/* Copyright (C) 1994-2003 Revolution Software Ltd
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
 *
 * $Header$
 */

//--------------------------------------------------------------------------------------
// ROUTER.CPP by James

// A rehash of Jeremy's original jrouter.c, containing low-level system routines
// for calculating routes between points inside a walk-grid, and constructing
// walk animations from mega-sets.

// jrouter.c undwent 2 major reworks from the original:
// (1)	Restructured to allow more flexibility in the mega-sets, ie. more info taken from the walk-data
//		- the new George & Nico mega-sets & walk-data were then tested & tweaked in the Sword1 system
// (2)	Updated for the new Sword2 system, ie. new object structures
//		- now compatible with Sword2, the essential code already having been tested

//--------------------------------------------------------------------------------------


/****************************************************************************
 *    JROUTER.C				polygon router with modular walks
 *       					using a tree of modules
 *       					21 july 94  
 *  3  november 94  
 *  System currently works by scanning grid data and coming up with a	ROUTE
 *  as a series of way points(nodes), the smoothest eight directional PATH
 * 	through these nodes is then found, and a WALK created to fit the PATH.
 *
 *	Two funtions are called by the user, RouteFinder creates a route as a
 *	module list, HardWalk creates an animation list from the module list.
 *	The split is only provided to allow the possibility of turning the
 *	autorouter over two game cycles.     
 ****************************************************************************
 *    
 *	Routine timings on osborne 486
 *
 *	Read floor resource (file already loaded)	 112 pixels
 *
 *	Read mega resource (file already loaded)	 112 pixels
 *
 *
 *
 ****************************************************************************
 *    
 *  Modified 12 Oct 95
 *
 *	Target Points within 1 pixel of a line are ignored ???
 *
 *	Modules split into  Points within 1 pixel of a line are ignored ???
 *
 ****************************************************************************
 *
 *  TOTALLY REHASHED BY JAMES FOR NEW MEGAS USING OLD SYSTEM
 *  THEN REINCARNATED BY JAMES FOR NEW MEGAS USING NEW SYSTEM
 *
 ****************************************************************************
 ****************************************************************************/


//#define PLOT_PATHS 1

 
/*
 * Include Files
 */


#include "stdafx.h"
#include "driver/driver96.h"
#include "console.h"
#include "debug.h"
#include "defs.h"
#include "header.h"
#include "interpreter.h"
#include "memory.h"
#include "object.h"
#include "resman.h"
#include "router.h"

//#ifdef PLOT_PATHS
//#include "grengine.h"
//#endif

#define MAX_FRAMES_PER_CYCLE	16
#define NO_DIRECTIONS			8
#define MAX_FRAMES_PER_CHAR		(MAX_FRAMES_PER_CYCLE * NO_DIRECTIONS)
#define ROUTE_END_FLAG			255




//---------------------------------------
// TEMP!
int8 forceSlidy;	// 1 = force the use of slidy router (so solid path not used when ending walk in ANY direction)
//---------------------------------------

/*
 * Type Defines
 */

#define	O_WALKANIM_SIZE	600			// max number of nodes in router output
#define	O_GRID_SIZE		200			// max 200 lines & 200 points
#define	EXTRA_GRID_SIZE	20			// max 20 lines & 20 points
#define	O_ROUTE_SIZE	50			// max number of modules in a route


typedef struct
{
	int16   x1;
  	int16   y1;
  	int16   x2;
	int16   y2;
	int16   xmin;
	int16   ymin;
	int16   xmax;
	int16   ymax;
	int16   dx;	   // x2 - x1
	int16   dy;	   // y2 - y1
	int32   co;	   // co = (y1 *dx)- (x1*dy) from an equation for a line y*dx = x*dy + co
}_barData;

typedef struct
{
	int16   x;
	int16   y;
	int16	level;
	int16   prev;
	int16   dist;
}_nodeData;

typedef	struct
{
	int32		nbars;
	_barData	*bars;
	int32		nnodes;
	_nodeData	*node;
} _floorData;

typedef	struct
{
	int32	x;
	int32	y;
	int32	dirS;
	int32	dirD;
} _routeData;

typedef	struct
{
	int32	x;
	int32	y;
	int32	dir;
	int32	num;
} _pathData;


//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
// Function prototypes

int32	GetRoute(void);
void	ExtractRoute(void);
void	LoadWalkGrid(void);
void	SetUpWalkGrid(Object_mega *ob_mega, int32 x, int32 y, int32 dir);
void	LoadWalkData(Object_walkdata *ob_walkdata);
void	PlotCross(int16 x, int16 y, uint8 colour);

int32	Scan(int32);     
int32	NewCheck(int32, int32 , int32 , int32 , int32);
int32	LineCheck(int32 , int32 , int32 , int32);
int32	VertCheck(int32 , int32 , int32);
int32	HorizCheck(int32 , int32 , int32);
int32	Check(int32 , int32 , int32 , int32);
int32	CheckTarget(int32 , int32);

int32	SmoothestPath();
int32	SlidyPath();
int32	SolidPath();

int32	SmoothCheck(int32 best, int32 p, int32 dirS, int32 dirD);

int32	AddSlowInFrames(_walkData *walkAnim);
void	AddSlowOutFrames(_walkData *walkAnim);
void	SlidyWalkAnimator(_walkData *walkAnim);
int32	SolidWalkAnimator(_walkData *walkAnim);
void	RouteLine(int32 x1,int32 y1,int32 x2,int32 y2 ,int32 colour);

//--------------------------------------------------------------------------------------
#define MAX_WALKGRIDS		10

int32	walkGridList[MAX_WALKGRIDS];

//--------------------------------------------------------------------------------------
#define TOTAL_ROUTE_SLOTS	2				// because we only have 2 megas in the game!

mem		*route_slots[TOTAL_ROUTE_SLOTS];	// stores pointers to mem blocks containing routes created & used by megas (NULL if slot not in use)

//--------------------------------------------------------------------------------------
// Local Variables

static	int32		nbars;
static	int32		nnodes;
static	_barData	bars[O_GRID_SIZE+EXTRA_GRID_SIZE];	// because extra bars will be copied into here afer walkgrid loaded
static	_nodeData	node[O_GRID_SIZE+EXTRA_GRID_SIZE];

// area for extra route data to block parts of floors and enable routing round mega charaters
static int32		nExtraBars	= 0;
static int32		nExtraNodes	= 0;
static _barData		extraBars[EXTRA_GRID_SIZE];
static _nodeData	extraNode[EXTRA_GRID_SIZE];

static	int32	startX;
static	int32	startY;
static	int32	startDir;
static	int32	targetX;
static	int32	targetY;
static	int32	targetDir;
static	int32	scaleA;
static	int32	scaleB;
static	_routeData	route[O_ROUTE_SIZE];
static	_pathData	smoothPath[O_ROUTE_SIZE];
static	_pathData	modularPath[O_ROUTE_SIZE];
static	int32   	routeLength;


int32	framesPerStep;
int32	framesPerChar;

uint8	nWalkFrames;				// no. of frames per walk cycle
uint8	usingStandingTurnFrames;	// any standing turn frames?
uint8	usingWalkingTurnFrames;		// any walking turn frames?
uint8	usingSlowInFrames;			// any slow-in frames?
uint8	usingSlowOutFrames;			// any slow-out frames?
int32 	dx[NO_DIRECTIONS + MAX_FRAMES_PER_CHAR];
int32	dy[NO_DIRECTIONS + MAX_FRAMES_PER_CHAR];
int8	modX[NO_DIRECTIONS];
int8	modY[NO_DIRECTIONS];
int32	diagonalx = 0;
int32	diagonaly = 0;

int32	firstStandFrame;

int32	firstStandingTurnLeftFrame;
int32	firstStandingTurnRightFrame;

int32	firstWalkingTurnLeftFrame;	// left walking turn
int32	firstWalkingTurnRightFrame; // right walking turn

uint32	firstSlowInFrame[NO_DIRECTIONS];
uint32	numberOfSlowInFrames[NO_DIRECTIONS];

uint32	leadingLeg[NO_DIRECTIONS];

int32	firstSlowOutFrame;
int32	numberOfSlowOutFrames;	// number of slow-out frames on for each leading-leg in each direction


int32	stepCount;

int32	moduleX;
int32	moduleY;
int32	currentDir;
int32	lastCount;
int32	frame;

// ie. total number of slow-out frames = (numberOfSlowOutFrames * 2 * NO_DIRECTIONS)

/*
 *    CODE
 */

// **************************************************************************

//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------
uint8 CheckForCollision(void)
{
//	static uint32 player_pc;
//	static uint32 non_player_pc;


	uint8 collision=0;

	return (collision);
}
//--------------------------------------------------------------------------------------
uint8 ReturnSlotNo(uint32 megaId)
{
	if (ID==CUR_PLAYER_ID)	// George (8)
		return(0);
	else					// One of Nico's mega id's
		return(1);
}
//--------------------------------------------------------------------------------------
void AllocateRouteMem(void)
{
//	uint8 slotNo=0;
	uint8 slotNo;

	//------------------------------------------
	// removed (James23June96)
	/*
	while (route_slots[slotNo] > 0)
	{
		slotNo++;

	#ifdef _SWORD2_DEBUG
		if (slotNo == TOTAL_ROUTE_SLOTS)
			Con_fatal_error("ERROR: route_slots[] full in AllocateRouteMem() (%s line %u)",__FILE__,__LINE__);
	#endif
	}
	*/
	//------------------------------------------
	// added (James23June96)
	// Player character always always slot 0, while the other mega (normally Nico) always uses slot 1
	// Better this way, so that if mega object removed from memory while in middle of route,
	// the old route will be safely cleared from memory just before they create a new one

	slotNo = ReturnSlotNo(ID); 

	// if this slot is already used, then it can't be needed any more
	// because this id is creating a new route!
	if (route_slots[slotNo])
	{
		FreeRouteMem();
	}
	//------------------------------------------

	route_slots[slotNo] = Twalloc( 4800, MEM_locked, UID_walk_anim );
	// 12000 bytes were used for this in Sword1 mega compacts, based on 20 bytes per '_walkData' frame
	// ie. allowing for 600 frames including end-marker
	// Now '_walkData' is 8 bytes, so 8*600 = 4800 bytes.
	// Note that a 600 frame walk lasts about 48 seconds! (600fps / 12.5s = 48s)

//	megaObject->route_slot_id = slotNo+1;	// mega keeps note of which slot contains the pointer to it's walk animation mem block
											// +1 so that '0' can mean "not walking"
}
//--------------------------------------------------------------------------------------
_walkData* LockRouteMem(void)
{
	uint8 slotNo = ReturnSlotNo(ID); 
	
	Lock_mem( route_slots[slotNo] );
	return (_walkData *)route_slots[slotNo]->ad;
}
//--------------------------------------------------------------------------------------
void FloatRouteMem(void)
{
	uint8 slotNo = ReturnSlotNo(ID); 

	Float_mem( route_slots[slotNo] );
}
//--------------------------------------------------------------------------------------
void FreeRouteMem(void)
{
	uint8 slotNo = ReturnSlotNo(ID); 

	Free_mem( route_slots[slotNo] );	// free the mem block pointed to from this entry of route_slots[]
	route_slots[slotNo] = NULL;			// clear this route_slots[] entry
}
//--------------------------------------------------------------------------------------
void FreeAllRouteMem(void)
{
	uint8 slotNo;

	for (slotNo=0; slotNo < TOTAL_ROUTE_SLOTS; slotNo++)
	{
		if (route_slots[slotNo])
		{
			Free_mem( route_slots[slotNo] );	// free the mem block pointed to from this entry of route_slots[]
			route_slots[slotNo] = NULL;
		}
	}
}
//--------------------------------------------------------------------------------------
//--------------------------------------------------------------------------------------

