/* Copyright (C) 1994-2004 Revolution Software Ltd * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * * $Header$ */ #include "common/stdafx.h" #include "sword2/sword2.h" namespace Sword2 { /** * This function takes a sprite and creates a mirror image of it. * @param dst destination buffer * @param src source buffer * @param w width of the sprite * @param h height of the sprite */ void Graphics::mirrorSprite(uint8 *dst, uint8 *src, int16 w, int16 h) { for (int y = 0; y < h; y++) { for (int x = 0; x < w; x++) { *dst++ = *(src + w - x - 1); } src += w; } } /** * This function takes a compressed frame of a sprite with up to 256 colours * and decompresses it. * @param dest destination buffer * @param source source buffer * @param decompSize the expected size of the decompressed sprite */ int32 Graphics::decompressRLE256(uint8 *dest, uint8 *source, int32 decompSize) { // PARAMETERS: // source points to the start of the sprite data for input // decompSize gives size of decompressed data in bytes // dest points to start of destination buffer for decompressed // data uint8 headerByte; // block header byte uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer int32 rv; while(1) { // FLAT block // read FLAT block header & increment 'scan' to first pixel // of block headerByte = *source++; // if this isn't a zero-length block if (headerByte) { if (dest + headerByte > endDest) { rv = 1; break; } // set the next 'headerByte' pixels to the next colour // at 'source' memset(dest, *source, headerByte); // increment destination pointer to just after this // block dest += headerByte; // increment source pointer to just after this colour source++; // if we've decompressed all of the data if (dest == endDest) { rv = 0; // return "OK" break; } } // RAW block // read RAW block header & increment 'scan' to first pixel of // block headerByte = *source++; // if this isn't a zero-length block if (headerByte) { if (dest + headerByte > endDest) { rv = 1; break; } // copy the next 'headerByte' pixels from source to // destination memcpy(dest,source,headerByte); // increment destination pointer to just after this // block dest += headerByte; // increment source pointer to just after this block source += headerByte; // if we've decompressed all of the data if (dest == endDest) { rv = 0; // return "OK" break; } } } return rv; } /** * Unwinds a run of 16-colour data into 256-colour palette data. */ void Graphics::unwindRaw16(uint8 *dest, uint8 *source, uint8 blockSize, uint8 *colTable) { // for each pair of pixels while (blockSize > 1) { // 1st colour = number in table at position given by upper // nibble of source byte *dest++ = colTable[(*source) >> 4]; // 2nd colour = number in table at position given by lower // nibble of source byte *dest++ = colTable[(*source) & 0x0f]; // point to next source byte source++; // decrement count of how many pixels left to read blockSize -= 2; } // if there's a final odd pixel if (blockSize) { // colour = number in table at position given by upper nibble // of source byte *dest++ = colTable[(*source) >> 4]; } } /** * This function takes a compressed frame of a sprite (with up to 16 colours) * and decompresses it. * @param dest destination buffer * @param source source buffer * @param decompSize the expected size of the uncompressed sprite * @param colTable mapping from the 16 encoded colours to the current palette */ int32 Graphics::decompressRLE16(uint8 *dest, uint8 *source, int32 decompSize, uint8 *colTable) { uint8 headerByte; // block header byte uint8 *endDest = dest + decompSize; // pointer to byte after end of decomp buffer int32 rv; while(1) { // FLAT block // read FLAT block header & increment 'scan' to first pixel // of block headerByte = *source++; // if this isn't