/* Copyright (c) 2003-2005 Various contributors * * Permission is hereby granted, free of charge, to any person obtaining a copy * of this software and associated documentation files (the "Software"), to * deal in the Software without restriction, including without limitation the * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or * sell copies of the Software, and to permit persons to whom the Software is * furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice shall be included in * all copies or substantial portions of the Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include "mt32emu.h" #if defined(MACOSX) || defined(SOLARIS) // Older versions of Mac OS X didn't supply a powf function, so using it // will cause a binary incompatibility when trying to run a binary built // on a newer OS X release on an olderr one. And Solaris 8 doesn't provide // powf, floorf, fabsf etc. at all. // Hence we re-define them here. The only potential drawback is that it // might be a little bit slower this way. #define powf pow #define floorf floor #define fabsf fabs #endif #define FIXEDPOINT_MAKE(x, point) ((Bit32u)((1 << point) * x)) namespace MT32Emu { //Amplitude time velocity follow exponential coefficients static const double tvcatconst[5] = {0.0, 0.002791309, 0.005942882, 0.012652792, 0.026938637}; static const double tvcatmult[5] = {1.0, 1.072662811, 1.169129367, 1.288579123, 1.229630539}; // These are division constants for the TVF depth key follow static const Bit32u depexp[5] = {3000, 950, 485, 255, 138}; //Envelope time keyfollow exponential coefficients static const double tkcatconst[5] = {0.0, 0.005853144, 0.011148054, 0.019086143, 0.043333215}; static const double tkcatmult[5] = {1.0, 1.058245688, 1.048488989, 1.016049301, 1.097538067}; // Begin filter stuff // Pre-warp the coefficients of a numerator or denominator. // Note that a0 is assumed to be 1, so there is no wrapping // of it. static void prewarp(double *a1, double *a2, double fc, double fs) { double wp; wp = 2.0 * fs * tan(DOUBLE_PI * fc / fs); *a2 = *a2 / (wp * wp); *a1 = *a1 / wp; } // Transform the numerator and denominator coefficients // of s-domain biquad section into corresponding // z-domain coefficients. // // Store the 4 IIR coefficients in array pointed by coef // in following order: // beta1, beta2 (denominator) // alpha1, alpha2 (numerator) // // Arguments: // a0-a2 - s-domain numerator coefficients // b0-b2 - s-domain denominator coefficients // k - filter gain factor. initially set to 1 // and modified by each biquad section in such // a way, as to make it the coefficient by // which to multiply the overall filter gain // in order to achieve a desired overall filter gain, // specified in initial value of k. // fs - sampling rate (Hz) // coef - array of z-domain coefficients to be filled in. // // Return: // On return, set coef z-domain coefficients static void bilinear(double a0, double a1, double a2, double b0, double b1, double b2, double *k, double fs, float *coef) { double ad, bd; // alpha (Numerator in s-domain) ad = 4. * a2 * fs * fs + 2. * a1 * fs + a0; // beta (Denominator in s-domain) bd = 4. * b2 * fs * fs + 2. * b1* fs + b0; // update gain constant for this section *k *= ad/bd; // Denominator *coef++ = (float)((2. * b0 - 8. * b2 * fs * fs) / bd); // beta1 *coef++ = (float)((4. * b2 * fs * fs - 2. * b1 * fs + b0) / bd); // beta2 // Nominator *coef++ = (float)((2. * a0 - 8. * a2 * fs * fs) / ad); // alpha1 *coef = (float)((4. * a2 * fs * fs - 2. * a1 * fs + a0) / ad); // alpha2 } // a0-a2: numerator coefficients // b0-b2: denominator coefficients // fc: Filter cutoff frequency // fs: sampling rate // k: overall gain factor // coef: pointer to 4 iir coefficients static void szxform(double *a0, double *a1, double *a2, double *b0, double *b1, double *b2, double fc, double fs, double *k, float *coef) { // Calculate a1 and a2 and overwrite the original values prewarp(a1, a2, fc, fs); prewarp(b1, b2, fc, fs); bilinear(*a0, *a1, *a2, *b0, *b1, *b2, k, fs, coef); } static void initFilter(float fs, float fc, float *icoeff, float Q) { float *coef; double a0, a1, a2, b0, b1, b2; double k = 1.5; // Set overall filter gain factor coef = icoeff + 1; // Skip k, or gain // Section 1 a0 = 1.0; a1 = 0; a2 = 0; b0 = 1.0; b1 = 0.765367 / Q; // Divide by resonance or Q b2 = 1.0; szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef); coef += 4; // Point to next filter section // Section 2 a0 = 1.0; a1 = 0; a2 = 0; b0 = 1.0; b1 = 1.847759 / Q; b2 = 1.0; szxform(&a0, &a1, &a2, &b0, &b1, &b2, fc, fs, &k, coef); icoeff[0] = (float)k; } void Tables::initFiltCoeff(float samplerate) { for (int j = 0; j < FILTERGRAN; j++) { for (int res = 0; res < 31; res++) { float tres = resonanceFactor[res]; initFilter((float)samplerate, (((float)(j+1.0)/FILTERGRAN)) * ((float)samplerate/2), filtCoeff[j][res], tres); } } } void Tables::initEnvelopes(float samplerate) { for (int lf = 0; lf <= 100; lf++) { float elf = (float)lf; // General envelope // This formula fits observation of the CM-32L by +/- 0.03s or so for the second time value in the filter, // when all other times were 0 and all levels were 100. Note that variations occur depending on the level // delta of the section, which we're not fully emulating. float seconds = powf(2.0f, (elf / 8.0f) + 7.0f) / 32768.0f; int samples = (int)(seconds * samplerate); envTime[lf] = samples; // Cap on envelope times depending on the level delta if (elf == 0) { envDeltaMaxTime[lf] = 63; } else { float cap = 11.0f * (float)log(elf) + 64; if (cap > 100.0f) { cap = 100.0f; } envDeltaMaxTime[lf] = (int)cap; } // This (approximately) represents the time durations when the target level is 0. // Not sure why this is a special case, but it's seen to be from the real thing. seconds = powf(2, (elf / 8.0f) + 6) / 32768.0f; envDecayTime[lf] = (int)(seconds * samplerate); // I am certain of this: Verified by hand LFO log lfoPeriod[lf] = (Bit32u)(((float)samplerate) / (powf(1.088883372f, (float)lf) * 0.021236044f)); } } void Tables::initMT32ConstantTables(Synth *synth) { int lf; synth->printDebug("Initialising Pitch Tables"); for (lf = -108; lf <= 108; lf++) { tvfKeyfollowMult[lf + 108] = (int)(256 * powf(2.0f, (float)(lf / 24.0f))); //synth->printDebug("KT %d = %d", f, keytable[f+108]); } for (int res = 0; res < 31; res++) { resonanceFactor[res] = powf((float)res / 30.0f, 5.0f) + 1.0f; } int period = 65536; for (int ang = 0; ang < period; ang++) { int halfang = (period / 2); int angval = ang % halfang; float tval = (((float)angval / (float)halfang) - 0.5f) * 2; if (ang >= halfang) tval = -tval; sintable[ang] = (Bit16s)(tval * 50.0f) + 50; } int velt, dep; float tempdep; for (velt = 0; velt < 128; velt++) { for (dep = 0; dep < 5; dep++) { if (dep > 0) { float ff = (float)(exp(3.5f * tvcatconst[dep] * (59.0f - (float)velt)) * tvcatmult[dep]); tempdep = 256.0f * ff; envTimeVelfollowMult[dep][velt] = (int)tempdep; //if ((velt % 16) == 0) { // synth->printDebug("Key %d, depth %d, factor %d", velt, dep, (int)tempdep); //} } else envTimeVelfollowMult[dep][velt] = 256; } for (dep = -7; dep < 8; dep++) { float fldep = (float)abs(dep) / 7.0f; fldep = powf(fldep,2.5f); if (dep < 0) fldep = fldep * -1.0f; pwVelfollowAdd[dep+7][velt] = Bit32s((fldep * (float)velt * 100) / 128.0); } } for (dep = 0; dep <= 100; dep++) { for (velt = 0; velt < 128; velt++) { float fdep = (float)dep * 0.000347013f; // Another MT-32 constant float fv = ((float)velt - 64.0f)/7.26f; float flogdep = powf(10, fdep * fv); float fbase; if (velt > 64) synth->tables.tvfVelfollowMult[velt][dep] = (int)(flogdep * 256.0); else { //lff = 1 - (pow(((128.0 - (float)lf) / 64.0),.25) * ((float)velt / 96)); fbase = 1 - (powf(((float)dep / 100.0f),.25f) * ((float)(64-velt) / 96.0f)); synth->tables.tvfVelfollowMult[velt][dep] = (int)(fbase * 256.0); } //synth->printDebug("Filvel dep %d velt %d = %x", dep, velt, filveltable[velt][dep]); } } for (lf = 0; lf < 128; lf++) { float veloFract = lf / 127.0f; for (int velsens = 0; velsens <= 100; velsens++) { float sensFract = (velsens - 50) / 50.0f; if (velsens < 50) { tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, veloFract * -sensFract * 127.0f / 20.0f), 8); } else { tvaVelfollowMult[lf][velsens] = FIXEDPOINT_MAKE(1.0f / powf(2.0f, (1.0f - veloFract) * sensFract * 127.0f / 20.0f), 8); } } } for (lf = 0; lf <= 100; lf++) { // Converts the 0-100 range used by the MT-32 to volume multiplier volumeMult[lf] = FIXEDPOINT_MAKE(powf((float)lf / 100.0f, FLOAT_LN), 7); } for (lf = 0; lf <= 100; lf++) { float mv = lf / 100.0f; float pt = mv - 0.5f; if (pt < 0) pt = 0; // Original (CC version) //pwFactor[lf] = (int)(pt * 210.04f) + 128; // Approximation from sample comparison pwFactor[lf] = (int)(pt * 179.0f) + 128; } for (unsigned int i = 0; i < MAX_SAMPLE_OUTPUT; i++) { int myRand; myRand = rand(); //myRand = ((myRand - 16383) * 7168) >> 16; // This one is slower but works with all values of RAND_MAX myRand = (int)((myRand - RAND_MAX / 2) / (float)RAND_MAX * (7168 / 2)); //FIXME:KG: Original ultimately set the lowest two bits to 0, for no obvious reason noiseBuf[i] = (Bit16s)myRand; } float tdist; float padjtable[51]; for (lf = 0; lf <= 50; lf++) { if (lf == 0) padjtable[lf] = 7; else if (lf == 1) padjtable[lf] = 6; else if (lf == 2) padjtable[lf] = 5; else if (lf == 3) padjtable[lf] = 4; else if (lf == 4) padjtable[lf] = 4 - (0.333333f); else if (lf == 5) padjtable[lf] = 