// **************************************************************************
// **************************************************************************
// **************************************************************************
// **************************************************************************

int32 RouteFinder(Object_mega *ob_mega, Object_walkdata *ob_walkdata, int32 x, int32 y, int32 dir)
{
/****************************************************************************
 *    RouteFinder.C				polygon router with modular walks
 *    		   							21 august 94  
 *    3  november 94  
 *		RouteFinder creates a list of modules that enables HardWalk to create
 *		an animation list.
 *
 *    RouteFinder currently works by scanning grid data and coming up with a ROUTE
 *    as a series of way points(nodes), the smoothest eight directional PATH
 * 		through these nodes is then found, this information is made available to
 *		HardWalk for a WALK to be created to fit the PATH.
 *    
 *    30 november 94 return values modified
 *    
 *    return 	0 = failed to find a route
 *    
 *    				1 = found a route
 *
 *    				2 = mega already at target
 *    
 ****************************************************************************/

	int32		routeFlag = 0;
	int32		solidFlag = 0;
	_walkData *walkAnim;

//	megaId = id;


	SetUpWalkGrid(ob_mega, x, y, dir);
	LoadWalkData(ob_walkdata);

	walkAnim = LockRouteMem();	// lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)

// **************************************************************************
// All route data now loaded start finding a route
// **************************************************************************
// **************************************************************************
// Check if we can get a route through the floor 		changed 12 Oct95 JPS 
// **************************************************************************

	routeFlag = GetRoute();


	if (routeFlag == 2)  //special case for zero length route
	{
		if (targetDir >7)// if target direction specified as any
		{
			targetDir = startDir;
		} 
		// just a turn on the spot is required set an end module for the route let the animator deal with it
		// modularPath is normally set by ExtractRoute
		modularPath[0].dir	= startDir;
 		modularPath[0].num	= 0;
 		modularPath[0].x	= startX;
 		modularPath[0].y	= startY;
		modularPath[1].dir	= targetDir;
 		modularPath[1].num	= 0;
 		modularPath[1].x	= startX;
 		modularPath[1].y	= startY;
 		modularPath[2].dir	= 9;
 		modularPath[2].num	= ROUTE_END_FLAG;

 		SlidyWalkAnimator(walkAnim);
 		routeFlag = 2;
	}
	else if (routeFlag == 1) // a normal route
	{
		SmoothestPath();//Converts the route to an exact path
																			// The Route had waypoints and direction options
																			// The Path is an exact set of lines in 8 directions that reach the target.
																			// The path is in module format, but steps taken in each direction are not accurate   
		// if target dir = 8 then the walk isn't linked to an anim so 
		// we can create a route without sliding and miss the exact target

		if (!forceSlidy)
		{
			if (targetDir == 8)	// can end facing ANY direction (ie. exact end position not vital) - so use SOLID walk to avoid sliding to exact position
			{
				SolidPath();
				solidFlag = SolidWalkAnimator(walkAnim);
			}
		}

		if(!solidFlag)	// if we failed to create a SOLID route, do a SLIDY one instead
		{
			SlidyPath();
			SlidyWalkAnimator(walkAnim);
		}
	}
	else // Route didn't reach target so assume point was off the floor
	{
//		routeFlag = 0;
	}


	#ifdef PLOT_PATHS
		#ifdef _WIN32
		RenderScreenGDK( screenDef.buffer, scroll_offset_x, scroll_offset_y, screenDef.width * XBLOCKSIZE );
		#else
		RenderOffScreenBuffer( scroll_offset_x, scroll_offset_y, SCREEN_WIDTH, SCREEN_DEPTH );
		#endif

		FlushMouseEvents();	// clear mouse buffer
		while (!TestForMouseEvent());	// wait for a button press or release
		FlushMouseEvents();	// clear mouse buffer again to prevent rapid fire!
	#endif


   	FloatRouteMem();	// float the _walkData array again

	return routeFlag;	// send back null route
}

/*******************************************************************************
 *******************************************************************************
 * 														GET A ROUTE
 *******************************************************************************
 *******************************************************************************/


int32 GetRoute(void)
{
 /****************************************************************************
  *    GetRoute.C				extract a path from walk grid
  *    		   							12 october 94  
  *
  *    GetRoute currently works by scanning grid data and coming up with a ROUTE
  *    as a series of way points(nodes).
	*		 static	_routeData			route[O_ROUTE_SIZE];
  *    
  *    return 	0 = failed to find a route
  *    
  *    				1 = found a route
  *
  *    				2 = mega already at target
  *    
  *    				3 = failed to find a route because target was on a line
  *    
  ****************************************************************************/
	int32		routeGot = 0;
	int32		level;
	int32		changed;

	if ((startX == targetX) && (startY == targetY)) 
		routeGot = 2;

	else	// 'else' added by JEL (23jan96) otherwise 'routeGot' affected even when already set to '2' above - causing some 'turns' to walk downwards on the spot
		routeGot = CheckTarget(targetX,targetY);// returns 3 if target on a line ( +- 1 pixel )


	if (routeGot == 0) //still looking for a route check if target is within a pixel of a line 
	{
		// scan through the nodes linking each node to its nearest neighbour until no more nodes change
		// This is the routine that finds a route using Scan()
		level = 1;
		do
		{
			changed = Scan(level);
			level =level + 1;
		}
		while(changed == 1);

		// Check to see if the route reached the target
		if (node[nnodes].dist < 9999)
		{
			routeGot = 1;
			ExtractRoute();	// it did so extract the route as nodes and the directions to go between each node
											// route.X,route.Y and route.Dir now hold all the route infomation with the target dir or route continuation
		}
	}

	return routeGot;
}


/*******************************************************************************
 *******************************************************************************
 * 														THE SLIDY PATH ROUTINES
 *******************************************************************************
 *******************************************************************************/


int32 SmoothestPath()
{
/*
 *	This is the second big part of the route finder and the the only bit that tries to be clever
 *	(the other bits are clever).
 *  This part of the autorouter creates a list of modules from a set of lines running across the screen
 *	The task is complicated by two things;
 *	Firstly in choosing a route through the maze of nodes	the routine tries to minimise	the amount of each
 *	individual turn avoiding 90 degree and greater turns (where possible) and reduces the total number of
 *	turns (subject to two 45 degree turns being better than one 90 degree turn).
 *  Secondly when walking in a given direction the number of steps required to reach the end of that run
 *	is not calculated accurately. This is because I was unable to derive a function to relate number of
 *	steps taken between two points to the shrunken step size   
 *
 */
	int32	p;     
	int32	dirS;
	int32	dirD;
	int32	dS;
	int32	dD;
	int32	dSS;
	int32	dSD;
	int32	dDS;
	int32	dDD;
	int32	SS;
	int32	SD;
	int32	DS;
	int32	DD;
	int32	i;
	int32	j;
	int32	temp;
	int32	steps;
	int32	option;
	int32	options;
	int32	lastDir;
	int32	nextDirS;
	int32	nextDirD;
	int32	tempturns[4];     
	int32	turns[4];     
	int32	turntable[NO_DIRECTIONS] = {0,1,3,5,7,5,3,1};

	// route.X route.Y and route.Dir start at far end
	smoothPath[0].x		= startX;
	smoothPath[0].y		= startY;
	smoothPath[0].dir	= startDir;
	smoothPath[0].num	= 0;
  p = 0;
  lastDir = startDir;
  // for each section of the route
  do
  {     

		dirS = route[p].dirS;
		dirD = route[p].dirD;
		nextDirS = route[p+1].dirS;
		nextDirD = route[p+1].dirD;

		// Check directions into and out of a pair of nodes
		// going in
		dS = dirS - lastDir;
		if ( dS < 0)
			dS = dS + NO_DIRECTIONS;

		dD = dirD - lastDir;
		if ( dD < 0)
			dD = dD + NO_DIRECTIONS;

		// coming out
		dSS = dirS - nextDirS;
		if ( dSS < 0)
			dSS = dSS + NO_DIRECTIONS;

		dDD = dirD - nextDirD;
		if ( dDD < 0)
			dDD = dDD + NO_DIRECTIONS;

		dSD = dirS - nextDirD;
		if ( dSD < 0)
			dSD = dSD + NO_DIRECTIONS;

		dDS = dirD - nextDirS;
		if ( dDS < 0)
			dDS = dDS + NO_DIRECTIONS;

		// Determine the amount of turning involved in each possible path 
		dS	= turntable[dS];
		dD	= turntable[dD];
		dSS = turntable[dSS];
		dDD = turntable[dDD];
		dSD	= turntable[dSD];
		dDS	= turntable[dDS];
		// get the best path out ie assume next section uses best direction 
		if (dSD < dSS)
		{
			dSS = dSD;
		}
		if (dDS < dDD)
		{
			dDD = dDS;
		}
		// rate each option
		SS = dS + dSS + 3;		// Split routes look crap so weight against them
		SD = dS + dDD;
		DS = dD + dSS;
		DD = dD + dDD + 3;
		// set up turns as a sorted	array of the turn values
		tempturns[0] = SS;
		turns[0] = 0;
		tempturns[1] = SD;
		turns[1] = 1;
		tempturns[2] = DS;
		turns[2] = 2;
		tempturns[3] = DD;
		turns[3] = 3;
		i = 0;
		do 
		{
			j = 0;
			do 
			{
				if (tempturns[j] > tempturns[j + 1])
				{
					temp			= turns[j];
					turns[j]		= turns[j+1];
					turns[j+1]		= temp;
					temp			= tempturns[j];
					tempturns[j]	= tempturns[j+1];
					tempturns[j+1]	= temp;
				}
				j = j + 1;
			}
			while (j < 3); 
			i = i + 1;
		}
		while (i < 3);

		// best option matched in order of the priority we would like to see on the screen
		// but each option must be checked to see if it can be walked

		options = NewCheck(1, route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);

#ifdef _SWORD2_DEBUG
		if (options == 0)
		{
			Zdebug("BestTurns fail %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
			Zdebug("BestTurns fail %d %d %d %d",turns[0],turns[1],turns[2],options);
			Con_fatal_error("BestTurns failed (%s line %u)",__FILE__,__LINE__);
		}
#endif

		i = 0; 
		steps = 0; 
		do
		{
			option = 1 << turns[i];
			if (option & options)
				steps = SmoothCheck(turns[i],p,dirS,dirD);
			i = i + 1;
		}
		while ((steps == 0) && (i < 4));

#ifdef PLOT_PATHS	// plot the best path
	if (steps != 0)
	{
		i = 0; 
		do
		{
			RouteLine(smoothPath[i].x, smoothPath[i].y, smoothPath[i+1].x, smoothPath[i+1].y, 228);
			i = i + 1;
		}
		while (i < steps);
	}
#endif


#ifdef _SWORD2_DEBUG
		if (steps == 0)
		{
			Zdebug("BestTurns failed %d %d %d %d",route[p].x, route[p].y, route[p + 1].x, route[p + 1].y);
			Zdebug("BestTurns failed %d %d %d %d",turns[0],turns[1],turns[2],options);
			Con_fatal_error("BestTurns failed (%s line %u)",__FILE__,__LINE__);
		}
#endif

