/* Copyright (C) 1994-2004 Revolution Software Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ */ #include "common/stdafx.h" #include "sword2/sword2.h" #include "sword2/driver/animation.h" #include "sword2/driver/d_draw.h" #include "sword2/driver/menu.h" #include "sword2/driver/render.h" namespace Sword2 { #define MILLISECSPERCYCLE 83 void Graphics::updateRect(Common::Rect *r) { _vm->_system->copyRectToScreen(_buffer + r->top * _screenWide + r->left, _screenWide, r->left, r->top, r->right - r->left, r->bottom - r->top); } void Graphics::blitBlockSurface(BlockSurface *s, Common::Rect *r, Common::Rect *clipRect) { if (!r->intersects(*clipRect)) return; byte *src = s->data; if (r->top < clipRect->top) { src -= BLOCKWIDTH * (r->top - clipRect->top); r->top = clipRect->top; } if (r->left < clipRect->left) { src -= (r->left - clipRect->left); r->left = clipRect->left; } if (r->bottom > clipRect->bottom) r->bottom = clipRect->bottom; if (r->right > clipRect->right) r->right = clipRect->right; byte *dst = _buffer + r->top * _screenWide + r->left; int i; if (s->transparent) { for (i = 0; i < r->bottom - r->top; i++) { for (int j = 0; j < r->right - r->left; j++) { if (src[j]) dst[j] = src[j]; } src += BLOCKWIDTH; dst += _screenWide; } } else { for (i = 0; i < r->bottom - r->top; i++) { memcpy(dst, src, r->right - r->left); src += BLOCKWIDTH; dst += _screenWide; } } } // There are two different separate functions for scaling the image - one fast // and one good. Or at least that's the theory. I'm sure there are better ways // to scale an image than this. The latter is used at the highest graphics // quality setting. Note that the "good" scaler takes an extra parameter, a // pointer to the area of the screen where the sprite will be drawn. // // This code isn't quite like the original DrawSprite(), but should be close // enough. void Graphics::scaleImageFast(byte *dst, uint16 dstPitch, uint16 dstWidth, uint16 dstHeight, byte *src, uint16 srcPitch, uint16 srcWidth, uint16 srcHeight) { int x, y; for (x = 0; x < dstWidth; x++) _xScale[x] = (x * srcWidth) / dstWidth; for (y = 0; y < dstHeight; y++) _yScale[y] = (y * srcHeight) / dstHeight; for (y = 0; y < dstHeight; y++) { for (x = 0; x < dstWidth; x++) { dst[x] = src[_yScale[y] * srcPitch + _xScale[x]]; } dst += dstPitch; } } void Graphics::scaleImageGood(byte *dst, uint16 dstPitch, uint16 dstWidth, uint16 dstHeight, byte *src, uint16 srcPitch, uint16 srcWidth, uint16 srcHeight, byte *backbuf) { for (int y = 0; y < dstHeight; y++) { for (int x = 0; x < dstWidth; x++) { uint8 c1, c2, c3, c4; uint32 xPos = (x * srcWidth) / dstWidth; uint32 yPos = (y * srcHeight) / dstHeight; uint32 xFrac = dstWidth - (x * srcWidth) % dstWidth; uint32 yFrac = dstHeight - (y * srcHeight) % dstHeight; byte *srcPtr = src + yPos * srcPitch + xPos; byte *backPtr = backbuf + y * _screenWide + x; bool transparent = true; if (*srcPtr) { c1 = *srcPtr; transparent = false; } else c1 = *backPtr; if (x < dstWidth - 1) { if (*(srcPtr + 1)) { c2 = *(srcPtr + 1); transparent = false; } else c2 = *(backPtr + 1); } else c2 = c1; if (y < dstHeight - 1) { if (*(srcPtr + srcPitch)) { c3 = *(srcPtr + srcPitch); transparent = false; } else c3 = *(backPtr + _screenWide); } else c3 = c1; if (x < dstWidth - 1 && y < dstHeight - 1) { if (*(srcPtr + srcPitch + 1)) { c4 = *(srcPtr + srcPitch + 1); transparent = false; } else c4 = *(backPtr + _screenWide + 1); } else c4 = c3; if (!transparent) { uint32 r1 = _palette[c1 * 4 + 0]; uint32 g1 = _palette[c1 * 4 + 1]; uint32 b1 = _palette[c1 * 4 + 2]; uint32 r2 = _palette[c2 * 4 + 0]; uint32 g2 = _palette[c2 * 4 + 1]; uint32 b2 = _palette[c2 * 4 + 2]; uint32 r3 = _palette[c3 * 4 + 0]; uint32 g3 = _palette[c3 * 4 + 1]; uint32 b3 = _palette[c3 * 4 + 2]; uint32 r4 = _palette[c4 * 4 + 0]; uint32 g4 = _palette[c4 * 4 + 1]; uint32 b4 = _palette[c4 * 4 + 2]; uint32 r5 = (r1 * xFrac + r2 * (dstWidth - xFrac)) / dstWidth; uint32 g5 = (g1 * xFrac + g2 * (dstWidth - xFrac)) / dstWidth; uint32 b5 = (b1 * xFrac + b2 * (dstWidth - xFrac)) / dstWidth; uint32 r6 = (r3 * xFrac + r4 * (dstWidth - xFrac)) / dstWidth; uint32 g6 = (g3 * xFrac + g4 * (dstWidth - xFrac)) / dstWidth; uint32 b6 = (b3 * xFrac + b4 * (dstWidth - xFrac)) / dstWidth; uint32 r = (r5 * yFrac + r6 * (dstHeight - yFrac)) / dstHeight; uint32 g = (g5 * yFrac + g6 * (dstHeight - yFrac)) / dstHeight; uint32 b = (b5 * yFrac + b6 * (dstHeight - yFrac)) / dstHeight; dst[y * dstWidth + x] = quickMatch(r, g, b); } else dst[y * dstWidth + x] = 0; } } } /** * Plots a point relative to the top left corner of the screen. This is only * used for debugging. * @param x x-coordinate of the point * @param y y-coordinate of the point * @param colour colour of the point */ void Graphics::plotPoint(int16 x, int16 y, uint8 colour) { byte *buf = _buffer + MENUDEEP * RENDERWIDE; x -= _scrollX; y -= _scrollY; if (x >= 0 && x < RENDERWIDE && y >= 0 && y < RENDERDEEP) { buf[y * RENDERWIDE + x] = colour; markAsDirty(x, y + MENUDEEP, x, y + MENUDEEP); } } /** * Draws a line from one point to another. This is only used for debugging. * @param x0 x-coordinate of the start point * @param y0 y-coordinate of the start point * @param x1 x-coordinate of the end point * @param y1 y-coordinate of the end point * @param colour colour of the line */ // Uses Bressnham's incremental algorithm! void Graphics::drawLine(int16 x0, int16 y0, int16 x1, int16 y1, uint8 colour) { int dxmod, dymod; int ince, incne; int d; int x, y; int addTo; // Make sure we're going from left to right if (x1 < x0) { SWAP(x0, x1); SWAP(y0, y1); } int dx = x1 - x0; int dy = y1 - y0; if (dx < 0) dxmod = -dx; else dxmod = dx; if (dy < 0) dymod = -dy; else dymod = dy; if (dxmod >= dymod) { if (dy > 0) { d = 2 * dy - dx; ince = 2 * dy; incne = 2 * (dy - dx); x = x0; y = y0; plotPoint(x, y, colour); while (x < x1) { if (d <= 0) { d += ince; x++; } else { d += incne; x++; y++; } plotPoint(x, y, colour); } } else { addTo = y0; y0 = 0; y1 -= addTo; y1 = -y1; dy = y1 - y0; d = 2 * dy - dx; ince = 2 * dy; incne = 2 * (dy - dx); x = x0; y = y0; plotPoint(x, addTo - y, colour); while (x < x1) { if (d <= 0) { d += ince; x++; } else { d += incne; x++; y++; } plotPoint(x, addTo - y, colour); } } } else { // OK, y is now going to be the single increment. // Ensure