/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // Sorenson Video 1 Codec // Based off ffmpeg's SVQ1 decoder (written by Mike Melanson) #include "video/codecs/svq1.h" #include "video/codecs/svq1_cb.h" #include "video/codecs/svq1_vlc.h" #include "common/stream.h" #include "common/bitstream.h" #include "common/rect.h" #include "common/system.h" #include "common/debug.h" #include "common/textconsole.h" #include "common/huffman.h" #include "graphics/yuv_to_rgb.h" namespace Video { #define SVQ1_BLOCK_SKIP 0 #define SVQ1_BLOCK_INTER 1 #define SVQ1_BLOCK_INTER_4V 2 #define SVQ1_BLOCK_INTRA 3 SVQ1Decoder::SVQ1Decoder(uint16 width, uint16 height) { debug(1, "SVQ1Decoder::SVQ1Decoder(width:%d, height:%d)", width, height); _width = width; _height = height; _frameWidth = _frameHeight = 0; _surface = 0; _last[0] = 0; _last[1] = 0; _last[2] = 0; // Setup Variable Length Code Tables _blockType = new Common::Huffman(0, 4, s_svq1BlockTypeCodes, s_svq1BlockTypeLengths); for (int i = 0; i < 6; i++) { _intraMultistage[i] = new Common::Huffman(0, 8, s_svq1IntraMultistageCodes[i], s_svq1IntraMultistageLengths[i]); _interMultistage[i] = new Common::Huffman(0, 8, s_svq1InterMultistageCodes[i], s_svq1InterMultistageLengths[i]); } _intraMean = new Common::Huffman(0, 256, s_svq1IntraMeanCodes, s_svq1IntraMeanLengths); _interMean = new Common::Huffman(0, 512, s_svq1InterMeanCodes, s_svq1InterMeanLengths); _motionComponent = new Common::Huffman(0, 33, s_svq1MotionComponentCodes, s_svq1MotionComponentLengths); } SVQ1Decoder::~SVQ1Decoder() { if (_surface) { _surface->free(); delete _surface; } delete[] _last[0]; delete[] _last[1]; delete[] _last[2]; delete _blockType; delete _intraMean; delete _interMean; delete _motionComponent; for (int i = 0; i < 6; i++) { delete _intraMultistage[i]; delete _interMultistage[i]; } } const Graphics::Surface *SVQ1Decoder::decodeImage(Common::SeekableReadStream *stream) { debug(1, "SVQ1Decoder::decodeImage()"); Common::BitStream32BEMSB frameData(*stream); uint32 frameCode = frameData.getBits(22); debug(1, " frameCode: %d", frameCode); if ((frameCode & ~0x70) || !(frameCode & 0x60)) { // Invalid warning("Invalid Image at frameCode"); return _surface; } // swap some header bytes (why?) //if (frameCode != 0x20) { // uint32 *src = stream; // // for (i = 4; i < 8; i++) { // src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i]; // } //} #if 0 static const uint16 checksum_table[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; #endif byte temporalReference = frameData.getBits(8); debug(1, " temporalReference: %d", temporalReference); const char* types[4] = { "I (Key)", "P (Delta from Previous)", "B (Delta from Next)", "Invalid" }; byte frameType = frameData.getBits(2); debug(1, " frameType: %d = %s Frame", frameType, types[frameType]); if (frameType == 0) { // I Frame // TODO: Validate checksum if present if (frameCode == 0x50 || frameCode == 0x60) { uint32 checksum = frameData.getBits(16); debug(1, " checksum:0x%02x", checksum); //uint16 calculate_packet_checksum (const uint8 *data, const int length) { // int value; //for (int i = 0; i < length; i++) // value = checksum_table[data[i] ^ (value >> 8)] ^ ((value & 0xFF) << 8); } if ((frameCode ^ 0x10) >= 0x50) { // Skip embedded string uint8 stringLen = frameData.getBits(8); for (uint16 i = 0; i < stringLen-1; i++) frameData.skip(8); } byte unk1 = frameData.getBits(2); // Unknown debug(1, " unk1: %d", unk1); byte unk2 = frameData.getBits(2); // Unknown debug(1, " unk2: %d", unk2); bool unk3 = frameData.getBit(); // Unknown debug(1, " unk3: %d", unk3); static const struct { uint w, h; } standardFrameSizes[7] = { { 160, 120 }, // 0 { 128, 96 }, // 1 { 176, 144 }, // 2 { 352, 288 }, // 3 { 704, 576 }, // 4 { 240, 180 }, // 5 { 320, 240 } // 6 }; byte frameSizeCode = frameData.getBits(3); debug(1, " frameSizeCode: %d", frameSizeCode); if (frameSizeCode == 7) { _frameWidth = frameData.getBits(12); _frameHeight = frameData.getBits(12); } else { _frameWidth = standardFrameSizes[frameSizeCode].w; _frameHeight = standardFrameSizes[frameSizeCode].h; } debug(1, " frameWidth: %d", _frameWidth); debug(1, " frameHeight: %d", _frameHeight); // Now we'll create the surface if (!