		// route.X route.Y route.dir and bestTurns start at far end
		p = p + 1;


	}
	while (p < (routeLength));
	// best turns will end heading as near as possible to target dir rest is down to anim for now
	smoothPath[steps].dir = 9;
	smoothPath[steps].num = ROUTE_END_FLAG;
		return 1;				 
}




int32 SmoothCheck(int32 best, int32 p, int32 dirS, int32 dirD)
/****************************************************************************
 *	Slip sliding away
 *  This path checker checks to see if a walk that exactly follows the path
 *  would be valid. This should be inherently true for atleast one of the turn
 *	options.
 *  No longer checks the data it only creates the smoothPath array JPS
 ****************************************************************************/
{
	static	int32  k;   
	int32	tempK;   
	int32	x;   
	int32	y;   
	int32	x2;   
	int32	y2;   
	int32	ldx;   
	int32	ldy;   
	int32	dsx;
	int32	dsy;
	int32	ddx;
	int32	ddy;
	int32	dirX;
	int32	dirY;
	int32	ss0;
	int32	ss1;
	int32	ss2;
	int32	sd0;
	int32	sd1;
	int32	sd2;


	if (p == 0)
	{
		k = 1;
	}
	tempK = 0;
	x = route[p].x;
	y = route[p].y;
	x2 = route[p + 1].x;
	y2 = route[p + 1].y;
	ldx = x2 - x;
	ldy = y2 - y;
	dirX = 1;
	dirY = 1;
	if (ldx < 0)
	{
		ldx = -ldx;
		dirX = -1;
	}

	if (ldy < 0)
	{
		ldy = -ldy;
		dirY = -1;
	}

// set up sd0-ss2 to reflect possible movement in each direction
		if ((dirS == 0)	|| (dirS == 4))// vert and diag
		{
		  ddx = ldx;
			ddy = (ldx*diagonaly)/diagonalx;
			dsy = ldy - ddy;
			ddx = ddx * dirX;
			ddy = ddy * dirY;
			dsy = dsy * dirY;
			dsx = 0;

			sd0 = (ddx + modX[dirD]/2)/ modX[dirD];
			ss0 = (dsy + modY[dirS]/2) / modY[dirS];
			sd1 = sd0/2;
			ss1 = ss0/2;
			sd2 = sd0 - sd1;
			ss2 = ss0 - ss1;
		}
		else
		{
		  ddy = ldy;
			ddx = (ldy*diagonalx)/diagonaly;
			dsx = ldx - ddx;
			ddy = ddy * dirY;
			ddx = ddx * dirX;
			dsx = dsx * dirX;
			dsy = 0;

			sd0 = (ddy + modY[dirD]/2)/ modY[dirD];
			ss0 = (dsx + modX[dirS]/2)/ modX[dirS];
			sd1 = sd0/2;
			ss1 = ss0/2;
			sd2 = sd0 - sd1;
			ss2 = ss0 - ss1;
		}

			if (best == 0) //halfsquare, diagonal,	halfsquare
			{
							smoothPath[k].x		= x+dsx/2;
							smoothPath[k].y		= y+dsy/2;
							smoothPath[k].dir	= dirS;
							smoothPath[k].num	= ss1;
							k = k + 1;
							smoothPath[k].x		= x+dsx/2+ddx;
							smoothPath[k].y		= y+dsy/2+ddy;
							smoothPath[k].dir	= dirD;
							smoothPath[k].num	= sd0;
							k = k + 1;
							smoothPath[k].x		= x+dsx+ddx;
							smoothPath[k].y		= y+dsy+ddy;
							smoothPath[k].dir	= dirS;
							smoothPath[k].num	= ss2;
							k = k + 1;
							tempK = k;
			}
			else if (best == 1) //square, diagonal
			{
						smoothPath[k].x = x+dsx;
						smoothPath[k].y = y+dsy;
						smoothPath[k].dir = dirS;
						smoothPath[k].num = ss0;
						k = k + 1;
						smoothPath[k].x = x2;
						smoothPath[k].y = y2;
						smoothPath[k].dir = dirD;
						smoothPath[k].num = sd0;
						k = k + 1;
						tempK = k;
			}
			else if (best == 2) //diagonal square
			{
						smoothPath[k].x = x+ddx;
						smoothPath[k].y = y+ddy;
						smoothPath[k].dir = dirD;
						smoothPath[k].num = sd0;
						k = k + 1;
						smoothPath[k].x = x2;
						smoothPath[k].y = y2;
						smoothPath[k].dir = dirS;
						smoothPath[k].num = ss0;
						k = k + 1;
						tempK = k;
			}
			else //halfdiagonal, square, halfdiagonal
			{
							smoothPath[k].x = x+ddx/2;
							smoothPath[k].y = y+ddy/2;
							smoothPath[k].dir = dirD;
							smoothPath[k].num = sd1;
							k = k + 1;
							smoothPath[k].x = x+dsx+ddx/2;
							smoothPath[k].y = y+dsy+ddy/2;
							smoothPath[k].dir = dirS;
							smoothPath[k].num = ss0;
							k = k + 1;
							smoothPath[k].x = x2;
							smoothPath[k].y = y2;
							smoothPath[k].dir = dirD;
							smoothPath[k].num = sd2;
							k = k + 1;
							tempK = k;
			}

	return tempK;	
}

int32 SlidyPath()
{
/****************************************************************************
 *  SlidyPath creates a path based on part steps with no sliding to get
 *	as near as possible to the target without any sliding this routine is
 *	currently unused, but is intended for use when just clicking about.
 *
 *	produce a module list from the line data
 *
 ****************************************************************************/
int32 smooth;
int32 slidy;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;

	// strip out the short sections
	slidy = 1;
	smooth = 1;
	modularPath[0].x = smoothPath[0].x;
	modularPath[0].y = smoothPath[0].y;
	modularPath[0].dir = smoothPath[0].dir;
	modularPath[0].num = 0;

	while (smoothPath[smooth].num < ROUTE_END_FLAG)
	{
		scale = scaleA * smoothPath[smooth].y + scaleB;
		deltaX = smoothPath[smooth].x - modularPath[slidy-1].x;
		deltaY = smoothPath[smooth].y - modularPath[slidy-1].y;
		stepX = modX[smoothPath[smooth].dir];
		stepY = modY[smoothPath[smooth].dir];
		stepX = stepX * scale;
		stepY = stepY * scale;
		stepX = stepX >> 19;// quarter a step minimum
		stepY = stepY >> 19;
		if ((abs(deltaX)>=abs(stepX)) &&	(abs(deltaY)>=abs(stepY)))
		{									
	 		modularPath[slidy].x = smoothPath[smooth].x;
			modularPath[slidy].y = smoothPath[smooth].y;
			modularPath[slidy].dir = smoothPath[smooth].dir;
			modularPath[slidy].num = 1;
			slidy += 1;
		}
		smooth += 1;
	}
	// in	case the last bit had no steps
	if (slidy > 1)
	{
		modularPath[slidy-1].x = smoothPath[smooth-1].x;
		modularPath[slidy-1].y = smoothPath[smooth-1].y;
	}
	// set up the end of the walk
	modularPath[slidy].x = smoothPath[smooth-1].x;
	modularPath[slidy].y = smoothPath[smooth-1].y;
	modularPath[slidy].dir = targetDir;
	modularPath[slidy].num = 0;
	slidy += 1;
	modularPath[slidy].x = smoothPath[smooth-1].x;
	modularPath[slidy].y = smoothPath[smooth-1].y;
	modularPath[slidy].dir = 9;
	modularPath[slidy].num = ROUTE_END_FLAG;
	return 1;

}

//****************************************************************************
// SLOW IN

int32 AddSlowInFrames(_walkData *walkAnim)
{
	uint32 slowInFrameNo;


	if ((usingSlowInFrames) && (modularPath[1].num > 0))
	{
		for (slowInFrameNo=0; slowInFrameNo<numberOfSlowInFrames[currentDir]; slowInFrameNo++)
		{
			walkAnim[stepCount].frame	= firstSlowInFrame[currentDir] + slowInFrameNo;
			walkAnim[stepCount].step	= 0;
			walkAnim[stepCount].dir		= currentDir;
			walkAnim[stepCount].x			= moduleX;
			walkAnim[stepCount].y			= moduleY;
			stepCount += 1;
		}
		return(1);
	}
	else
	{
		return(0);
	}
}
//----------------------------------------------------------------------------
void EarlySlowOut(Object_mega *ob_mega, Object_walkdata *ob_walkdata)
{
	int32 slowOutFrameNo;
	int32 walk_pc;
	_walkData *walkAnim;

	
	//Zdebug("\nEARLY SLOW-OUT");

	LoadWalkData(ob_walkdata);

	//Zdebug("********************************");
	//Zdebug("framesPerStep              =%d",framesPerStep);								// 6;
	//Zdebug("numberOfSlowOutFrames      =%d",numberOfSlowOutFrames);				// 7;
	//Zdebug("firstWalkingTurnLeftFrame  =%d",firstWalkingTurnLeftFrame);		// 120;
	//Zdebug("firstWalkingTurnRightFrame =%d",firstWalkingTurnRightFrame);	// 216;
	//Zdebug("firstSlowOutFrame          =%d",firstSlowOutFrame);						// 344;
	//Zdebug("********************************");


 	walk_pc  = ob_mega->walk_pc;

	walkAnim = LockRouteMem();	// lock the _walkData array (NB. AFTER loading walkgrid & walkdata!)


	if (usingSlowOutFrames)	// if this mega does actually have slow-out frames
	{
		do	// overwrite the next step (half a cycle) of the walk (ie .step - 0..5
		{
			//Zdebug("\nSTEP NUMBER:    walkAnim[%d].step  = %d",walk_pc,walkAnim[walk_pc].step);
			//Zdebug("ORIGINAL FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
			// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!

			if (walkAnim[walk_pc].frame >= firstWalkingTurnRightFrame)	// if it's a walking turn-right, rather than a normal step
			{
				walkAnim[walk_pc].frame -= firstWalkingTurnRightFrame;		// then map it to a normal step frame first
				//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d  (walking turn-right frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
			}

			else if (walkAnim[walk_pc].frame >= firstWalkingTurnLeftFrame)	// if it's a walking turn-left, rather than a normal step
			{
				walkAnim[walk_pc].frame -= firstWalkingTurnLeftFrame;		// then map it to a normal step frame first
				//Zdebug("MAPPED TO WALK: walkAnim[%d].frame = %d  (walking turn-left frame --> walk frame)",walk_pc,walkAnim[walk_pc].frame);
			}

			walkAnim[walk_pc].frame += firstSlowOutFrame + ((walkAnim[walk_pc].frame / framesPerStep) * (numberOfSlowOutFrames-framesPerStep));
			walkAnim[walk_pc].step = 0;
			//Zdebug("SLOW-OUT FRAME: walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
			walk_pc += 1;
		}
		while(walkAnim[walk_pc].step > 0 );