the line is going top to bottom if (y1 < y0) { SWAP(x0, x1); SWAP(y0, y1); } dx = x1 - x0; dy = y1 - y0; if (dx > 0) { d = 2 * dx - dy; ince = 2 * dx; incne = 2 * (dx - dy); x = x0; y = y0; plotPoint(x, y, colour); while (y < y1) { if (d <= 0) { d += ince; y++; } else { d += incne; x++; y++; } plotPoint(x, y, colour); } } else { addTo = x0; x0 = 0; x1 -= addTo; x1 = -x1; dx = x1 - x0; d = 2 * dx - dy; ince = 2 * dx; incne = 2 * (dx - dy); x = x0; y = y0; plotPoint(addTo - x, y, colour); while (y < y1) { if (d <= 0) { d += ince; y++; } else { d += incne; x++; y++; } plotPoint(addTo - x, y, colour); } } } } /** * This function tells the driver the size of the background screen for the * current location. * @param w width of the current location * @param h height of the current location */ void Graphics::setLocationMetrics(uint16 w, uint16 h) { _locationWide = w; _locationDeep = h; setNeedFullRedraw(); } /** * Draws a parallax layer at the current position determined by the scroll. A * parallax can be either foreground, background or the main screen. */ void Graphics::renderParallax(Parallax *p, int16 l) { int16 x, y; Common::Rect r; if (_locationWide == _screenWide) x = 0; else x = ((int32) ((p->w - _screenWide) * _scrollX) / (int32) (_locationWide - _screenWide)); if (_locationDeep == _screenDeep - MENUDEEP * 2) y = 0; else y = ((int32) ((p->h - (_screenDeep - MENUDEEP * 2)) * _scrollY) / (int32) (_locationDeep - (_screenDeep - MENUDEEP * 2))); Common::Rect clipRect; // Leave enough space for the top and bottom menues clipRect.left = 0; clipRect.right = _screenWide; clipRect.top = MENUDEEP; clipRect.bottom = _screenDeep - MENUDEEP; for (int j = 0; j < _yBlocks[l]; j++) { for (int i = 0; i < _xBlocks[l]; i++) { if (_blockSurfaces[l][i + j * _xBlocks[l]]) { r.left = i * BLOCKWIDTH - x; r.right = r.left + BLOCKWIDTH; r.top = j * BLOCKHEIGHT - y + MENUDEEP; r.bottom = r.top + BLOCKHEIGHT; blitBlockSurface(_blockSurfaces[l][i + j * _xBlocks[l]], &r, &clipRect); } } } _parallaxScrollX = _scrollX - x; _parallaxScrollY = _scrollY - y; } // Uncomment this when benchmarking the drawing routines. #define LIMIT_FRAME_RATE /** * Initialises the timers before the render loop is entered. */ void Graphics::initialiseRenderCycle(void) { _initialTime = _vm->_system->getMillis(); _totalTime = _initialTime + MILLISECSPERCYCLE; } /** * This function should be called when the game engine is ready to start the * render cycle. */ void Graphics::startRenderCycle(void) { _scrollXOld = _scrollX; _scrollYOld = _scrollY; _startTime = _vm->_system->getMillis(); if (_startTime + _renderAverageTime >= _totalTime) { _scrollX = _scrollXTarget; _scrollY = _scrollYTarget; _renderTooSlow = true; } else { _scrollX = (int16) (_scrollXOld + ((_scrollXTarget - _scrollXOld) * (_startTime - _initialTime + _renderAverageTime)) / (_totalTime - _initialTime)); _scrollY = (int16) (_scrollYOld + ((_scrollYTarget - _scrollYOld) * (_startTime - _initialTime + _renderAverageTime)) / (_totalTime - _initialTime)); _renderTooSlow = false; } if (_scrollXOld != _scrollX || _scrollYOld != _scrollY) setNeedFullRedraw(); _framesPerGameCycle = 