) { Time -= (Ncreep<outCount) { Nout -= (Ycount-outCount); Ycount = outCount; } if (Nout > OBUFFSIZE) /* Check to see if output buff overflowed */ return err_ret("Output array overflow"); if (nChans==1) { for (i = 0; i < Nout; i++) obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]); } else { for (i = 0; i < Nout; i++) { obufs[0][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y1[i]); obufs[1][i] = HWORD_TO_MUS_SAMPLE_TYPE(Y2[i]); } } /* NB: errors reported within sndlib */ mus_file_write(outfd, 0, Nout - 1, nChans, obufs); printf("."); fflush(stdout); } while (YcountFactor = (double)outrate / (double)inrate; gcdrate = st_gcd(inrate, outrate); r->a = inrate / gcdrate; r->b = outrate / gcdrate; if (r->a <= r->b && r->b <= NQMAX) { r->quadr = -1; /* exact coeff's */ r->Nq = r->b; /* MAX(r->a,r->b); */ } else { r->Nq = Nc; /* for now */ } /* Check for illegal constants */ # if 0 if (Lp >= 16) st_fail("Error: Lp>=16"); if (Nb + Nhg + NLpScl >= 32) st_fail("Error: Nb+Nhg+NLpScl>=32"); if (Nh + Nb > 32) st_fail("Error: Nh+Nb>32"); # endif /* Nwing: # of filter coeffs in right wing */ r->Nwing = r->Nq * (r->Nmult / 2 + 1) + 1; r->Imp = (Float *)malloc(sizeof(Float) * (r->Nwing + 2)) + 1; /* need Imp[-1] and Imp[Nwing] for quadratic interpolation */ /* returns error # <=0, or adjusted wing-len > 0 */ i = makeFilter(r->Imp, r->Nwing, r->rolloff, r->beta, r->Nq); if (i <= 0) { st_fail("resample: Unable to make filter\n"); return (ST_EOF); } st_report("Nmult: %ld, Nwing: %ld, Nq: %ld\n",r->Nmult,r->Nwing,r->Nq); // FIXME if (r->quadr < 0) { /* exact coeff's method */ r->Xh = r->Nwing / r->b; st_report("resample: rate ratio %ld:%ld, coeff interpolation not needed\n", r->a, r->b); } else { r->dhb = Np; /* Fixed-point Filter sampling-time-increment */ if (r->Factor < 1.0) r->dhb = (long)(r->Factor * Np + 0.5); r->Xh = (r->Nwing << La) / r->dhb; /* (Xh * dhb)>>La is max index into Imp[] */ } /* reach of LP filter wings + some creeping room */ Xoff = r->Xh + 10; r->Xoff = Xoff; /* Current "now"-sample pointer for input to filter */ r->Xp = Xoff; /* Position in input array to read into */ r->Xread = Xoff; /* Current-time pointer for converter */ r->Time = Xoff; if (r->quadr < 0) { /* exact coeff's method */ r->t = Xoff * r->Nq; } i = BUFFSIZE - 2 * Xoff; if (i < r->Factor + 1.0 / r->Factor) /* Check input buffer size */ { st_fail("Factor is too small or large for BUFFSIZE"); return (ST_EOF); } r->Xsize = (long)(2 * Xoff + i / (1.0 + r->Factor)); r->Ysize = BUFFSIZE - r->Xsize; st_report("Xsize %ld, Ysize %ld, Xoff %ld",r->Xsize,r->Ysize,r->Xoff); // FIXME r->X = (Float *) malloc(sizeof(Float) * (BUFFSIZE)); r->Y = r->X + r->Xsize; r->Yposition = 0; /* Need Xoff zeros at beginning of sample */ for (i = 0; i < Xoff; i++) r->X[i] = 0; return (ST_SUCCESS); } /* * Processed signed long samples from ibuf to obuf. * Return number of samples processed. */ int st_resample_flow(resample_t r, AudioStream &input, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) { long i, k, last; long Nout = 0; // The number of bytes we effectively output long Nx; // The number of bytes we will read from input long Nproc; // The number of bytes we process to generate Nout output bytes const long obufSize = *osamp; /* TODO: adjust for the changes made to AudioStream; add support for stereo initially, could just average the left/right channel -> bad for quality of course, but