		//Zdebug("\n");

		for (slowOutFrameNo=framesPerStep; slowOutFrameNo < numberOfSlowOutFrames; slowOutFrameNo++)	// add stationary frame(s) (OPTIONAL)
		{
			walkAnim[walk_pc].frame = walkAnim[walk_pc-1].frame + 1;
			//Zdebug("EXTRA FRAME:    walkAnim[%d].frame = %d",walk_pc,walkAnim[walk_pc].frame);
			walkAnim[walk_pc].step = 0;
			walkAnim[walk_pc].dir = walkAnim[walk_pc-1].dir;
			walkAnim[walk_pc].x = walkAnim[walk_pc-1].x;
			walkAnim[walk_pc].y = walkAnim[walk_pc-1].y;
			walk_pc++;
		}
	}
	else	// this mega doesn't have slow-out frames
	{
		walkAnim[walk_pc].frame	= firstStandFrame + walkAnim[walk_pc-1].dir;	// stand in current direction
		walkAnim[walk_pc].step	= 0;
		walkAnim[walk_pc].dir		= walkAnim[walk_pc-1].dir;
		walkAnim[walk_pc].x			= walkAnim[walk_pc-1].x;
		walkAnim[walk_pc].y			= walkAnim[walk_pc-1].y;
		walk_pc++;
	}

	walkAnim[walk_pc].frame	= 512;	// end of sequence
	walkAnim[walk_pc].step	= 99;	// so that this doesn't happen again while 'george_walking' is still '2'
}
//----------------------------------------------------------------------------
// SLOW OUT

void AddSlowOutFrames(_walkData *walkAnim)
{
	int32 slowOutFrameNo;


 	if ((usingSlowOutFrames)&&(lastCount>=framesPerStep))	// if the mega did actually walk, we overwrite the last step (half a cycle) with slow-out frames + add any necessary stationary frames
	{
		// place stop frames here
		// slowdown at the end of the last walk
	
		slowOutFrameNo = lastCount - framesPerStep;


		//Zdebug("SLOW OUT: slowOutFrameNo(%d) = lastCount(%d) - framesPerStep(%d)",slowOutFrameNo,lastCount,framesPerStep);
	
		do	// overwrite the last step (half a cycle) of the walk
		{
			// map from existing walk frame across to correct frame number of slow-out - remember, there may be more slow-out frames than walk-frames!
			walkAnim[slowOutFrameNo].frame += firstSlowOutFrame + ((walkAnim[slowOutFrameNo].frame / framesPerStep) * (numberOfSlowOutFrames-framesPerStep));
			walkAnim[slowOutFrameNo].step = 0;	// because no longer a normal walk-step
			//Zdebug("walkAnim[%d].frame = %d",slowOutFrameNo,walkAnim[slowOutFrameNo].frame);
			slowOutFrameNo += 1;
		}
		while(slowOutFrameNo < lastCount );
	
		for (slowOutFrameNo=framesPerStep; slowOutFrameNo < numberOfSlowOutFrames; slowOutFrameNo++)	// add stationary frame(s) (OPTIONAL)
		{
			walkAnim[stepCount].frame = walkAnim[stepCount-1].frame + 1;
			//Zdebug("EXTRA FRAMES: walkAnim[%d].frame = %d",stepCount,walkAnim[stepCount].frame);
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir	= walkAnim[stepCount-1].dir;
			walkAnim[stepCount].x		= walkAnim[stepCount-1].x;
			walkAnim[stepCount].y		= walkAnim[stepCount-1].y;
			stepCount += 1;
		}
	}
}
//----------------------------------------------------------------------------

void SlidyWalkAnimator(_walkData *walkAnim)
/****************************************************************************
 *  Skidding every where HardWalk creates an animation that exactly fits the
 *	smoothPath and uses foot slipping to fit whole steps into the route
 *	Parameters: georgeg,mouseg
 *	Returns:		rout 
 *
 *	produce a module list from the line data
 *
 ****************************************************************************/
{
	static int32 left = 0;
	int32 p;
	int32 lastDir;
	int32 lastRealDir;
	int32 turnDir;
	int32 scale;
	int32 step;
	int32 module;
	int32 moduleEnd;
	int32 module16X;
	int32 module16Y;
	int32 stepX;
	int32 stepY;
	int32 errorX;
	int32 errorY;
	int32 lastErrorX;
	int32 lastErrorY;
	int32 frameCount;
	int32 frames;


	p = 0;
	lastDir = modularPath[0].dir;
	currentDir = modularPath[1].dir;
	if (currentDir == NO_DIRECTIONS)
	{
		currentDir = lastDir;
	}
	moduleX = startX;
	moduleY = startY;
	module16X = moduleX << 16;
	module16Y = moduleY << 16;
	stepCount = 0;

	//****************************************************************************
	// SLIDY
	// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
	// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
	//****************************************************************************
	//Zdebug("\nSLIDY: STARTING THE WALK");
	module =	framesPerChar + lastDir;
	walkAnim[stepCount].frame = module;
	walkAnim[stepCount].step = 0;
	walkAnim[stepCount].dir = lastDir;
	walkAnim[stepCount].x = moduleX;
	walkAnim[stepCount].y = moduleY;
	stepCount += 1;

	//****************************************************************************
	// SLIDY
	// TURN TO START THE WALK
	//****************************************************************************
	//Zdebug("\nSLIDY: TURNING TO START THE WALK");
	// rotate if we need to
	if (lastDir != currentDir)
	{
		// get the direction to turn
		turnDir = currentDir - lastDir;
		if ( turnDir < 0)
				turnDir += NO_DIRECTIONS;

		if (turnDir > 4)
			turnDir = -1;
		else if (turnDir > 0)
			turnDir = 1;

		// rotate to new walk direction
		// for george and nico put in a head turn at the start
		if (usingStandingTurnFrames)
		{
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				module =	firstStandingTurnLeftFrame + lastDir;
			}
			else
			{
				module =	firstStandingTurnRightFrame + lastDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}

		// rotate till were facing new dir then go back 45 degrees
		while (lastDir != currentDir)
		{
			lastDir += turnDir;
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				if ( lastDir < 0)
						lastDir += NO_DIRECTIONS;
				module =	firstStandingTurnLeftFrame + lastDir;
			}
			else
			{
				if ( lastDir > 7)
						lastDir -= NO_DIRECTIONS;
				module =	firstStandingTurnRightFrame + lastDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}
		// the back 45 degrees bit
		stepCount -= 1;// step back one because new head turn for george takes us past the new dir
	}
	// his head is in the right direction
	lastRealDir = currentDir;

	//****************************************************************************
	// SLIDY: THE SLOW IN

	AddSlowInFrames(walkAnim);
	//****************************************************************************

	//****************************************************************************
	// SLIDY
	// THE WALK
	//****************************************************************************

	//Zdebug("\nSLIDY: THE WALK");

	//---------------------------------------------------
	// start the walk on the left or right leg, depending on how the slow-in frames were drawn

	if (leadingLeg[currentDir]==0)	// (0=left; 1=right)
		left = 0;							//  start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
	else
		left = framesPerStep;	//  start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
	//---------------------------------------------------


	lastCount = stepCount;
	lastDir = 99;// this ensures that we don't put in turn frames for the start		
	currentDir = 99;// this ensures that we don't put in turn frames for the start		
	do
	{
		while (modularPath[p].num == 0)
		{
			p = p + 1;
			if (currentDir != 99)
				lastRealDir = currentDir;
			lastDir = currentDir;
			lastCount = stepCount;
		}
		//calculate	average amount to lose in each step on the way to the next node
		currentDir = modularPath[p].dir;
		if (currentDir < NO_DIRECTIONS)
		{
			module =	currentDir * framesPerStep * 2 + left;
			if (left == 0)
			 left = framesPerStep;
			else
			 left = 0;
			moduleEnd = module + framesPerStep;
			step = 0;
			scale = (scaleA * moduleY + scaleB);
			do
			{
				module16X += dx[module]*scale;
				module16Y += dy[module]*scale;
				moduleX = module16X >> 16;
				moduleY = module16Y >> 16;
				walkAnim[stepCount].frame = module;
				walkAnim[stepCount].step = step;	// normally 0,1,2,3,4,5,0,1,2,etc
				walkAnim[stepCount].dir = currentDir;
				walkAnim[stepCount].x = moduleX;
				walkAnim[stepCount].y = moduleY;
				stepCount += 1;
				step += 1;
				module += 1;
			}
			while( module < moduleEnd) ;
			stepX = modX[modularPath[p].dir];
			stepY = modY[modularPath[p].dir];
			errorX = modularPath[p].x -	moduleX;
			errorX = errorX * stepX;
			errorY = modularPath[p].y -	moduleY;
			errorY = errorY * stepY;
			if ((errorX < 0) || (errorY < 0))
			{
				modularPath[p].num = 0;	// the end of the path
				// okay those last steps took us past our target but do we want to scoot or moonwalk
				frames = stepCount - lastCount;
				errorX = modularPath[p].x - walkAnim[stepCount-1].x;
				errorY = modularPath[p].y - walkAnim[stepCount-1].y;

				if (frames > framesPerStep)
				{
					lastErrorX = modularPath[p].x - walkAnim[stepCount-7].x;
					lastErrorY = modularPath[p].y - walkAnim[stepCount-7].y;
					if (stepX==0)
					{
						if (3*abs(lastErrorY) < abs(errorY)) //the last stop was closest
						{
							stepCount -= framesPerStep;
							if (left == 0)
						 		left = framesPerStep;
							else
							 	left = 0;
						}
					}
					else
					{
						if (3*abs(lastErrorX) < abs(errorX)) //the last stop was closest
						{
							stepCount -= framesPerStep;
							if (left == 0)
						 		left = framesPerStep;
							else
							 	left = 0;
						}
					}
				}
				errorX = modularPath[p].x - walkAnim[stepCount-1].x;
				errorY = modularPath[p].y - walkAnim[stepCount-1].y;
				// okay we've reached the end but we still have an error
				if (errorX != 0)
				{
					frameCount = 0;
					frames = stepCount - lastCount;
					do
					{
						frameCount += 1;
						walkAnim[lastCount + frameCount - 1].x +=	errorX*frameCount/frames;
					}
					while(frameCount<frames);	
				}
				if (errorY != 0)
				{
					frameCount = 0;
					frames = stepCount - lastCount;
					do
					{
						frameCount += 1;
						walkAnim[lastCount + frameCount-1].y +=	errorY*frameCount/frames;
					}
					while(frameCount<frames);	
				}
				// Now is the time to put in the turn frames for the last turn
				if (frames < framesPerStep)
					currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next		
				if (currentDir != 99)
					lastRealDir = currentDir;
				// check each turn condition in turn
				if (((lastDir != 99) && (currentDir != 99)) && (usingWalkingTurnFrames)) // only for george
				{	
				  lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
					if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
					{
						// turn at the end of the last walk
						frame = lastCount - framesPerStep;
						do
						{
							walkAnim[frame].frame += firstWalkingTurnLeftFrame;	//was 104;	//turning left 
							frame += 1;
						}
						while(frame < lastCount );
					}
					if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
					{	
						// turn at the end of the current walk
						frame = lastCount - framesPerStep;
						do
						{
							walkAnim[frame].frame += firstWalkingTurnRightFrame;	// was 200;	// turning right
							frame += 1;
						}
						while(frame < lastCount );
					}
					lastDir = currentDir;
				}
				// all turns checked

				lastCount = stepCount;
				moduleX = walkAnim[stepCount-1].x;
				moduleY =	walkAnim[stepCount-1].y;
				module16X = moduleX << 16;
				module16Y = moduleY << 16;
			}
		}
	}
	while (modularPath[p].dir < NO_DIRECTIONS);



#ifdef _SWORD2_DEBUG
	if (lastRealDir == 99)
	{
		Con_fatal_error("SlidyWalkAnimatorlast direction error (%s line %u)",__FILE__,__LINE__);
	}
#endif