_surface) { _surface = new Graphics::Surface(); _surface->create(_frameWidth, _frameHeight, g_system->getScreenFormat()); _surface->w = _width; _surface->h = _height; } } else if (frameType == 2) { // B Frame warning("B Frames not supported by SVQ1 decoder"); return _surface; } else if (frameType == 3) { // Invalid warning("Invalid Frame Type"); return _surface; } bool checksumPresent = frameData.getBit(); debug(1, " checksumPresent: %d", checksumPresent); if (checksumPresent) { bool usePacketChecksum = frameData.getBit(); debug(1, " usePacketChecksum: %d", usePacketChecksum); bool componentChecksumsAfterImageData = frameData.getBit(); debug(1, " componentChecksumsAfterImageData: %d", componentChecksumsAfterImageData); byte unk4 = frameData.getBits(2); debug(1, " unk4: %d", unk4); if (unk4 != 0) warning("Invalid Frame Header in SVQ1 Frame Decode"); } bool unk5 = frameData.getBit(); debug(1, " unk5: %d", unk5); if (unk5) { bool unk6 = frameData.getBit(); debug(1, " unk6: %d", unk6); byte unk7 = frameData.getBits(4); debug(1, " unk7: %d", unk7); bool unk8 = frameData.getBit(); debug(1, " unk8: %d", unk8); byte unk9 = frameData.getBits(2); debug(1, " unk9: %d", unk9); while (frameData.getBit()) { byte unk10 = frameData.getBits(8); debug(1, " unk10: %d", unk10); } } byte *current[3]; // FIXME - Added extra _width of 16px blocks to stop out of // range access causing crashes. Need to correct code... current[0] = new byte[_frameWidth * _frameHeight + (_frameWidth * 16)]; current[1] = new byte[(_frameWidth / 4) * (_frameHeight / 4) + (_frameWidth / 4 * 16)]; current[2] = new byte[(_frameWidth / 4) * (_frameHeight / 4) + (_frameWidth / 4 * 16)]; // Decode Y, U and V component planes for (int i = 0; i < 3; i++) { int linesize, width, height; if (i == 0) { // Y Size is width * height width = _frameWidth; if (width % 16) { width /= 16; width++; width *= 16; } assert(width % 16 == 0); height = _frameHeight; if (height % 16) { height /= 16; height++; height *= 16; } assert(height % 16 == 0); linesize = _frameWidth; } else { // U and V size is width/4 * height/4 width = _frameWidth / 4; if (width % 16) { width /= 16; width++; width *= 16; } assert(width % 16 == 0); height = _frameHeight / 4; if (height % 16) { height /= 16; height++; height *= 16; } assert(height % 16 == 0); linesize = _frameWidth / 4; } if (frameType == 0) { // I Frame // Keyframe (I) byte *currentP = current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (svq1DecodeBlockIntra(&frameData, ¤tP[x], linesize)) { warning("svq1DecodeBlockIntra decode failure"); return _surface; } } currentP += 16 * linesize; } } else { // Delta frame (P or B) // Prediction Motion Vector Common::Point *pmv = new Common::Point[(width/8) + 3]; byte *previous; if(frameType == 2) { // B Frame warning("B Frame not supported currently"); //previous = _next[i]; } else previous = _last[i]; byte *currentP = current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (svq1DecodeDeltaBlock(&frameData, ¤tP[x], previous, linesize, pmv, x, y)) { warning("svq1DecodeDeltaBlock decode failure"); return _surface; } } pmv[0].x = pmv[0].y = 0; currentP += 16*linesize; } delete[] pmv; } } convertYUV410ToRGB(_surface, current[0], current[1], current[2], _frameWidth, _frameHeight, _frameWidth, _frameWidth / 4); for (int i = 0; i < 3; i++) { delete[] _last[i]; _last[i] = current[i]; } return _surface; } bool SVQ1Decoder::svq1DecodeBlockIntra(Common::BitStream *s, uint8 *pixels, int pitch) { uint8 *list[63]; uint32 *dst; int entries[6]; int i, j, m, n; int mean, stages; unsigned int x, y, width, height, level; uint32 n1, n2, n3, n4; // initialize list for breadth first processing of vectors list[0] = pixels; // recursively process