a zero-length block if (headerByte) { if (dest + headerByte > endDest) { rv = 1; break; } // set the next 'headerByte' pixels to the next // colour at 'source' memset(dest, *source, headerByte); // increment destination pointer to just after this // block dest += headerByte; // increment source pointer to just after this colour source++; // if we've decompressed all of the data if (dest == endDest) { rv = 0; // return "OK" break; } } // RAW block // read RAW block header & increment 'scan' to first pixel of // block headerByte = *source++; // if this isn't a zero-length block if (headerByte) { if (dest + headerByte > endDest) { rv = 1; break; } // copy the next 'headerByte' pixels from source to // destination (NB. 2 pixels per byte) unwindRaw16(dest, source, headerByte, colTable); // increment destination pointer to just after this // block dest += headerByte; // increment source pointer to just after this block // (NB. headerByte gives pixels, so /2 for bytes) source += (headerByte + 1) / 2; // if we've decompressed all of the data if (dest >= endDest) { rv = 0; // return "OK" break; } } } return rv; } /** * Creates a sprite surface. Sprite surfaces are used by the in-game dialogs * and for displaying cutscene subtitles, which makes them much easier to draw * than standard sprites. * @param s information about how to decode the sprite * @param sprite the buffer that will be created to store the surface * @return RD_OK, or an error code */ int32 Graphics::createSurface(SpriteInfo *s, uint8 **sprite) { *sprite = (uint8 *) malloc(s->w * s->h); if (!*sprite) return RDERR_OUTOFMEMORY; // Surfaces are either uncompressed or RLE256-compressed. No need to // test for anything else. if (s->type & RDSPR_NOCOMPRESSION) { memcpy(*sprite, s->data, s->w * s->h); } else if (decompressRLE256(*sprite, s->data, s->w * s->h)) { free(*sprite); return RDERR_DECOMPRESSION; } return RD_OK; } /** * Draws the sprite surface created earlier. * @param s information about how to place the sprite * @param surface pointer to the surface created earlier * @param clipRect the clipping rectangle */ void Graphics::drawSurface(SpriteInfo *s, uint8 *surface, Common::Rect *clipRect) { Common::Rect rd, rs; uint16 x, y; uint8 *src, *dst; rs.left = 0; rs.right = s->w; rs.top = 0; rs.bottom = s->h; rd.left = s->x; rd.right = rd.left + rs.right; rd.top = s->y; rd.bottom = rd.top + rs.bottom; if (clipRect) { if (clipRect->left > rd.left) { rs.left += (clipRect->left - rd.left); rd.left = clipRect->left; } if (clipRect->top > rd.top) { rs.top += (clipRect->top - rd.top); rd.top = clipRect->top; } if (clipRect->right < rd.right) { rd.right = clipRect->right; } if (clipRect->bottom < rd.bottom) { rd.bottom = clipRect->bottom; } if (rd.width() <= 0 || rd.height() <= 0) return; } src = surface + rs.top * s->w + rs.left; dst = _buffer + _screenWide * rd.top + rd.left; // Surfaces are always transparent. for (y = 0; y < rd.height(); y++) { for (x = 0; x < rd.width(); x++) { if (src[x]) dst[x] = src[x]; } src += s->w; dst += _screenWide; } updateRect(&rd); } /** * Destroys a surface. */ void Graphics::deleteSurface(uint8 *surface) { free(surface); } /** * Draws a sprite onto the screen. The type of the sprite can be a combination * of the following flags, some of which are mutually exclusive: * RDSPR_DISPLAYALIGN The sprite is drawn relative to the top left corner * of the screen * RDSPR_FLIP The sprite is mirrored * RDSPR_TRANS The sprite has a transparent colour zero * RDSPR_BLEND The sprite is translucent * RDSPR_SHADOW The sprite is affected by the light mask. (Scaled * sprites always are.) * RDSPR_NOCOMPRESSION The sprite data is not compressed * RDSPR_RLE16 The sprite data is a 16-colour compressed sprite * RDSPR_RLE256 The