	//****************************************************************************
	// SLIDY: THE SLOW OUT
	AddSlowOutFrames(walkAnim);

	//****************************************************************************
	// SLIDY
	// TURNS TO END THE WALK ?
	//****************************************************************************

	// We've done the walk now put in any turns at the end


	if (targetDir == 8)	// ANY direction -> stand in the last direction
	{
		module =	firstStandFrame + lastRealDir;
		targetDir =	lastRealDir;
		walkAnim[stepCount].frame = module;
		walkAnim[stepCount].step = 0;
		walkAnim[stepCount].dir = lastRealDir;
		walkAnim[stepCount].x = moduleX;
		walkAnim[stepCount].y = moduleY;
		stepCount += 1;
	}
	if (targetDir == 9)	// 'stance' was non-zero
	{
		if (stepCount == 0)
		{
			module =	framesPerChar + lastRealDir;
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastRealDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}
	}
	else if (targetDir != lastRealDir) // rotate to targetDir
	{
		// rotate to target direction
		turnDir = targetDir - lastRealDir;
		if ( turnDir < 0)
				turnDir += NO_DIRECTIONS;

		if (turnDir > 4)
			turnDir = -1;
		else if (turnDir > 0)
			turnDir = 1;

		// rotate to target direction
		// for george and nico put in a head turn at the start
		if (usingStandingTurnFrames)
		{
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				module =	firstStandingTurnLeftFrame + lastDir;
			}
			else
			{
				module =	firstStandingTurnRightFrame + lastDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastRealDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}

		// rotate if we need to
		while (lastRealDir != targetDir)
		{
			lastRealDir += turnDir;
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				if ( lastRealDir < 0)
						lastRealDir += NO_DIRECTIONS;
				module =	firstStandingTurnLeftFrame + lastRealDir;
			}
			else
			{
				if ( lastRealDir > 7)
						lastRealDir -= NO_DIRECTIONS;
				module =	firstStandingTurnRightFrame + lastRealDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastRealDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}
		module =	firstStandFrame + lastRealDir;
		walkAnim[stepCount-1].frame = module;
	}
	else // just stand at the end
	{
		module =	firstStandFrame + lastRealDir;
		walkAnim[stepCount].frame = module;
		walkAnim[stepCount].step = 0;
		walkAnim[stepCount].dir = lastRealDir;
		walkAnim[stepCount].x = moduleX;
		walkAnim[stepCount].y = moduleY;
		stepCount += 1;
	}

	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;
	stepCount += 1;
	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;
	stepCount += 1;
	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;


	//-------------------------------------------
	// write all the frames to "debug.txt"

	//Zdebug("\nTHE WALKDATA:");
	for (frame=0; frame<=stepCount; frame++)
	{
		//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
	}
	//-------------------------------------------


//	Zdebug("RouteFinder RouteSize is %d", stepCount);
	return;
}


/*******************************************************************************
 *******************************************************************************
 * 														THE SOLID PATH ROUTINES
 *******************************************************************************
 *******************************************************************************/

int32 SolidPath()
{
/****************************************************************************
 *  SolidPath creates a path based on whole steps with no sliding to get
 *	as near as possible to the target without any sliding this routine is
 *	currently unused, but is intended for use when just clicking about.
 *
 *	produce a module list from the line data
 *
 ****************************************************************************/
int32 smooth;
int32 solid;
int32 scale;
int32 stepX;
int32 stepY;
int32 deltaX;
int32 deltaY;

	// strip out the short sections
	solid = 1;
	smooth = 1;
	modularPath[0].x = smoothPath[0].x;
	modularPath[0].y = smoothPath[0].y;
	modularPath[0].dir = smoothPath[0].dir;
	modularPath[0].num = 0;

	do
	{
		scale = scaleA * smoothPath[smooth].y + scaleB;
		deltaX = smoothPath[smooth].x - modularPath[solid-1].x;
		deltaY = smoothPath[smooth].y - modularPath[solid-1].y;
		stepX = modX[smoothPath[smooth].dir];
		stepY = modY[smoothPath[smooth].dir];
		stepX = stepX * scale;
		stepY = stepY * scale;
		stepX = stepX >> 16;
		stepY = stepY >> 16;
		if ((abs(deltaX)>=abs(stepX)) &&	(abs(deltaY)>=abs(stepY)))
		{
			modularPath[solid].x = smoothPath[smooth].x;
			modularPath[solid].y = smoothPath[smooth].y;
			modularPath[solid].dir = smoothPath[smooth].dir;
			modularPath[solid].num = 1;
			solid += 1;
		}
		smooth += 1;
	}
	while (smoothPath[smooth].num < ROUTE_END_FLAG);
	// in	case the last bit had no steps
	if (solid == 1) //there were no paths so put in a dummy end
	{
			solid = 2;
			modularPath[1].dir = smoothPath[0].dir;
			modularPath[1].num = 0;
	}	
	modularPath[solid-1].x = smoothPath[smooth-1].x;
	modularPath[solid-1].y = smoothPath[smooth-1].y;
	// set up the end of the walk
	modularPath[solid].x = smoothPath[smooth-1].x;
	modularPath[solid].y = smoothPath[smooth-1].y;
	modularPath[solid].dir = 9;
	modularPath[solid].num = ROUTE_END_FLAG;
	return 1;

}

int32 SolidWalkAnimator(_walkData *walkAnim)
{
/****************************************************************************
 *  SolidWalk creates an animation based on whole steps with no sliding to get
 *	as near as possible to the target without any sliding this routine is
 *	is intended for use when just clicking about.
 *
 *	produce a module list from the line data
 *
 *	returns 0 if solid route not found
 ****************************************************************************/

	int32 p;
	int32 i;
	int32 left;
	int32 lastDir;
	int32 turnDir;
	int32 scale;
	int32 step;
	int32 module;
	int32 module16X;
	int32 module16Y;
	int32 errorX;
	int32 errorY;
	int32 moduleEnd;
	int32 slowStart=0;



	// start at the beginning for a change
	lastDir = modularPath[0].dir;
	p = 1;
	currentDir = modularPath[1].dir;
	module =	framesPerChar + lastDir;
	moduleX = startX;
	moduleY = startY;
	module16X = moduleX << 16;
	module16Y = moduleY << 16;
	stepCount = 0;

	//****************************************************************************
	// SOLID
	// START THE WALK WITH THE FIRST STANDFRAME THIS MAY CAUSE A DELAY
	// BUT IT STOPS THE PLAYER MOVING FOR COLLISIONS ARE DETECTED
	//****************************************************************************

	//Zdebug("\nSOLID: STARTING THE WALK");
	walkAnim[stepCount].frame = module;
	walkAnim[stepCount].step = 0;
	walkAnim[stepCount].dir = lastDir;
	walkAnim[stepCount].x = moduleX;
	walkAnim[stepCount].y = moduleY;
	stepCount += 1;

	//****************************************************************************
	// SOLID
	// TURN TO START THE WALK
	//****************************************************************************
	//Zdebug("\nSOLID: TURNING TO START THE WALK");
	// rotate if we need to
	if (lastDir != currentDir)
	{
		// get the direction to turn
		turnDir = currentDir - lastDir;
		if ( turnDir < 0)
				turnDir += NO_DIRECTIONS;

		if (turnDir > 4)
			turnDir = -1;
		else if (turnDir > 0)
			turnDir = 1;

		// rotate to new walk direction
		// for george and nico put in a head turn at the start
		if (usingStandingTurnFrames)
		{
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				module =	firstStandingTurnLeftFrame + lastDir;
			}
			else
			{
				module =	firstStandingTurnRightFrame + lastDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}

		// rotate till were facing new dir then go back 45 degrees
		while (lastDir != currentDir)
		{
			lastDir += turnDir;
			if ( turnDir < 0)	// new frames for turn frames	29oct95jps
			{
				if ( lastDir < 0)
						lastDir += NO_DIRECTIONS;
				module =	firstStandingTurnLeftFrame + lastDir;
			}
			else
			{
				if ( lastDir > 7)
						lastDir -= NO_DIRECTIONS;
				module =	firstStandingTurnRightFrame + lastDir;
			}
			walkAnim[stepCount].frame = module;
			walkAnim[stepCount].step = 0;
			walkAnim[stepCount].dir = lastDir;
			walkAnim[stepCount].x = moduleX;
			walkAnim[stepCount].y = moduleY;
			stepCount += 1;
		}
		// the back 45 degrees bit
		stepCount -= 1;// step back one because new head turn for george takes us past the new dir
	}

	//****************************************************************************
	// SOLID: THE SLOW IN

	slowStart = AddSlowInFrames(walkAnim);

	//****************************************************************************
	// SOLID
	// THE WALK
	//****************************************************************************

	//Zdebug("\nSOLID: THE WALK");

	//---------------------------------------------------
	// start the walk on the left or right leg, depending on how the slow-in frames were drawn

	if (leadingLeg[currentDir]==0)	// (0=left; 1=right)
		left = 0;							//  start the walk on the left leg (ie. at beginning of the first step of the walk cycle)
	else
		left = framesPerStep;	//  start the walk on the right leg (ie. at beginning of the second step of the walk cycle)
	//---------------------------------------------------


	lastCount = stepCount;
	lastDir = 99;// this ensures that we don't put in turn frames for the start		
	currentDir = 99;// this ensures that we don't put in turn frames for the start		

	do
	{
		while(modularPath[p].num > 0)
		{
			currentDir = modularPath[p].dir;
			if (currentDir< NO_DIRECTIONS)
			{

				module =	currentDir * framesPerStep * 2 + left;
				if (left == 0)
					left = framesPerStep;
				else
					left = 0;
				moduleEnd = module + framesPerStep;
				step = 0;
				scale = (scaleA * moduleY + scaleB);
				do
				{
					module16X += dx[module]*scale;
					module16Y += dy[module]*scale;
					moduleX = module16X >> 16;
					moduleY = module16Y >> 16;
					walkAnim[stepCount].frame = module;
					walkAnim[stepCount].step = step;	// normally 0,1,2,3,4,5,0,1,2,etc
					walkAnim[stepCount].dir = currentDir;
					walkAnim[stepCount].x = moduleX;
					walkAnim[stepCount].y = moduleY;
					stepCount += 1;
					module += 1;
					step += 1;
				}
				while( module < moduleEnd) ;
				errorX = modularPath[p].x -	moduleX;
				errorX = errorX * modX[modularPath[p].dir];
				errorY = modularPath[p].y -	moduleY;
				errorY = errorY * modY[modularPath[p].dir];
				if ((errorX < 0) || (errorY < 0))
				{
					modularPath[p].num = 0;
					stepCount -= framesPerStep;
					if (left == 0)
						left = framesPerStep;
					else
						left = 0;
					// Okay this is the end of a section
					moduleX = walkAnim[stepCount-1].x;
					moduleY =	walkAnim[stepCount-1].y;
					module16X = moduleX << 16;
					module16Y = moduleY << 16;
					modularPath[p].x =moduleX;
					modularPath[p].y =moduleY;
					// Now is the time to put in the turn frames for the last turn
					if ((stepCount - lastCount) < framesPerStep)// no step taken
					{
						if (slowStart == 1)// clean up if a slow in but no walk
						{
							//stepCount -= 3;
							stepCount -= numberOfSlowInFrames[currentDir];	// (James08sep97)
							//lastCount -= 3;
							lastCount -= numberOfSlowInFrames[currentDir];	// (James08sep97)
							slowStart = 0;
						}
						currentDir = 99;// this ensures that we don't put in turn frames for this walk or the next		
					}
					// check each turn condition in turn
					if (((lastDir != 99) && (currentDir != 99)) && (usingWalkingTurnFrames)) // only for george
					{	
					  lastDir = currentDir - lastDir;//1 and -7 going right -1 and 7 going left
						if (((lastDir == -1) || (lastDir == 7)) || ((lastDir == -2) || (lastDir == 6)))
						{
							// turn at the end of the last walk
							frame = lastCount - framesPerStep;
							do
							{
								walkAnim[frame].frame += firstWalkingTurnLeftFrame;	// was 104;	//turning left 
								frame += 1;
							}
							while(frame < lastCount );
						}
						if (((lastDir == 1) || (lastDir == -7)) || ((lastDir == 2) || (lastDir == -6)))
						{	
							// turn at the end of the current walk
							frame = lastCount - framesPerStep;
							do
							{
								walkAnim[frame].frame += firstWalkingTurnRightFrame;	// was 200;	// turning right
								frame += 1;
							}
							while(frame < lastCount );
						}
					}
					// all turns checked
					lastCount = stepCount;
				}
			}
		}
		p = p + 1;
		lastDir = currentDir;
		slowStart = 0; //can only be valid first time round 
	}
	while (modularPath[p].dir < NO_DIRECTIONS);