4 - (0.333333f * 2); else if (lf == 6) padjtable[lf] = 3; else if ((lf > 6) && (lf <= 12)) { tdist = (lf-6.0f) / 6.0f; padjtable[lf] = 3.0f - tdist; } else if ((lf > 12) && (lf <= 25)) { tdist = (lf - 12.0f) / 13.0f; padjtable[lf] = 2.0f - tdist; } else { tdist = (lf - 25.0f) / 25.0f; padjtable[lf] = 1.0f - tdist; } //synth->printDebug("lf %d = padj %f", lf, padjtable[lf]); } float lfp, depf, finalval, tlf; int depat, pval, depti; for (lf = 0; lf <= 10; lf++) { // I believe the depth is cubed or something for (depat = 0; depat <= 100; depat++) { if (lf > 0) { depti = abs(depat - 50); tlf = (float)lf - padjtable[depti]; if (tlf < 0) tlf = 0; lfp = (float)exp(0.713619942f * tlf) / 407.4945111f; if (depat < 50) finalval = 4096.0f * powf(2, -lfp); else finalval = 4096.0f * powf(2, lfp); pval = (int)finalval; pitchEnvVal[lf][depat] = pval; //synth->printDebug("lf %d depat %d pval %d tlf %f lfp %f", lf,depat,pval, tlf, lfp); } else { pitchEnvVal[lf][depat] = 4096; //synth->printDebug("lf %d depat %d pval 4096", lf, depat); } } } for (lf = 0; lf <= 100; lf++) { // It's linear - verified on MT-32 - one of the few things linear lfp = ((float)lf * 0.1904f) / 310.55f; for (depat = 0; depat <= 100; depat++) { depf = ((float)depat - 50.0f) / 50.0f; //finalval = pow(2, lfp * depf * .5); finalval = 4096.0f + (4096.0f * lfp * depf); pval = (int)finalval; lfoShift[lf][depat] = pval; //synth->printDebug("lf %d depat %d pval %x", lf,depat,pval); } } for (lf = 0; lf <= 12; lf++) { for (int distval = 0; distval < 128; distval++) { float amplog, dval; if (lf == 0) { amplog = 0; dval = 1; tvaBiasMult[lf][distval] = 256; } else { /* amplog = powf(1.431817011f, (float)lf) / FLOAT_PI; dval = ((128.0f - (float)distval) / 128.0f); amplog = exp(amplog); dval = powf(amplog, dval) / amplog; tvaBiasMult[lf][distval] = (int)(dval * 256.0); */ // Lets assume for a second it's linear // Distance of full volume reduction amplog = (float)(12.0f / (float)lf) * 24.0f; if (distval > amplog) { tvaBiasMult[lf][distval] = 0; } else { dval = (amplog - (float)distval) / amplog; tvaBiasMult[lf][distval] = (int)(dval * 256.0f); } } //synth->printDebug("Ampbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvaBiasMult[lf][distval],amplog); } } for (lf = 0; lf <= 14; lf++) { for (int distval = 0; distval < 128; distval++) { float filval = fabsf((float)((lf - 7) * 12) / 7.0f); float amplog, dval; if (lf == 7) { amplog = 0; dval = 1; tvfBiasMult[lf][distval] = 256; } else { //amplog = pow(1.431817011, filval) / FLOAT_PI; amplog = powf(1.531817011f, filval) / FLOAT_PI; dval = (128.0f - (float)distval) / 128.0f; amplog = (float)exp(amplog); dval = powf(amplog,dval)/amplog; if (lf < 8) { tvfBiasMult[lf][distval] = (int)(dval * 256.0f); } else { dval = powf(dval, 0.3333333f); if (dval < 0.01f) dval = 0.01f; dval = 1 / dval; tvfBiasMult[lf][distval] = (int)(dval * 256.0f); } } //synth->printDebug("Fbias lf %d distval %d = %f (%x) %f", lf, distval, dval, tvfBiasMult[lf][distval],amplog); } } } // Per-note table initialisation follows static void initSaw(NoteLookup *noteLookup, Bit32s div2) { int tmpdiv = div2 << 16; for (int rsaw = 