sprite data is a 256-colour compressed sprite * @param s all the information needed to draw the sprite * @warning Sprites will only be drawn onto the background, not over menubar * areas. */ // FIXME: I'm sure this could be optimized. There's plenty of data copying and // mallocing here. int32 Graphics::drawSprite(SpriteInfo *s) { uint8 *src, *dst; uint8 *sprite, *newSprite; uint8 *backbuf = NULL; uint16 scale; int16 i, j; uint16 srcPitch; bool freeSprite = false; bool clipped = false; Common::Rect rd, rs; // ----------------------------------------------------------------- // Decompression and mirroring // ----------------------------------------------------------------- if (s->type & RDSPR_NOCOMPRESSION) sprite = s->data; else { sprite = (uint8 *) malloc(s->w * s->h); freeSprite = true; if (!sprite) return RDERR_OUTOFMEMORY; if ((s->type & 0xff00) == RDSPR_RLE16) { if (decompressRLE16(sprite, s->data, s->w * s->h, s->colourTable)) { free(sprite); return RDERR_DECOMPRESSION; } } else { if (decompressRLE256(sprite, s->data, s->w * s->h)) { free(sprite); return RDERR_DECOMPRESSION; } } } if (s->type & RDSPR_FLIP) { newSprite = (uint8 *) malloc(s->w * s->h); if (newSprite == NULL) { if (freeSprite) free(sprite); return RDERR_OUTOFMEMORY; } mirrorSprite(newSprite, sprite, s->w, s->h); if (freeSprite) free(sprite); sprite = newSprite; freeSprite = true; } // ----------------------------------------------------------------- // Positioning and clipping. // ----------------------------------------------------------------- if (!(s->type & RDSPR_DISPLAYALIGN)) { s->x += _parallaxScrollX; s->y += _parallaxScrollY; } s->y += 40; // A scale factor 0 or 256 means don't scale. Why do they use two // different values to mean the same thing? Normalize it here for // convenience. scale = (s->scale == 0) ? 256 : s->scale; rs.top = 0; rs.left = 0; if (scale != 256) { rs.right = s->scaledWidth; rs.bottom = s->scaledHeight; srcPitch = s->scaledWidth; } else { rs.right = s->w; rs.bottom = s->h; srcPitch = s->w; } rd.top = s->y; rd.left = s->x; if (!(s->type & RDSPR_DISPLAYALIGN)) { rd.top -= _scrollY; rd.left -= _scrollX; } rd.right = rd.left + rs.right; rd.bottom = rd.top + rs.bottom; // Check if the sprite would end up completely outside the screen. if (rd.left > 640 || rd.top > 440 || rd.right < 0 || rd.bottom < 40) { if (freeSprite) free(sprite); return RD_OK; } if (rd.top < 40) { rs.top = 40 - rd.top; rd.top = 40; clipped = true; } if (rd.bottom > 440) { rd.bottom = 440; rs.bottom = rs.top + (rd.bottom - rd.top); clipped = true; } if (rd.left < 0) { rs.left = -rd.left; rd.left = 0; clipped = true; } if (rd.right > 640) { rd.right = 640; rs.right = rs.left + (rd.right - rd.left); clipped = true; } // ----------------------------------------------------------------- // Scaling // ----------------------------------------------------------------- if (scale != 256) { if ((_renderCaps & RDBLTFX_EDGEBLEND) && !clipped) backbuf = _buffer + _screenWide * rd.top + rd.left; if (s->scaledWidth > SCALE_MAXWIDTH || s->scaledHeight > SCALE_MAXHEIGHT) { if (freeSprite) free(sprite); return RDERR_NOTIMPLEMENTED; } newSprite = (uint8 *) malloc(s->scaledWidth * s->scaledHeight); if (newSprite == NULL) { if (freeSprite) free(sprite); return RDERR_OUTOFMEMORY; } if (scale < 256) { squashImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf); } else { if (s->scale > 512) { if (freeSprite) free(sprite); return RDERR_INVALIDSCALING; } stretchImage(newSprite, s->scaledWidth, s->scaledWidth, s->scaledHeight, sprite, s->w, s->w, s->h, backbuf); } if (freeSprite) free(sprite); sprite = newSprite; freeSprite = true; } // ----------------------------------------------------------------- // Light masking // ----------------------------------------------------------------- // The light mask is an optional layer that covers the entire room // and which is used to simulate light and shadows. Scaled sprites // (actors, presumably) are always affected. if ((_renderCaps & RDBLTFX_SHADOWBLEND) && _lightMask && (scale != 256 || (s->type & RDSPR_SHADOW))) { uint8 *lightMap; if (!freeSprite) { newSprite = (uint8 *) malloc(s->w * s->h); memcpy(newSprite, sprite, s->w * s->h); sprite = newSprite; freeSprite = true; } src = sprite + rs.top * srcPitch + rs.left; lightMap = _lightMask + (rd.top + _scrollY - 40) * _locationWide + rd.left + _scrollX; for (i = 0; i < rs.height(); i++) { for (j = 0; j < rs.width(); j++) { if (src[j] && lightMap[j]) { uint8 r = ((32 - lightMap[j]) * _palCopy[src[j]][0]) >> 5; uint8 g = ((32 - lightMap[j]) * _palCopy[src[j]][1]) >> 5; uint8 b = ((32 - lightMap[j]) * _palCopy[src[j]][2]) >> 5; src[j] = quickMatch(r, g, b); } } src += srcPitch; lightMap += _locationWide; } } // ----------------------------------------------------------------- // Drawing // ----------------------------------------------------------------- src = sprite + rs.top * srcPitch + rs.left; dst = _buffer + _screenWide * rd.top + rd.left; if (s->type & RDSPR_BLEND) { // The original code had two different blending cases. One for // s->blend & 0x01 and one for s->blend & 0x02. However, the // only values that actually appear in the cluster files are // 0, 513 and 1025 so the s->blend & 0x02 case was never used. // Which is just as well since that code made no sense to me. if (!(_renderCaps & RDBLTFX_SPRITEBLEND)) { for (i = 0; i < rs.height(); i++) { for (j = 0; j < rs.width(); j++) { if (src[j] && ((i & 1) == (j & 1))) dst[j] = src[j]; } src += srcPitch; dst += _screenWide; } } else { uint8 n = s->blend >> 8; for (i = 0; i < rs.height(); i++) { for (j = 0; j < rs.width(); j++) { if (src[j]) { uint8 r1 = _palCopy[src[j]][0]; uint8 g1 = _palCopy[src[j]][1]; uint8 b1 = _palCopy[src[j]][2]; uint8 r2 = _palCopy[dst[j]][0]; uint8 g2 = _palCopy[dst[j]][1]; uint8 b2 = _palCopy[dst[j]][2]; uint8 r = (r1 * n + r2 * (8 - n)) >> 3; uint8 g = (g1 * n + g2 * (8 - n)) >> 3; uint8 b = (b1 * n + b2 * (8 - n)) >> 3; dst[j] = quickMatch(r, g, b); } } src += srcPitch; dst += _screenWide; } } } else { if (s->type & RDSPR_TRANS) { for (i = 0; i < rs.height(); i++) { for (j = 0; j < rs.width(); j++) { if (src[j]) dst[j] = src[j]; } src += srcPitch; dst += _screenWide; } } else { for (i = 0; i < rs.height(); i++) { memcpy(dst, src, rs.width()); src += srcPitch; dst += _screenWide; } } } if (freeSprite) free(sprite); // Mark the approximate area of the sprite as "dirty", first generation int16 gridX1 = rd.left / CELLWIDE; int16 gridY1 = rd.top / CELLDEEP; int16 gridX2 = (rd.right - 1) / CELLWIDE; int16 gridY2 = (rd.bottom - 1) / CELLDEEP; for (i = gridY1; i <= gridY2; i++) for (j = gridX1; j <= gridX2; j++) _dirtyGrid[i * _gridWide + j] = 2; return RD_OK; } /** * Opens the light masking sprite for a room. */ int32 Graphics::openLightMask(SpriteInfo *s) { // FIXME: The light mask is only needed on higher graphics detail // settings, so to save memory we could simply ignore it on lower // settings. But then we need to figure out how to ensure that it // is properly loaded if the user changes the settings in mid-game. if (_lightMask) return RDERR_NOTCLOSED; _lightMask = (uint8 *) malloc(s->w * s->h); if (!_lightMask) return RDERR_OUTOFMEMORY; if (decompressRLE256(_lightMask, s->data, s->w * s->h)) return RDERR_DECOMPRESSION; return RD_OK; } /** * Closes the light masking sprite for a room. */ int32 Graphics::closeLightMask(void) { if (!_lightMask) return RDERR_NOTOPEN; free(_lightMask); _lightMask = NULL; return RD_OK; } } // End of namespace Sword2