	//****************************************************************************
	// SOLID: THE SLOW OUT
	AddSlowOutFrames(walkAnim);

	//****************************************************************************

	module =	framesPerChar + modularPath[p-1].dir;
	walkAnim[stepCount].frame = module;
	walkAnim[stepCount].step = 0;
	walkAnim[stepCount].dir = modularPath[p-1].dir;
	walkAnim[stepCount].x = moduleX;
	walkAnim[stepCount].y = moduleY;
	stepCount += 1;

	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;
	stepCount += 1;
	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;
	stepCount += 1;
	walkAnim[stepCount].frame	= 512;
	walkAnim[stepCount].step	= 99;

	//-------------------------------------------
	// write all the frames to "debug.txt"

	//Zdebug("\nTHE WALKDATA:");
	for (frame=0; frame<=stepCount; frame++)
	{
		//Zdebug("walkAnim[%d].frame=%d",frame,walkAnim[frame].frame);
	}
	//-------------------------------------------

	//****************************************************************************
	// SOLID
	// NO END TURNS
	//****************************************************************************

//	Zdebug("RouteFinder RouteSize is %d", stepCount);
//	now check the route
		i = 0;
		do
		{
			if (!Check(modularPath[i].x, modularPath[i].y, modularPath[i+1].x, modularPath[i+1].y))
				p=0;
		#ifdef PLOT_PATHS
			RouteLine(modularPath[i].x, modularPath[i].y, modularPath[i+1].x, modularPath[i+1].y, 227);
    #endif   
			i += 1;
		}
		while(i<p-1);
		if (p != 0)
		{
			targetDir =	modularPath[p-1].dir;
		}
		if (p != 0)
		{
			if (CheckTarget(moduleX,moduleY) == 3)// new target on a line
			{
				p = 0;
				//Zdebug("Solid walk target was on a line %d %d", moduleX, moduleY);
			}
		}

	return p;
}


/*******************************************************************************
 *******************************************************************************
 * 														THE SCAN ROUTINES
 *******************************************************************************
 *******************************************************************************/

int32 Scan(int32 level)
/*******************************************************************************
 * Called successively from RouteFinder	until no more changes take place in the
 * grid array	ie he best path has been found
 *
 * Scans through every point in the node array and checks if there is a route
 * between each point and if this route gives a new route.
 *
 * This routine could probably halve its processing time if it doubled up on the
 * checks after	each route check
 *
 *******************************************************************************/
{
	int32	i;
	int32	k;
  int32 x1;
  int32 y1;
  int32 x2;
  int32 y2;
	int32	distance;
	int32	changed = 0;
 	// For all the nodes that have new values and a distance less than enddist
	// ie dont check for new routes from a point we checked before or from a point
	// that is already further away than the best route so far. 
	i = 0;
	do
	{
		if ((node[i].dist < node[nnodes].dist) && (node[i].level == level))
		{
			x1 = node[i].x;
			y1 = node[i].y;
			k=nnodes;
			do
			{
				if (node[k].dist > node[i].dist)
				{
					x2 = node[k].x;
					y2 = node[k].y;

					if (abs(x2-x1)>(4.5*abs(y2-y1)))
					{
						distance = (8*abs(x2-x1)+18*abs(y2-y1))/(54*8)+1;
					}
					else
					{
						distance = (6*abs(x2-x1)+36*abs(y2-y1))/(36*14)+1;
					}

					if ((distance + node[i].dist < node[nnodes].dist) && (distance + node[i].dist < node[k].dist))
					{
						if (NewCheck(0, x1,y1,x2,y2))
						{
							node[k].level = level + 1;
							node[k].dist  = distance + node[i].dist;
							node[k].prev  = i;
							changed = 1;
						}
					}
				}
				k-=1;
			}
			while(k > 0);	
		}
		i=i+1;
	}
	while(i < nnodes);	
	return changed;
}


int32 NewCheck(int32 status, int32 x1 , int32 y1 , int32 x2 ,int32 y2)
/*******************************************************************************
 * NewCheck routine checks if the route between two points can be achieved
 * without crossing any of the bars in the Bars array. 
 *
 * NewCheck differs from check in that that 4 route options are considered
 * corresponding to actual walked routes.
 *
 * Note distance doesnt take account of shrinking ??? 
 *
 * Note Bars array must be properly calculated ie min max dx dy co
 *******************************************************************************/
{
  int32   ldx;
  int32   ldy;
  int32   dlx;
  int32   dly;
  int32   dirX;
  int32   dirY;
  int32   step1;   
  int32   step2;   
  int32   step3;   
  int32   steps;   
  int32   options;   

	steps = 0;
	options = 0;
  ldx = x2 - x1;
  ldy = y2 - y1;
	dirX = 1;
	dirY = 1;
	if (ldx < 0)
	{
		ldx = -ldx;
		dirX = -1;
	}

	if (ldy < 0)
	{
		ldy = -ldy;
		dirY = -1;
	}

	//make the route options
	if ((diagonaly * ldx) > (diagonalx * ldy))	// dir  = 1,2 or 2,3 or 5,6 or 6,7
	{
	  dly = ldy;
		dlx = (ldy*diagonalx)/diagonaly;
		ldx = ldx - dlx;
		dlx = dlx * dirX;
		dly = dly * dirY;
		ldx = ldx * dirX;
		ldy = 0;

	 	//options are
		//square, diagonal a code 1 route
		step1 = Check(x1, y1, x1+ldx, y1);
		if (step1 != 0)
		{
			step2 = Check(x1+ldx, y1, x2, y2);
			if (step2 != 0)
			{
				steps = step1 + step2;	// yes
				options = options + 2;
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1+ldx, y1, 231);
			RouteLine(x1+ldx, y1, x2, y2, 231);
		}
    #endif   
			}
		}
		//diagonal, square a code 2 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x1+dlx,y1+dly);
			if (step1 != 0)
			{
				step2 = Check(x1+dlx, y2, x2, y2);
				if (step2 != 0)
				{
					steps = step1 + step2;	// yes
					options = options + 4;
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1+dlx,y1+dly, 231);
			RouteLine(x1+dlx, y2, x2, y2, 231);
		}
    #endif   
				}
			}
		}
		//halfsquare, diagonal, halfsquare a code 0 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x1+ldx/2, y1);
			if (step1 != 0)
			{
				step2 = Check(x1+ldx/2, y1, x1+ldx/2+dlx, y2);
				if (step2 != 0)
				{
					step3 = Check(x1+ldx/2+dlx, y2, x2, y2);
					if (step3 != 0)
					{
						steps = step1 + step2 + step3;	// yes
					options = options + 1;
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1+ldx/2, y1, 231);
			RouteLine(x1+ldx/2, y1, x1+ldx/2+dlx, y2, 231);
			RouteLine(x1+ldx/2+dlx, y2, x2, y2, 231);
		}
    #endif   
					}
				}
			}
		}
		//halfdiagonal, square, halfdiagonal a code 3 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
			if (step1 != 0)
			{
				step2 = Check(x1+dlx/2, y1+dly/2, x1+ldx+dlx/2, y1+dly/2);
				if (step2 != 0)
				{
					step3 = Check(x1+ldx+dlx/2, y1+dly/2, x2, y2);
					if (step3 != 0)
					{
						steps = step1 + step2 + step3;	// yes
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1+dlx/2, y1+dly/2, 231);
			RouteLine(x1+dlx/2, y1+dly/2, x1+ldx+dlx/2, y1+dly/2, 231);
			RouteLine(x1+ldx+dlx/2, y1+dly/2, x2, y2, 231);
		}
    #endif   
						options = options + 8;
					}
				}
			}
		}
	}
	else // dir  = 7,0 or 0,1 or 3,4 or 4,5
	{
	  dlx = ldx;
		dly = (ldx*diagonaly)/diagonalx;
		ldy = ldy - dly;
		dlx = dlx * dirX;
		dly = dly * dirY;
		ldy = ldy * dirY;
		ldx = 0;

	 	//options are
		//square, diagonal a code 1 route
		step1 = Check(x1 ,y1 ,x1 ,y1+ldy );
		if (step1 != 0)
		{
			step2 = Check(x1 ,y1+ldy ,x2,y2);
			if (step2 != 0)
			{
				steps = step1 + step2;	// yes
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1 ,y1 ,x1 ,y1+ldy, 231);
			RouteLine(x1 ,y1+ldy ,x2, y2, 231);
		}
    #endif   
				options = options + 2;
			}
		}
		//diagonal, square a code 2 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x2, y1+dly);
			if (step1 != 0)
			{
				step2 = Check(x2, y1+dly, x2, y2);
				if (step2 != 0)
				{
					steps = step1 + step2;	// yes
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x2, y1+dly, 231);
			RouteLine(x2, y1+dly, x2, y2, 231);
		}
    #endif   
					options = options + 4;
				}
			}
		}
		//halfsquare, diagonal, halfsquare a code 0 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x1, y1+ldy/2);
			if (step1 != 0)
			{
				step2 = Check(x1, y1+ldy/2, x2, y1+ldy/2+dly);
				if (step2 != 0)
				{
					step3 = Check(x2, y1+ldy/2+dly, x2, y2);
					if (step3 != 0)
					{
						steps = step1 + step2 + step3;	// yes
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1, y1+ldy/2, 231);
			RouteLine(x1, y1+ldy/2, x2, y1+ldy/2+dly, 231);
			RouteLine(x2, y1+ldy/2+dly, x2, y2, 231);
		}
    #endif   
						options = options + 1;
					}
				}
			}
		}
		//halfdiagonal, square, halfdiagonal a code 3 route
		if ((steps == 0) || (status == 1))
		{
			step1 = Check(x1, y1, x1+dlx/2, y1+dly/2);
			if (step1 != 0)
			{
				step2 = Check(x1+dlx/2, y1+dly/2, x1+dlx/2, y1+ldy+dly/2);
				if (step2 != 0)
				{
					step3 = Check(x1+dlx/2, y1+ldy+dly/2, x2, y2);
					if (step3 != 0)
					{
						steps = step1 + step2 + step3;	// yes
						options = options + 8;
		#ifdef PLOT_PATHS
		if (status == 1)
		{
			RouteLine(x1, y1, x1+dlx/2, y1+dly/2, 231);
			RouteLine(x1+dlx/2, y1+dly/2, x1+dlx/2, y1+ldy+dly/2, 231);
			RouteLine(x1+dlx/2, y1+ldy+dly/2, x2, y2, 231);
		}
    #endif   
					}
				}
			}
		}
	}
	if (status == 0)
	{
		status = steps;
	}
	else
	{
		status = options;
	}
	return status;
}