0; } /** * This function should be called at the end of the render cycle. * @return true if the render cycle is to be terminated, * or false if it should continue */ bool Graphics::endRenderCycle(void) { static int32 renderTimeLog[4] = { 60, 60, 60, 60 }; static int32 renderCountIndex = 0; int32 time; time = _vm->_system->getMillis(); renderTimeLog[renderCountIndex] = time - _startTime; _startTime = time; _renderAverageTime = (renderTimeLog[0] + renderTimeLog[1] + renderTimeLog[2] + renderTimeLog[3]) >> 2; _framesPerGameCycle++; if (++renderCountIndex == RENDERAVERAGETOTAL) renderCountIndex = 0; if (_renderTooSlow) { initialiseRenderCycle(); return true; } if (_startTime + _renderAverageTime >= _totalTime) { _totalTime += MILLISECSPERCYCLE; _initialTime = time; return true; } #ifdef LIMIT_FRAME_RATE if (_scrollXTarget == _scrollX && _scrollYTarget == _scrollY) { // If we have already reached the scroll target sleep for the // rest of the render cycle. _vm->sleepUntil(_totalTime); _initialTime = _vm->_system->getMillis(); _totalTime += MILLISECSPERCYCLE; return true; } #endif // This is an attempt to ensure that we always reach the scroll target. // Otherwise the game frequently tries to pump out new interpolation // frames without ever getting anywhere. if (ABS(_scrollX - _scrollXTarget) <= 1 && ABS(_scrollY - _scrollYTarget) <= 1) { _scrollX = _scrollXTarget; _scrollY = _scrollYTarget; } else { _scrollX = (int16) (_scrollXOld + ((_scrollXTarget - _scrollXOld) * (_startTime - _initialTime + _renderAverageTime)) / (_totalTime - _initialTime)); _scrollY = (int16) (_scrollYOld + ((_scrollYTarget - _scrollYOld) * (_startTime - _initialTime + _renderAverageTime)) / (_totalTime - _initialTime)); } if (_scrollX != _scrollXOld || _scrollY != _scrollYOld) setNeedFullRedraw(); #ifdef LIMIT_FRAME_RATE // Give the other threads some breathing space. This apparently helps // against bug #875683, though I was never able to reproduce it for // myself. _vm->_system->delayMillis(10); #endif return false; } /** * Reset scrolling stuff. This function is called from initBackground() */ void Graphics::resetRenderEngine(void) { _parallaxScrollX = 0; _parallaxScrollY = 0; _scrollX = 0; _scrollY = 0; } /** * Sets the scroll target position for the end of the game cycle. The driver * will then automatically scroll as many times as it can to reach this * position in the allotted time. */ void Graphics::setScrollTarget(int16 sx, int16 sy) { _scrollXTarget = sx; _scrollYTarget = sy; } /** * This function should be called five times with either the parallax layer * or a NULL pointer in order of background parallax to foreground parallax. */ int32 Graphics::initialiseBackgroundLayer(Parallax *p) { uint16 i, j, k; byte *data; byte *dst; debug(2, "initialiseBackgroundLayer"); assert(_layer < MAXLAYERS); if (!p) { _layer++; return RD_OK; } _xBlocks[_layer] = (p->w + BLOCKWIDTH - 1) / BLOCKWIDTH; _yBlocks[_layer] = (p->h + BLOCKHEIGHT - 1) / BLOCKHEIGHT; _blockSurfaces[_layer] = (BlockSurface **) calloc(_xBlocks[_layer] * _yBlocks[_layer], sizeof(BlockSurface *)); if (!