vector for (i = 0, m = 1, n = 1, level = 5; i < n; i++) { // SVQ1_PROCESS_VECTOR() for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size dst = (uint32 *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); // get number of stages (-1 skips vector, 0 for mean only) stages = _intraMultistage[level]->getSymbol(*s) - 1; if (stages == -1) { for (y = 0; y < height; y++) { memset (&dst[y*(pitch / 4)], 0, width); } continue; // skip vector } if ((stages > 0) && (level >= 4)) { warning("Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i", stages, level); return true; // error - invalid vector } mean = _intraMean->getSymbol(*s); if (stages == 0) { for (y = 0; y < height; y++) { memset (&dst[y*(pitch / 4)], mean, width); } } else { // SVQ1_CALC_CODEBOOK_ENTRIES(svq1_intra_codebooks); const uint32 *codebook = s_svq1IntraCodebooks[level]; uint32 bit_cache = s->getBits(4*stages); // calculate codebook entries for this vector for (j = 0; j < stages; j++) { entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1); } mean -= (stages * 128); n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); // SVQ1_DO_CODEBOOK_INTRA() for (y = 0; y < height; y++) { for (x = 0; x < (width / 4); x++, codebook++) { n1 = n4; n2 = n4; // SVQ1_ADD_CODEBOOK() // add codebook entries to vector for (j=0; j < stages; j++) { n3 = codebook[entries[j]] ^ 0x80808080; n1 += ((n3 & 0xFF00FF00) >> 8); n2 += (n3 & 0x00FF00FF); } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= (n3 & 0x00FF00FF); } if (n2 & 0xFF00FF00) { n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= (n3 & 0x00FF00FF); } // store result dst[x] = (n1 << 8) | n2; } dst += (pitch / 4); } } } return false; } bool SVQ1Decoder::svq1DecodeBlockNonIntra(Common::BitStream *s, uint8 *pixels, int pitch) { uint8 *list[63]; uint32 *dst; int entries[6]; int i, j, m, n; int mean, stages; int x, y, width, height, level; uint32 n1, n2, n3, n4; // initialize list for breadth first processing of vectors list[0] = pixels; // recursively process vector for (i = 0, m = 1, n = 1, level = 5; i < n; i++) { // SVQ1_PROCESS_VECTOR() for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size dst = (uint32 *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); // get number of stages (-1 skips vector, 0 for mean only) stages = _interMultistage[level]->getSymbol(*s) - 1; if (stages == -1) continue; // skip vector if ((stages > 0) && (level >= 4)) { warning("Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i", stages, level); return true; // error - invalid vector } mean = _interMean->getSymbol(*s) - 256; // SVQ1_CALC_CODEBOOK_ENTRIES(svq1_inter_codebooks); const uint32 *codebook = s_svq1InterCodebooks[level]; uint32 bit_cache = s->getBits(4*stages); // calculate codebook entries for this vector for (j=0; j < stages; j++) { entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1); } mean -= (stages * 128); n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); // SVQ1_DO_CODEBOOK_NONINTRA() for (y = 0; y < height; y++) { for (x = 0; x < (width / 4); x++, codebook++) { n3 = dst[x]; // add mean value to vector n1 = ((n3 & 0xFF00FF00) >> 8) + n4; n2 = (n3 & 0x00FF00FF) + n4; //SVQ1_ADD_CODEBOOK() // add codebook entries to vector for (j=0; j < stages; j++) { n3 = codebook[entries[j]] ^ 0x80808080; n1 += ((n3 & 0xFF00FF00) >> 8); n2 += (n3 & 0x00FF00FF); } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= (n3 & 0x00FF00FF); } if (n2 & 0xFF00FF00) { n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= (n3 & 0x00FF00FF); } // store result dst[x] = (n1 << 8) | n2; } dst += (pitch / 4); } } return false; } // median of 3 static inline int mid_pred(int a, int b, int c) { if (a > b) { if (c > b) { if (c > a) b = a; else b = c; } } else { if (b > c) { if (c > a) b = c; else b = a; } } return b; } bool SVQ1Decoder::svq1DecodeMotionVector(Common::BitStream *s, Common::Point *mv, Common::Point **pmv) { for (int i = 0; i < 2; i++) { // get motion code int