/*******************************************************************************
 *******************************************************************************
 * 														CHECK ROUTINES
 *******************************************************************************
 *******************************************************************************/


int32 Check(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
//call the fastest line check for the given line 
//returns 1 if line didn't cross any bars
  int32   steps;

	if ((x1 == x2) &&	(y1 == y2))
	{
		steps = 1;
	}
	else if (x1 == x2)
	{
			steps = VertCheck(x1, y1, y2);
	}
	else if (y1 == y2)
	{
			steps = HorizCheck(x1, y1, x2);
	}
	else
	{
			steps = LineCheck(x1, y1, x2, y2);
	}
	return steps;

}


int32 LineCheck(int32 x1 , int32 y1 , int32 x2 ,int32 y2)
{
  int32   dirx;
  int32   diry;
  int32   co;
  int32   slope;   
  int32   i;
  int32   xc;
  int32   yc;
  int32   xmin;
  int32   ymin;
  int32   xmax;
  int32   ymax;
  int32   linesCrossed = 1;   


  if (x1 > x2)
  {
  	xmin = x2;    
  	xmax = x1;
  }
  else
  {
  	xmin = x1;    
  	xmax = x2;    
	}
  if (y1 > y2)
  {
  	ymin = y2;    
  	ymax = y1;
  }
  else
  {
  	ymin = y1;    
  	ymax = y2;    
	}
  //line set to go one step in chosen direction
  //so ignore if it hits anything
  dirx = x2 - x1;
	diry = y2 - y1;
  co = (y1 *dirx)- (x1*diry);       //new line equation

  i = 0;          
  do
  {
		// this is the inner inner loop
	  if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax))  //skip if not on module 
    {
			if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax))  //skip if not on module 
	    {
				// okay its a valid line calculate an intersept
				// wow but all this arithmatic we must have loads of time
		    slope = (bars[i].dx * diry) - (bars[i].dy *dirx);// slope it he slope between the two lines
		    if (slope != 0)//assuming parallel lines don't cross
		    {
					//calculate x intercept and check its on both lines
			    xc = ((bars[i].co * dirx) - (co * bars[i].dx)) / slope;

			    if ((xc >= xmin-1) && (xc <= xmax+1))   //skip if not on module 
			    {
					  if ((xc >= bars[i].xmin-1) && (xc <= bars[i].xmax+1))   //skip if not on line 
				    {

					    yc = ((bars[i].co * diry) - (co * bars[i].dy)) / slope;

					    if ((yc >= ymin-1) && (yc <= ymax+1))   //skip if not on module 
					    {
						    if ((yc >= bars[i].ymin-1) && (yc <= bars[i].ymax+1))   //skip if not on line 
						    {
							 	  linesCrossed = 0;
								}
							}
						}
					}
				}
			}
		}
    i = i + 1;
  }
  while((i < nbars) && linesCrossed);

  return linesCrossed;
}


int32 HorizCheck(int32 x1 , int32 y , int32 x2)
{
  int32   ldy;
  int32   i;
  int32   xc;
  int32   xmin;
  int32   xmax;
  int32   linesCrossed = 1;   

  if (x1 > x2)
  {
  	xmin = x2;    
  	xmax = x1;
  }
  else
  {
  	xmin = x1;    
  	xmax = x2;    
	}
  //line set to go one step in chosen direction
  //so ignore if it hits anything

  i = 0;          
  do
  {
		// this is the inner inner loop
	  if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax))  //skip if not on module 
    {
			if ((y >= bars[i].ymin) && ( y <= bars[i].ymax))  //skip if not on module 
	    {
				// okay its a valid line calculate an intersept
				// wow but all this arithmatic we must have loads of time
		    if (bars[i].dy == 0)
		    {
			    linesCrossed = 0;          
		    }
				else
				{
					ldy = y-bars[i].y1;
					xc = bars[i].x1 + (bars[i].dx * ldy)/bars[i].dy;
		    	if ((xc >= xmin-1) && (xc <= xmax+1))   //skip if not on module 
		    	{
				    linesCrossed = 0;          
		    	}
				}
			}
		}
    i = i + 1;
  }
  while((i < nbars) && linesCrossed);

  return linesCrossed;
}


int32 VertCheck(int32 x, int32 y1, int32 y2)
{
  int32   ldx;
  int32   i;
  int32   yc;
  int32   ymin;
  int32   ymax;
  int32   linesCrossed = 1;   

  if (y1 > y2)
  {
  	ymin = y2;    
  	ymax = y1;
  }
  else
  {
  	ymin = y1;    
  	ymax = y2;    
	}
  //line set to go one step in chosen direction
  //so ignore if it hits anything
  i = 0;          
  do		// this is the inner inner loop
  {
	  if ((x >= bars[i].xmin) && ( x <= bars[i].xmax))  //overlapping
    {
			if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax))  //skip if not on module 
		  {
				// okay its a valid line calculate an intersept
				// wow but all this arithmatic we must have loads of time
		    if (bars[i].dx == 0)//both lines vertical and overlap in x and y so they cross
		    {
			    linesCrossed = 0;
		    }
				else
				{
			 		ldx = x-bars[i].x1;
					yc = bars[i].y1 + (bars[i].dy * ldx)/bars[i].dx;
			    if ((yc >= ymin-1) && (yc <= ymax+1))   //the intersept overlaps 
			    {
				    linesCrossed = 0;
			    }
				}
			}
    }
    i = i + 1;
  }
  while((i < nbars) && linesCrossed);

  return linesCrossed;
}

int32 CheckTarget(int32 x , int32 y)
/*******************************************************************************
 *******************************************************************************/
{
  int32   ldx;
  int32   ldy;
  int32   i;
  int32   xc;
  int32   yc;
  int32   xmin;
  int32   xmax;
  int32   ymin;
  int32   ymax;
  int32   onLine = 0;   

 	xmin = x - 1;    
 	xmax = x + 1;
 	ymin = y - 1;    
 	ymax = y + 1;

	// check if point +- 1 is on the line
  //so ignore if it hits anything

  i = 0;          
  do
  {

		// this is the inner inner loop

	  if ((xmax >= bars[i].xmin) && ( xmin <= bars[i].xmax))  //overlapping line 
    {
			if ((ymax >= bars[i].ymin) && ( ymin <= bars[i].ymax))  //overlapping line 
	    {

				// okay this line overlaps the target calculate an y intersept for x 

		    if (bars[i].dx == 0)// vertical line so we know it overlaps y
		    {
					yc = 0; 	
		    }
				else
				{
					ldx = x-bars[i].x1;
					yc = bars[i].y1 + (bars[i].dy * ldx)/bars[i].dx;
				}

		    if ((yc >= ymin) && (yc <= ymax))   //overlapping point for y 
		    {
			    onLine = 3;// target on a line so drop out
					//Zdebug("RouteFail due to target on a line %d %d",x,y);
				}
				else
				{
			    if (bars[i].dy == 0)// vertical line so we know it overlaps y
					{
						xc = 0;
					}
					else
					{
						ldy = y-bars[i].y1;
						xc = bars[i].x1 + (bars[i].dx * ldy)/bars[i].dy;
					}

				  if ((xc >= xmin) && (xc <= xmax))   //skip if not on module 
				  {
				    onLine = 3;// target on a line so drop out
						//Zdebug("RouteFail due to target on a line %d %d",x,y);
			    }
				}
	    }
    }
    i = i + 1;
  }
  while((i < nbars) && (onLine == 0));


  return onLine;
}

/*******************************************************************************
 *******************************************************************************
 * 														THE SETUP ROUTINES
 *******************************************************************************
 *******************************************************************************/
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------

void LoadWalkData(Object_walkdata *ob_walkdata)
{
	uint8	direction;
	uint16	firstFrameOfDirection;
	uint16	walkFrameNo;
	uint32	frameCounter = 0;	// starts at frame 0 of mega set (16sep96 JEL)
      

	nWalkFrames				= ob_walkdata->nWalkFrames;
	usingStandingTurnFrames	= ob_walkdata->usingStandingTurnFrames;
	usingWalkingTurnFrames	= ob_walkdata->usingWalkingTurnFrames;
	usingSlowInFrames		= ob_walkdata->usingSlowInFrames;
	usingSlowOutFrames		= ob_walkdata->usingSlowOutFrames;
	numberOfSlowOutFrames	= usingSlowOutFrames;	// 0 = not using slow out frames; non-zero = using that many frames for each leading leg for each direction

 	memcpy(&numberOfSlowInFrames[0],ob_walkdata->nSlowInFrames,NO_DIRECTIONS*sizeof(numberOfSlowInFrames[0]));
 	memcpy(&leadingLeg[0],ob_walkdata->leadingLeg,NO_DIRECTIONS*sizeof(leadingLeg[0]));
 	memcpy(&dx[0],ob_walkdata->dx,NO_DIRECTIONS*(nWalkFrames+1)*sizeof(dx[0]));
 	memcpy(&dy[0],ob_walkdata->dy,NO_DIRECTIONS*(nWalkFrames+1)*sizeof(dy[0]));

	//---------------------------------------------------------

	for (direction=0; direction<NO_DIRECTIONS; direction++)
	{
		firstFrameOfDirection = direction * nWalkFrames;

		modX[direction]=0;
		modY[direction]=0;

		for (walkFrameNo=firstFrameOfDirection; walkFrameNo < (firstFrameOfDirection + (nWalkFrames/2)); walkFrameNo++ )
		{
			modX[direction] += dx[walkFrameNo];	// eg. modX[0] is the sum of the x-step sizes for the first half of the walk cycle for direction 0
			modY[direction] += dy[walkFrameNo];
		}
	}

	diagonalx =  modX[3];
	diagonaly =  modY[3];

	//----------------------------------------------------
	// interpret the walk data
	//----------------------------------------------------

	framesPerStep = nWalkFrames/2;
	framesPerChar = nWalkFrames * NO_DIRECTIONS;

	// offset pointers added Oct 30 95 JPS
	// mega id references removed 16sep96 by JEL

	//---------------------
	// WALK FRAMES
	// start on frame 0
	frameCounter += framesPerChar;

	//---------------------
	// STAND FRAMES
	firstStandFrame = frameCounter;	// stand frames come after the walk frames
	frameCounter += NO_DIRECTIONS;	// one stand frame for each direction

	//---------------------
	// STANDING TURN FRAMES - OPTIONAL!
	if (usingStandingTurnFrames)
	{
		firstStandingTurnLeftFrame	= frameCounter;	// standing turn-left frames come after the slow-out frames
		frameCounter += NO_DIRECTIONS;							// one for each direction

		firstStandingTurnRightFrame = frameCounter;	// standing turn-left frames come after the standing turn-right frames
		frameCounter += NO_DIRECTIONS;							// one for each direction
	}
	else
	{
		firstStandingTurnLeftFrame	= firstStandFrame;	// refer instead to the normal stand frames
		firstStandingTurnRightFrame	= firstStandFrame;	// -"-
	}
	//---------------------
	// WALKING TURN FRAMES - OPTIONAL!
	if (usingWalkingTurnFrames)
	{
		firstWalkingTurnLeftFrame		= frameCounter;	// walking left-turn frames come after the stand frames
		frameCounter += framesPerChar;

		firstWalkingTurnRightFrame	= frameCounter;	// walking right-turn frames come after the walking left-turn frames
		frameCounter += framesPerChar;
	}
	else
	{
		firstWalkingTurnLeftFrame		= 0;
		firstWalkingTurnRightFrame	= 0;
	}
	//---------------------
	// SLOW-IN FRAMES - OPTIONAL!