_blockSurfaces[_layer]) return RDERR_OUTOFMEMORY; // Decode the parallax layer into a large chunk of memory byte *memchunk = (byte *) calloc(_xBlocks[_layer] * _yBlocks[_layer], BLOCKWIDTH * BLOCKHEIGHT); if (!memchunk) return RDERR_OUTOFMEMORY; for (i = 0; i < p->h; i++) { if (!p->offset[i]) continue; byte *pLine = (byte *) p + FROM_LE_32(p->offset[i]); uint16 packets = READ_LE_UINT16(pLine); uint16 offset = READ_LE_UINT16(pLine + 2); data = pLine + 4; dst = memchunk + i * p->w + offset; if (!packets) { memcpy(dst, data, p->w); continue; } bool zeros = false; for (j = 0; j < packets; j++) { if (zeros) { dst += *data; offset += *data; data++; zeros = false; } else if (!*data) { data++; zeros = true; } else { uint16 count = *data++; memcpy(dst, data, count); data += count; dst += count; offset += count; zeros = true; } } } // The large memory chunk is now divided into a number of smaller // surfaces. For most parallax layers, we'll end up using less memory // this way, and it will be faster to draw since completely transparent // surfaces are discarded. for (i = 0; i < _xBlocks[_layer] * _yBlocks[_layer]; i++) { bool block_has_data = false; bool block_is_transparent = false; int x = BLOCKWIDTH * (i % _xBlocks[_layer]); int y = BLOCKHEIGHT * (i / _xBlocks[_layer]); data = memchunk + p->w * y + x; for (j = 0; j < BLOCKHEIGHT; j++) { for (k = 0; k < BLOCKWIDTH; k++) { if (x + k < p->w && y + j < p->h) { if (data[j * p->w + k]) block_has_data = true; else block_is_transparent = true; } } } // Only assign a surface to the block if it contains data. if (block_has_data) { _blockSurfaces[_layer][i] = (BlockSurface *) malloc(sizeof(BlockSurface)); // Copy the data into the surfaces. dst = _blockSurfaces[_layer][i]->data; for (j = 0; j < BLOCKHEIGHT; j++) { memcpy(dst, data, BLOCKWIDTH); data += p->w; dst += BLOCKWIDTH; } _blockSurfaces[_layer][i]->transparent = block_is_transparent; } else _blockSurfaces[_layer][i] = NULL; } free(memchunk); _layer++; return RD_OK; } /** * Should be called once after leaving the room to free up memory. */ void Graphics::closeBackgroundLayer(void) { debug(2, "CloseBackgroundLayer"); for (int i = 0; i < MAXLAYERS; i++) { if (_blockSurfaces[i]) { for (int j = 0; j < _xBlocks[i] * _yBlocks[i]; j++) if (_blockSurfaces[i][j]) free(_blockSurfaces[i][j]); free(_blockSurfaces[i]); _blockSurfaces[i] = NULL; } } _layer = 0; } #ifdef BACKEND_8BIT void Graphics::plotYUV(byte *lut, int width, int height, byte *const *dat) { byte *buf = _buffer + ((480 - height) / 2) * RENDERWIDE + (640 - width) / 2; int x, y; int ypos = 0; int cpos = 0; int linepos = 0; for (y = 0; y < height; y += 2) { for (x = 0; x < width; x += 2) { int i = ((((dat[2][cpos] + ROUNDADD) >> SHIFT) * (BITDEPTH + 1)) + ((dat[1][cpos] + ROUNDADD) >> SHIFT)) * (BITDEPTH + 1); cpos++; buf[linepos ] = lut[i + ((dat[0][ ypos ] + ROUNDADD) >> SHIFT)]; buf[RENDERWIDE + linepos++] = lut[i + ((dat[0][width + ypos++] + ROUNDADD) >> SHIFT)]; buf[linepos ] = lut[i + ((dat[0][ ypos ] + ROUNDADD) >> SHIFT)]; buf[RENDERWIDE + linepos++] = lut[i + ((dat[0][width + ypos++] + ROUNDADD) >> SHIFT)]; } linepos += (2 * RENDERWIDE - width); ypos += width; } } #endif } // End of namespace Sword2