diff = _motionComponent->getSymbol(*s); if (diff < 0) return true; // error - invalid motion code else if (diff) { if (s->getBit()) diff = -diff; } // add median of motion vector predictors and clip result if (i == 1) mv->y = ((diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26; else mv->x = ((diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26; } return false; } void SVQ1Decoder::svq1SkipBlock(uint8 *current, uint8 *previous, int pitch, int x, int y) { uint8 *src; uint8 *dst; src = &previous[x + y*pitch]; dst = current; for (int i = 0; i < 16; i++) { memcpy(dst, src, 16); src += pitch; dst += pitch; } } static void put_pixels8_c(uint8 *block, const uint8 *pixels, int line_size, int h) { for (int i = 0; i < h; i++) { *((uint32*)(block)) = READ_UINT32(pixels); *((uint32*)(block + 4)) = READ_UINT32(pixels + 4); pixels += line_size; block += line_size; } } static inline uint32 rnd_avg32(uint32 a, uint32 b) { return (a | b) - (((a ^ b) & ~((0x01)*0x01010101UL)) >> 1); } static inline void put_pixels8_l2(uint8 *dst, const uint8 *src1, const uint8 *src2, int dst_stride, int src_stride1, int src_stride2, int h) { for (int i = 0; i < h; i++){ uint32 a, b; a= READ_UINT32(&src1[i*src_stride1]); b= READ_UINT32(&src2[i*src_stride2]); *((uint32*)&dst[i*dst_stride]) = rnd_avg32(a, b); a= READ_UINT32(&src1[i*src_stride1 + 4]); b= READ_UINT32(&src2[i*src_stride2 + 4]); *((uint32*)&dst[i*dst_stride + 4]) = rnd_avg32(a, b); } } static inline void put_pixels8_x2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_l2(block, pixels, pixels+1, line_size, line_size, line_size, h); } static inline void put_pixels8_y2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_l2(block, pixels, pixels+line_size, line_size, line_size, line_size, h); } static inline void put_pixels8_xy2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { for (int j = 0; j < 2; j++) { uint32 a = READ_UINT32(pixels); uint32 b = READ_UINT32(pixels+1); uint32 l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL; uint32 h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); uint32 l1, h1; pixels += line_size; for (int i = 0; i < h; i += 2) { a = READ_UINT32(pixels); b = READ_UINT32(pixels+1); l1 = (a & 0x03030303UL) + (b & 0x03030303UL); h1 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); *((uint32*)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL); pixels += line_size; block += line_size; a = READ_UINT32(pixels); b = READ_UINT32(pixels+1); l0 = (a & 0x03030303UL) + (b & 0x03030303UL) + 0x02020202UL; h0 = ((a & 0xFCFCFCFCUL) >> 2) + ((b & 0xFCFCFCFCUL) >> 2); *((uint32*)block) = h0 + h1 + (((l0 + l1) >> 2) & 0x0F0F0F0FUL); pixels += line_size; block += line_size; } pixels += 4 - line_size*(h + 1); block += 4 - line_size*h; } } static void put_pixels16_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_c(block, pixels, line_size, h); put_pixels8_c(block+8, pixels+8, line_size, h); } static void put_pixels16_x2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_x2_c(block, pixels, line_size, h); put_pixels8_x2_c(block+8, pixels+8, line_size, h); } static void put_pixels16_y2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_y2_c(block, pixels, line_size, h); put_pixels8_y2_c(block+8, pixels+8, line_size, h); } static void put_pixels16_xy2_c(uint8 *block, const uint8 *pixels, int line_size, int h) { put_pixels8_xy2_c(block, pixels, line_size, h); put_pixels8_xy2_c(block+8, pixels+8, line_size, h); } bool SVQ1Decoder::svq1MotionInterBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint8 *src; uint8 *dst; Common::Point mv; Common::Point *pmv[3]; bool errorFlag; // predict and decode motion vector pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } errorFlag = svq1DecodeMotionVector(ss, &mv, pmv); if (errorFlag) return true; motion[0].x = motion[(x / 8) + 2].x = motion[(x / 8) + 3].x = mv.x; motion[0].y = motion[(x / 8) + 2].y = motion[(x / 8) + 3].y = mv.y; if(y + (mv.y >> 1) < 0) mv.y = 0; if(x + (mv.x >> 1) < 0) mv.x = 0; #if 0 int w = (s->width + 15) & ~15; int h = (s->height + 15) & ~15; if(x + (mv.x >> 1) < 0 || y + (mv.y >> 1) < 0 || x + (mv.x >> 1) + 16 > w || y + (mv.y >> 1) + 16 > h) debug(1, "%d %d %d %d", x, y, x + (mv.x >> 1), y + (mv.y >> 1)); #endif src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch]; dst = current; // Halfpel motion compensation with rounding (a+b+1)>>1. // 4 motion compensation functions for the 4 halfpel positions // for 16x16 blocks switch(((mv.y & 1)*2) + (mv.x & 1)) { case 0: put_pixels16_c(dst, src, pitch, 16); break; case 1: put_pixels16_x2_c(dst, src, pitch, 16); break; case 2: put_pixels16_y2_c(dst, src, pitch, 16); break; case 3: put_pixels16_xy2_c(dst, src, pitch, 16); break; default: error("Motion Compensation Function Lookup Error. Should Not Happen!"); break; } return false; } bool SVQ1Decoder::svq1MotionInter4vBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint8 *src; uint8 *dst; Common::Point mv; Common::Point *pmv[4]; bool errorFlag; // predict and decode motion vector (0) pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } errorFlag = svq1DecodeMotionVector(ss, &mv, pmv); if (errorFlag) return true; // predict and decode motion vector (1) pmv[0] = &mv; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 3]; } errorFlag = svq1DecodeMotionVector(ss, &motion[0], pmv); if (errorFlag) return true; // predict and decode motion vector (2) pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; errorFlag = svq1DecodeMotionVector(ss, &motion[(x / 8) + 2], pmv); if (errorFlag) return true; // predict and decode motion vector (3) pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; errorFlag = svq1DecodeMotionVector(ss, pmv[3], pmv); if (errorFlag) return true; // form predictions for (int i = 0; i < 4; i++) { int mvx = pmv[i]->x + (i & 1)*16; int mvy = pmv[i]->y + (i >> 1)*16; ///XXX /FIXME clipping or padding? if(y + (mvy >> 1) < 0) mvy = 0; if(x + (mvx >> 1) < 0) mvx = 0; #if 0 int w = (s->width + 15) & ~15; int h = (s->height + 15) & ~15; if(x + (mvx >> 1) < 0 || y + (mvy >> 1) < 0 || x + (mvx >> 1) + 8 > w || y + (mvy >> 1) + 8 > h) debug(1, "%d %d %d %d", x, y, x + (mvx >> 1), y + (mvy >> 1)); #endif src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1))*pitch]; dst = current; // Halfpel motion compensation with rounding (a+b+1)>>1. // 4 motion compensation functions for the 4 halfpel positions // for 8x8 blocks switch(((mvy & 1)*2) + (mvx & 1)) { case 0: put_pixels8_c(dst, src, pitch, 8); break; case 1: put_pixels8_x2_c(dst, src, pitch, 8); break; case 2: put_pixels8_y2_c(dst, src, pitch, 8); break; case 3: put_pixels8_xy2_c(dst, src, pitch, 8); break; default: error("Motion Compensation Function Lookup Error. Should Not Happen!"); break; } // select next block if (i & 1) { current += 8*(pitch - 1); } else { current += 8; } } return false; } bool SVQ1Decoder::svq1DecodeDeltaBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint32 block_type; bool errorFlag = false; // get block type block_type = _blockType->getSymbol(*ss); // reset motion vectors if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) { motion[0].x = motion[0].y = motion[(x / 8) + 2].x = motion[(x / 8) + 2].y = motion[(x / 8) + 3].x = motion[(x / 8) + 3].y = 0; } switch (block_type) { case SVQ1_BLOCK_SKIP: svq1SkipBlock(current, previous, pitch, x, y); break; case SVQ1_BLOCK_INTER: errorFlag = svq1MotionInterBlock(ss, current, previous, pitch, motion, x, y); if (errorFlag) { warning("svq1MotionInterBlock decode failure"); break; } errorFlag = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTER_4V: errorFlag = svq1MotionInter4vBlock(ss, current, previous, pitch, motion, x, y); if (errorFlag) { warning("svq1MotionInter4vBlock decode failure"); break; } errorFlag = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTRA: errorFlag = svq1DecodeBlockIntra(ss, current, pitch); break; } return errorFlag; } } // End of namespace Video