	if (usingSlowInFrames)	// slow-in frames come after the walking right-turn frames
	{
		for (direction=0; direction<NO_DIRECTIONS; direction++)
		{
			firstSlowInFrame[direction] = frameCounter;				// make note of frame number of first slow-in frame for each direction
			frameCounter += numberOfSlowInFrames[direction];	// can be a different number of slow-in frames in each direction
		}
	}
	//---------------------
	// SLOW-OUT FRAMES - OPTIONAL!

	if (usingSlowOutFrames)
	{
		firstSlowOutFrame	= frameCounter;	// slow-out frames come after the slow-in frames
	}
	//---------------------
}


/*******************************************************************************
 *******************************************************************************
 * 														THE ROUTE EXTRACTOR
 *******************************************************************************
 *******************************************************************************/

void	ExtractRoute()
/****************************************************************************
 *    ExtractRoute	gets route from the node data after a full scan, route is
 *		written with just the basic way points and direction options for heading
 *		to the next point. 
 ****************************************************************************/
{
	int32	prev;
	int32	prevx;
	int32	prevy;
	int32	last;
	int32	point;
  int32 p;     
	int32	dirx;
	int32	diry;
	int32	dir;
	int32	ldx;
	int32	ldy;


 	// extract the route from the node data
	prev = nnodes;
	last = prev;
	point = O_ROUTE_SIZE - 1;
	route[point].x = node[last].x;
	route[point].y = node[last].y;
	do
	{
		point = point -	1;
		prev = node[last].prev;
		prevx = node[prev].x;
		prevy = node[prev].y;
		route[point].x = prevx;
		route[point].y = prevy;
		last = prev;
	}
	while (prev > 0);

	// now shuffle route down in the buffer
	routeLength = 0;
	do
	{
		route[routeLength].x = route[point].x;
		route[routeLength].y = route[point].y;
		point = point + 1;
		routeLength = routeLength + 1;
	}
	while (point < O_ROUTE_SIZE);
	routeLength = routeLength - 1;

	// okay the route exists as a series point now put in some directions
  p = 0;
  do
  {
		#ifdef PLOT_PATHS
			BresenhamLine(route[p+1].x-128,route[p+1].y-128, route[p].x-128,route[p].y-128, (uint8*)screen_ad, true_pixel_size_x, pixel_size_y, ROUTE_END_FLAG);
    #endif   
		ldx = route[p+1].x - route[p].x;
		ldy = route[p+1].y - route[p].y;
		dirx = 1;
		diry = 1;
		if (ldx < 0)
		{
			ldx = -ldx;
			dirx = -1;
		}
		if (ldy < 0)
		{
			ldy = -ldy;
			diry = -1;
		}

		if ((diagonaly * ldx) > (diagonalx * ldy))	// dir  = 1,2 or 2,3 or 5,6 or 6,7
		{
			dir = 4 - 2 * dirx;	 // 2 or 6
			route[p].dirS = dir;
			dir = dir + diry * dirx; // 1,3,5 or 7
			route[p].dirD = dir;
		}
		else // dir  = 7,0 or 0,1 or 3,4 or 4,5
		{
			dir = 2 + 2 * diry;	// 0 or 4
			route[p].dirS = dir;
			dir = 4 - 2 * dirx;	 // 2 or 6
			dir = dir + diry * dirx; // 1,3,5 or 7
			route[p].dirD = dir;
		}
		p = p + 1;	
	}
	while (p < (routeLength));
	// set the last dir to continue previous route unless specified
	if (targetDir == 8)	// ANY direction
	{ 
		route[p].dirS = route[p-1].dirS;
		route[p].dirD = route[p-1].dirD;
	}
	else
	{ 
		route[p].dirS = targetDir;
		route[p].dirD = targetDir;
	}
	return;
}

//*******************************************************************************

void RouteLine(int32 x1,int32 y1,int32 x2,int32 y2 ,int32 colour)
{
	if (x1);
	if (x2);
	if (y1);
	if (y2);
	if (colour);
//	BresenhamLine(x1-128, y1-128, x2-128, y2-128, (uint8*)screen_ad, true_pixel_size_x, pixel_size_y, colour);
	return;
}

//*******************************************************************************

void SetUpWalkGrid(Object_mega *ob_mega, int32 x, int32 y, int32 dir)
{
	int32 i;


	LoadWalkGrid();	// get walk grid file + extra grid into 'bars' & 'node' arrays


	// copy the mega structure into the local variables for use in all subroutines

	startX		= ob_mega->feet_x;
	startY		= ob_mega->feet_y;
	startDir	= ob_mega->current_dir;
	targetX		= x;
	targetY		= y;
	targetDir	= dir;

	scaleA		= ob_mega->scale_a;
	scaleB		= ob_mega->scale_b;


	// mega's current position goes into first node
	node[0].x		= startX;
	node[0].y		= startY;
	node[0].level	= 1;
	node[0].prev	= 0;
	node[0].dist	= 0;

	// reset other nodes
	for (i=1; i<nnodes; i++)
	{
		node[i].level	= 0;
	  	node[i].prev	= 0;
	  	node[i].dist	= 9999;
	}

	// target position goes into final node
	node[nnodes].x		= targetX;
	node[nnodes].y		= targetY;
	node[nnodes].level	= 0;
	node[nnodes].prev	= 0;
	node[nnodes].dist	= 9999;
}

//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------
void PlotWalkGrid(void)
{
	int32 j;
      

	LoadWalkGrid();	// get walk grid file + extra grid into 'bars' & 'node' arrays

	//-------------------------------
	// lines

	for (j=0; j<nbars; j++)
	{
		DrawLine(bars[j].x1,bars[j].y1, bars[j].x2,bars[j].y2, 254);
	}
	//-------------------------------
	// nodes

	for (j=1; j<nnodes; j++)	// leave node 0 for start node
	{
		PlotCross(node[j].x,node[j].y, 184);
	}
	//-------------------------------
}
//------------------------------------------------------------------------------------------
void PlotCross(int16 x, int16 y, uint8 colour)
{
	DrawLine(x-1, y-1, x+1, y+1, colour);
	DrawLine(x+1, y-1, x-1, y+1, colour);	
}
//------------------------------------------------------------------------------------------
//------------------------------------------------------------------------------------------

void LoadWalkGrid(void)
{
//	_standardHeader	header;
	_walkGridHeader	floorHeader;
	uint32 	j;
	uint8  *fPolygrid;
 	int entry;
	uint32 theseBars;
	uint32 theseNodes;


	nbars	= 0;	// reset counts
	nnodes	= 1;	// leave node 0 for start-node

	//-------------------------------
	// STATIC GRIDS (added/removed by object logics)

	for (entry=0; entry < MAX_WALKGRIDS; entry++)	// go through walkgrid list
	{
		if (walkGridList[entry])
		{
			fPolygrid = res_man.Res_open(walkGridList[entry]);	// open walk grid file

 //			memmove( (uint8*)&header, fPolygrid, sizeof(_standardHeader) );
 			fPolygrid += sizeof(_standardHeader);

 			memmove( (uint8*)&floorHeader, fPolygrid, sizeof(_walkGridHeader) );
 			fPolygrid += sizeof(_walkGridHeader);

			//-------------------------------
			// how many bars & nodes are we getting from this walkgrid file

			theseBars	= floorHeader.numBars;
			theseNodes	= floorHeader.numNodes;

			//-------------------------------
			// check that we're not going to exceed the max allowed in the complete walkgrid arrays

			#ifdef _SWORD2_DEBUG
			if ((nbars+theseBars) >= O_GRID_SIZE)
				Con_fatal_error("Adding walkgrid(%d): %d+%d bars exceeds max %d (%s line %u)", walkGridList[entry], nbars, theseBars, O_GRID_SIZE, __FILE__, __LINE__);

			if ((nnodes+theseNodes) >= O_GRID_SIZE)
				Con_fatal_error("Adding walkgrid(%d): %d+%d nodes exceeds max %d (%s line %u)", walkGridList[entry], nnodes, theseBars, O_GRID_SIZE, __FILE__, __LINE__);
			#endif

			//-------------------------------
			// lines

 			memmove( (uint8*)&bars[nbars], fPolygrid, theseBars*sizeof(_barData) );
			fPolygrid += theseBars*sizeof(_barData);//move pointer to start of node data

			//-------------------------------
			// nodes

			for (j=0; j<theseNodes; j++)	// leave node 0 for start node
			{
				memmove( (uint8*)&node[nnodes+j].x, fPolygrid, 2*sizeof(int16) );
				fPolygrid += 2*sizeof(int16);
			}

 			//-------------------------------

			res_man.Res_close(walkGridList[entry]);	// close walk grid file

			nbars	+= theseBars;	// increment counts of total bars & nodes in whole walkgrid
			nnodes	+= theseNodes;
		}
	}

	//-------------------------------
	// EXTRA GRIDS (moveable grids added by megas)

	// Note that these will be checked against allowed max at the time of creating them

	//-------------------------------
	// extra lines

 	memmove((uint8 *) &bars[nbars], (uint8 *) &extraBars[0], nExtraBars*sizeof(_barData));
	nbars += nExtraBars;

	//-------------------------------
	// extra nodes

 	memmove((uint8 *) &node[nnodes], (uint8 *) &extraNode[0], nExtraNodes*sizeof(_nodeData));
	nnodes += nExtraNodes;

	//-------------------------------
}

//------------------------------------------------------------------------------------------
void ClearWalkGridList(void)
{
	int entry;

	for (entry=0; entry < MAX_WALKGRIDS; entry++)
		walkGridList[entry] = 0;
}
//------------------------------------------------------------------------------------------
// called from FN_add_walkgrid
void AddWalkGrid(int32 gridResource)
{
	int entry;

	// first, scan list to see if this grid is already included
	entry=0;
	while ((entry < MAX_WALKGRIDS) && (walkGridList[entry] != gridResource))
		entry++;

	if (entry == MAX_WALKGRIDS)	// if this new resource isn't already in the list, then add it, (otherwise finish)
	{
		// scan the list for a free slot
		entry=0;
		while ((entry < MAX_WALKGRIDS) && (walkGridList[entry]))
			entry++;

		if (entry < MAX_WALKGRIDS)	// if we found a free slot
			walkGridList[entry] = gridResource;
		else
			Con_fatal_error("ERROR: walkGridList[] full in %s line %d",__FILE__,__LINE__);
	}
}
//--------------------------------------------------------------------------------------
// called from FN_remove_walkgrid
void RemoveWalkGrid(int32 gridResource)
{
	int entry;

	// first, scan list to see if this grid is actually there
	entry=0;
	while ((entry < MAX_WALKGRIDS) && (walkGridList[entry] != gridResource))
		entry++;

	if (entry < MAX_WALKGRIDS)	// if we've found it in the list, reset entry to zero (otherwise just ignore the request)
		walkGridList[entry] = 0;
}
//--------------------------------------------------------------------------------------