0; rsaw <= 100; rsaw++) { float fsaw; if (rsaw < 50) fsaw = 50.0f; else fsaw = (float)rsaw; //(66 - (((A8 - 50) / 50) ^ 0.63) * 50) / 132 float sawfact = (66.0f - (powf((fsaw - 50.0f) / 50.0f, 0.63f) * 50.0f)) / 132.0f; noteLookup->sawTable[rsaw] = (int)(sawfact * (float)tmpdiv) >> 16; //synth->printDebug("F %d divtable %d saw %d sawtable %d", f, div, rsaw, sawtable[f][rsaw]); } } static void initDep(KeyLookup *keyLookup, float f) { for (int dep = 0; dep < 5; dep++) { if (dep == 0) { keyLookup->envDepthMult[dep] = 256; keyLookup->envTimeMult[dep] = 256; } else { float depfac = 3000.0f; float ff, tempdep; depfac = (float)depexp[dep]; ff = (f - (float)MIDDLEC) / depfac; tempdep = powf(2, ff) * 256.0f; keyLookup->envDepthMult[dep] = (int)tempdep; ff = (float)(exp(tkcatconst[dep] * ((float)MIDDLEC - f)) * tkcatmult[dep]); keyLookup->envTimeMult[dep] = (int)(ff * 256.0f); } } //synth->printDebug("F %f d1 %x d2 %x d3 %x d4 %x d5 %x", f, noteLookup->fildepTable[0], noteLookup->fildepTable[1], noteLookup->fildepTable[2], noteLookup->fildepTable[3], noteLookup->fildepTable[4]); } Bit16s Tables::clampWF(Synth *synth, const char *n, float ampVal, double input) { Bit32s x = (Bit32s)(input * ampVal); if (x < -ampVal - 1) { synth->printDebug("%s==%d<-WGAMP-1!", n, x); x = (Bit32s)(-ampVal - 1); } else if (x > ampVal) { synth->printDebug("%s==%d>WGAMP!", n, x); x = (Bit32s)ampVal; } return (Bit16s)x; } File *Tables::initWave(Synth *synth, NoteLookup *noteLookup, float ampVal, float div2, File *file) { int iDiv2 = (int)div2; noteLookup->waveformSize[0] = iDiv2 << 1; noteLookup->waveformSize[1] = iDiv2 << 1; noteLookup->waveformSize[2] = iDiv2 << 2; for (int i = 0; i < 3; i++) { if (noteLookup->waveforms[i] == NULL) { noteLookup->waveforms[i] = new Bit16s[noteLookup->waveformSize[i]]; } } if (file != NULL) { for (int i = 0; i < 3 && file != NULL; i++) { size_t len = noteLookup->waveformSize[i]; for (unsigned int j = 0; j < len; j++) { if (!file->readBit16u((Bit16u *)¬eLookup->waveforms[i][j])) { synth->printDebug("Error reading wave file cache!"); file->close(); file = NULL; break; } } } } if (file == NULL) { double sd = DOUBLE_PI / div2; for (int fa = 0; fa < (iDiv2 << 1); fa++) { // sa ranges from 0 to 2PI double sa = fa * sd; // Calculate a sample for the bandlimited sawtooth wave double saw = 0.0; int sincs = iDiv2 >> 1; double sinus = 1.0; for (int sincNum = 1; sincNum <= sincs; sincNum++) { saw += sin(sinus * sa) / sinus; sinus++; } // This works pretty well // Multiplied by 0.84 so that the spikes caused by bandlimiting don't overdrive the amplitude noteLookup->waveforms[0][fa] = clampWF(synth, "saw", ampVal, -saw / (0.5 * DOUBLE_PI) * 0.84); noteLookup->waveforms[1][fa] = clampWF(synth, "cos", ampVal, -cos(sa / 2.0)); noteLookup->waveforms[2][fa * 2] = clampWF(synth, "cosoff_0", ampVal, -cos(sa - DOUBLE_PI)); noteLookup->waveforms[2][fa * 2 + 1] = clampWF(synth, "cosoff_1", ampVal, -cos((sa + (sd / 2)) - DOUBLE_PI)); } } return file; } static void initFiltTable(NoteLookup *noteLookup, float freq, float rate) { for (int tr = 0; tr <= 200; tr++) { float ftr = (float)tr; // Verified exact on MT-32 