easiest to implement and would get this going again. Next step is to duplicate the X/Y buffers... a lot of computations don't care about how many channels there are anyway, they could just be ran twice, e.g. SrcEX and SrcUD. But better for efficiency would be to rewrite those to deal with 2 channels, too. Because esp in SrcEX/SrcUD, only very few computations depend on the input data, and dealing with both channels in parallel should only be a little slower than dealing with them alone */ // Constrain amount we actually process //fprintf(stderr,"Xp %d, Xread %d\n",r->Xp, r->Xread); // Initially assume we process the full X buffer starting at the filter // start position. Nproc = r->Xsize - r->Xp; // Nproc is bounded indirectly by the size of output buffer, and also by // the remaining size of the Y buffer (whichever is smaller). // We round up for the output buffer, because we want to generate enough // bytes to fill it. i = MIN((long)((r->Ysize - r->Yposition) / r->Factor), (long)ceil((obufSize - r->Yposition) / r->Factor)); if (Nproc > i) Nproc = i; // Now that we know how many bytes we want to process, we determine // how many bytes to read. We already have Xread bytes in our input // buffer, so we need Nproc - r->Xread more bytes. Nx = Nproc - r->Xread + r->Xoff + r->Xp; // FIXME: Fingolfin thinks this is the correct thing, not what's in the next line! // Nx = Nproc - r->Xread; /* space for right-wing future-data */ if (Nx <= 0) { st_fail("resample: Can not handle this sample rate change. Nx not positive: %d", Nx); return (ST_EOF); } // Read in up to Nx bytes for (i = r->Xread; i < Nx + r->Xread && !input.eos(); i++) { r->X[i] = (Float)input.read(); } Nx = i - r->Xread; // Compute how many samples we actually read fprintf(stderr,"Nx %d\n",Nx); last = Nx + r->Xread; // 'last' is the idx after the last valid byte in X (i.e. number of bytes are in buffer X right now) // Finally compute the effective number of bytes to process Nproc = last - r->Xoff - r->Xp; if (Nproc <= 0) { /* fill in starting here next time */ r->Xread = last; /* leave *isamp alone, we consumed it */ *osamp = 0; return (ST_SUCCESS); } if (r->quadr < 0) { /* exact coeff's method */ long creep; Nout = SrcEX(r, Nproc) + r->Yposition; fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout); /* Move converter Nproc samples back in time */ r->t -= Nproc * r->b; /* Advance by number of samples processed */ r->Xp += Nproc; /* Calc time accumulation in Time */ creep = r->t / r->b - r->Xoff; if (creep) { r->t -= creep * r->b; /* Remove time accumulation */ r->Xp += creep; /* and add it to read pointer */ fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep); } } else { /* approx coeff's method */ long creep; Nout = SrcUD(r, Nproc) + r->Yposition; fprintf(stderr,"Nproc %d --> %d\n",Nproc,Nout); /* Move converter Nproc samples back in time */ r->Time -= Nproc; /* Advance by number of samples processed */ r->Xp += Nproc; /* Calc time accumulation in Time */ creep = (long)(r->Time - r->Xoff); if (creep) { r->Time -= creep; /* Remove time accumulation */ r->Xp += creep; /* and add it to read pointer */ fprintf(stderr,"Nproc %ld, creep %ld\n",Nproc,creep); } } /* Copy back portion of input signal that must be re-used */ k = r->Xp - r->Xoff; //fprintf(stderr,"k %d, last %d\n",k,last); for (i = 0; i < last - k; i++) r->X[i] = r->X[i + k]; /* Pos in input buff to read new data into */ r->Xread = i; r->Xp = r->Xoff; printf("osamp = %ld, Nout = %ld\n", obufSize, Nout); long numOutSamples = MIN(obufSize, Nout); for (i = 0; i < numOutSamples; i++) { int sample = (int)(r->Y[i] * vol / 256); clampedAdd(*obuf++, sample); #if 1 // FIXME: Hack to generate stereo output // clampedAdd(*obuf++, sample); *obuf++; #endif } // Move down the remaining Y bytes for (i = numOutSamples; i < Nout; i++) { r->Y[i-numOutSamples] = r->Y[i]; } if (Nout > numOutSamples) r->Yposition = Nout - numOutSamples; else r->Yposition = 0; // Finally set *osamp to the number of samples we put into the output buffer *osamp = numOutSamples; return (ST_SUCCESS); } /* * Process tail of input samples. */ int st_resample_drain(resample_t r, st_sample_t *obuf, st_size_t *osamp, st_volume_t vol) { long osamp_res; st_sample_t *Obuf; int rc; /*fprintf(stderr,"Xoff %d, Xt %d <--- DRAIN\n",r->Xoff, r->Xt);*/ /* stuff end with Xoff zeros */ ZeroInputStream zero(r->Xoff); osamp_res = *osamp; Obuf = obuf; while (!zero.eos() && osamp_res > 0) { st_sample_t Osamp; Osamp = osamp_res; rc = st_resample_flow(r, zero, Obuf, (st_size_t *) & Osamp, vol); if (rc) return rc; /*fprintf(stderr,"DRAIN isamp,osamp (%d,%d) -> (%d,%d)\n", isamp_res,osamp_res,Isamp,Osamp);*/ Obuf += Osamp; osamp_res -= Osamp; } *osamp -= osamp_res; fprintf(stderr,"DRAIN osamp %d\n", *osamp); if (!zero.eos()) st_warn("drain overran obuf\n"); fflush(stderr); return (ST_SUCCESS); } /* * Do anything required when you stop reading samples. * Don't close input file! */ int st_resample_stop(resample_t r) { free(r->Imp - 1); free(r->X); /* free(r->Y); Y is in same block starting at X */ return (ST_SUCCESS); } #endif #pragma mark - ResampleRateConverter::ResampleRateConverter(st_rate_t inrate, st_rate_t outrate, int quality) { // FIXME: quality is for now a nasty hack. Valid values are 0,1,2,3 double rolloff; /* roll-off frequency */ double beta; /* passband/stopband tuning magic */ switch (quality) { case 0: /* These defaults are conservative with respect to aliasing. */ rolloff = 0.80; beta = 16; quadr = 0; Nmult = 45; break; case 1: rolloff = 0.80; beta = 16; quadr = 1; Nmult = 45; break; case 2: rolloff = 0.875; beta = 16; quadr = 1; Nmult = 75; break; case 3: rolloff = 0.94; beta = 16; quadr = 1; Nmult = 149; break; default: error("Illegal quality level %d\n", quality); break; } makeFilter(Imp, ImpD, &LpScl, Nmult, rolloff, beta); int OBUFFSIZE = (IBUFFSIZE * outrate / inrate + 2); X1 = (HWORD *)malloc(IBUFFSIZE); X2 = (HWORD *)malloc(IBUFFSIZE); Y1 = (HWORD *)malloc(OBUFFSIZE); Y2 = (HWORD *)malloc(OBUFFSIZE); // HACK this is invalid code but "fixes" a compiler warning for now double factor = outrate / (double)inrate; UHWORD Xp, /*Ncreep,*/ Xoff, Xread; UHWORD Nout, Nx; int Ycount, last; /* Account for increased filter gain when using factors less than 1 */ if (factor < 1) LpScl = (UHWORD)(LpScl*factor + 0.5); /* Calc reach of LP filter wing & give some creeping room */ Xoff = (UHWORD)(((Nmult+1)/2.0) * MAX(1.0,1.0/factor) + 10); if (IBUFFSIZE < 2*Xoff) /* Check input buffer size */ error("IBUFFSIZE (or factor) is too small"); Nx = IBUFFSIZE - 2*Xoff; /* # of samples to process each iteration */ last = 0; /* Have not read last input sample yet */ Ycount = 0; /* Current sample and length of output file */ Xp = Xoff; /* Current "now"-sample pointer for input */ Xread = Xoff; /* Position in input array to read into */ Time = (Xoff<