if (tr > 100) ftr = 100.0f + (powf((ftr - 100.0f) / 100.0f, 3.0f) * 100.0f); // I think this is the one float brsq = powf(10.0f, (tr / 50.0f) - 1.0f); noteLookup->filtTable[0][tr] = (int)((freq * brsq) / (rate / 2) * FILTERGRAN); if (noteLookup->filtTable[0][tr]>=((FILTERGRAN*15)/16)) noteLookup->filtTable[0][tr] = ((FILTERGRAN*15)/16); float brsa = powf(10.0f, ((tr / 55.0f) - 1.0f)) / 2.0f; noteLookup->filtTable[1][tr] = (int)((freq * brsa) / (rate / 2) * FILTERGRAN); if (noteLookup->filtTable[1][tr]>=((FILTERGRAN*15)/16)) noteLookup->filtTable[1][tr] = ((FILTERGRAN*15)/16); } } static void initNFiltTable(NoteLookup *noteLookup, float freq, float rate) { for (int cf = 0; cf <= 100; cf++) { float cfmult = (float)cf; for (int tf = 0;tf <= 100; tf++) { float tfadd = (float)tf; //float freqsum = exp((cfmult + tfadd) / 30.0f) / 4.0f; //float freqsum = 0.15f * exp(0.45f * ((cfmult + tfadd) / 10.0f)); float freqsum = powf(2.0f, ((cfmult + tfadd) - 40.0f) / 16.0f); noteLookup->nfiltTable[cf][tf] = (int)((freq * freqsum) / (rate / 2) * FILTERGRAN); if (noteLookup->nfiltTable[cf][tf] >= ((FILTERGRAN * 15) / 16)) noteLookup->nfiltTable[cf][tf] = ((FILTERGRAN * 15) / 16); } } } File *Tables::initNote(Synth *synth, NoteLookup *noteLookup, float note, float rate, float masterTune, PCMWaveEntry *pcmWaves, File *file) { float freq = (float)(masterTune * pow(2.0, ((double)note - MIDDLEA) / 12.0)); float div2 = rate * 2.0f / freq; noteLookup->div2 = (int)div2; if (noteLookup->div2 == 0) noteLookup->div2 = 1; initSaw(noteLookup, noteLookup->div2); //synth->printDebug("Note %f; freq=%f, div=%f", note, freq, rate / freq); file = initWave(synth, noteLookup, (const float)WGAMP, div2, file); // Create the pitch tables if (noteLookup->wavTable == NULL) noteLookup->wavTable = new Bit32u[synth->controlROMMap->pcmCount]; double rateMult = 32000.0 / rate; double tuner = freq * 65536.0f; for (int pc = 0; pc < synth->controlROMMap->pcmCount; pc++) { noteLookup->wavTable[pc] = (int)(tuner / pcmWaves[pc].tune * rateMult); } initFiltTable(noteLookup, freq, rate); initNFiltTable(noteLookup, freq, rate); return file; } bool Tables::initNotes(Synth *synth, PCMWaveEntry *pcmWaves, float rate, float masterTune) { const char *NoteNames[12] = { "C ", "C#", "D ", "D#", "E ", "F ", "F#", "G ", "G#", "A ", "A#", "B " }; char filename[64]; int intRate = (int)rate; char version[4] = {0, 0, 0, 5}; sprintf(filename, "waveformcache-%d-%.2f.raw", intRate, masterTune); File *file = NULL; char header[20]; strncpy(header, "MT32WAVE", 8); int pos = 8; // Version... for (int i = 0; i < 4; i++) header[pos++] = version[i]; header[pos++] = (char)((intRate >> 24) & 0xFF); header[pos++] = (char)((intRate >> 16) & 0xFF); header[pos++] = (char)((intRate >> 8) & 0xFF); header[pos++] = (char)(intRate & 0xFF); int intTuning = (int)masterTune; header[pos++] = (char)((intTuning >> 8) & 0xFF); header[pos++] = (char)(intTuning & 0xFF); header[pos++] = 0; header[pos] = (char)((masterTune - intTuning) * 10); #if MT32EMU_WAVECACHEMODE < 2 bool reading = false; file = synth->openFile(filename, File::OpenMode_read); if (file != NULL) { char fileHeader[20]; if (file->read(fileHeader, 20) == 20) { if (memcmp(fileHeader, header, 20) == 0) { Bit16u endianCheck; if (file->readBit16u(&endianCheck)) { if (endianCheck == 1) { reading = true; } else { synth->printDebug("Endian check in %s does not match expected", filename); } } else { synth->printDebug("Unable to read endian check in %s", filename); } } else { synth->printDebug("Header of %s does not match expected", filename); } } else { synth->printDebug("Error reading 16 bytes of %s", filename); } if (!reading) { file->close(); file = NULL; } } else { synth->printDebug("Unable to open %s for reading", filename); } #endif float progress = 0.0f; bool abort = false; synth->report(ReportType_progressInit, &progress); for (int f = LOWEST_NOTE; f <= HIGHEST_NOTE; f++) { synth->printDebug("Initialising note %s%d", NoteNames[f % 12], (f / 12) - 2); NoteLookup *noteLookup = ¬eLookups[f - LOWEST_NOTE]; file = initNote(synth, noteLookup, (float)f, rate, masterTune, pcmWaves, file); progress = (f - LOWEST_NOTE + 1) / (float)NUM_NOTES; abort = synth->report(ReportType_progressInit, &progress) != 0; if (abort) break; } #if MT32EMU_WAVECACHEMODE == 0 || MT32EMU_WAVECACHEMODE == 2 if (file == NULL) { file = synth->openFile(filename, File::OpenMode_write); if (file != NULL) { if (file->write(header, 20) == 20 && file->writeBit16u(1)) { for (int f = 0; f < NUM_NOTES; f++) { for (int i = 0; i < 3 && file != NULL; i++) { int len = noteLookups[f].waveformSize[i]; for (int j = 0; j < len; j++) { if (!file->writeBit16u(noteLookups[f].waveforms[i][j])) { synth->printDebug("Error writing waveform cache file"); file->close(); file = NULL; break; } } } } } else { synth->printDebug("Error writing 16-byte header to %s - won't continue saving", filename); } } else { synth->printDebug("Unable to open %s for writing - won't be created", filename); } } #endif if (file != NULL) synth->closeFile(file); return !abort; } void Tables::freeNotes() { for (int t = 0; t < 3; t++) { for (int m = 0; m < NUM_NOTES; m++) { if (noteLookups[m].waveforms[t] != NULL) { delete[] noteLookups[m].waveforms[t]; noteLookups[m].waveforms[t] = NULL; noteLookups[m].waveformSize[t] = 0; } if (noteLookups[m].wavTable != NULL) { delete[] noteLookups[m].wavTable; noteLookups[m].wavTable = NULL; } } } initialisedMasterTune = 0.0f; } Tables::Tables() { initialisedSampleRate = 0.0f; initialisedMasterTune = 0.0f; memset(¬eLookups, 0, sizeof(noteLookups)); } bool Tables::init(Synth *synth, PCMWaveEntry *pcmWaves, float sampleRate, float masterTune) { if (sampleRate <= 0.0f) { synth->printDebug("Bad sampleRate (%d <= 0.0f)", sampleRate); return false; } if (initialisedSampleRate == 0.0f) { initMT32ConstantTables(synth); } if (initialisedSampleRate != sampleRate) { initFiltCoeff(sampleRate); initEnvelopes(sampleRate); for (int key = 12; key <= 108; key++) { initDep(&keyLookups[key - 12], (float)key); } } if (initialisedSampleRate != sampleRate || initialisedMasterTune != masterTune) { freeNotes(); if (!initNotes(synth, pcmWaves, sampleRate, masterTune)) { return false; } initialisedSampleRate = sampleRate; initialisedMasterTune = masterTune; } return true; } }