/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // Sorenson Video 1 Codec // Based off ffmpeg's SVQ1 decoder (written by Mike Melanson) #include "video/codecs/svq1.h" #include "video/codecs/svq1_cb.h" #include "video/codecs/svq1_vlc.h" #include "common/stream.h" #include "common/bitstream.h" #include "common/rect.h" #include "common/system.h" #include "common/debug.h" #include "common/textconsole.h" #include "graphics/yuv_to_rgb.h" namespace Video { #define SVQ1_BLOCK_SKIP 0 #define SVQ1_BLOCK_INTER 1 #define SVQ1_BLOCK_INTER_4V 2 #define SVQ1_BLOCK_INTRA 3 struct VLC { int32 bits; int16 (*table)[2]; // code, bits int32 table_size; int32 table_allocated; }; /** * parses a vlc code, faster then get_vlc() * @param bits is the number of bits which will be read at once, must be * identical to nb_bits in init_vlc() * @param max_depth is the number of times bits bits must be read to completely * read the longest vlc code * = (max_vlc_length + bits - 1) / bits */ static int getVlc2(Common::BitStream *s, int16 (*table)[2], int bits, int maxDepth) { int index = s->getBits(bits); int code = table[index][0]; int n = table[index][1]; if (maxDepth > 1 && n < 0) { index = s->getBits(-n) + code; code = table[index][0]; n = table[index][1]; if(maxDepth > 2 && n < 0) { index = s->getBits(-n) + code; code = table[index][0]; n = table[index][1]; } } return code; } static int allocTable(VLC *vlc, int size, int use_static) { int index; int16 (*temp)[2] = NULL; index = vlc->table_size; vlc->table_size += size; if (vlc->table_size > vlc->table_allocated) { if(use_static) error("SVQ1 cant do anything, init_vlc() is used with too little memory"); vlc->table_allocated += (1 << vlc->bits); temp = (int16 (*)[2])realloc(vlc->table, sizeof(int16 *) * 2 * vlc->table_allocated); if (!temp) { free(vlc->table); vlc->table = NULL; return -1; } vlc->table = temp; } return index; } static VLC svq1_block_type; static VLC svq1_motion_component; static VLC svq1_intra_multistage[6]; static VLC svq1_inter_multistage[6]; static VLC svq1_intra_mean; static VLC svq1_inter_mean; static int svq1DecodeBlockIntra(Common::BitStream *s, uint8 *pixels, int pitch) { uint8 *list[63]; uint32 *dst; int entries[6]; int i, j, m, n; int mean, stages; unsigned int x, y, width, height, level; uint32 n1, n2, n3, n4; // initialize list for breadth first processing of vectors list[0] = pixels; // recursively process vector for (i=0, m=1, n=1, level=5; i < n; i++) { // SVQ1_PROCESS_VECTOR() for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size dst = (uint32 *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); // get number of stages (-1 skips vector, 0 for mean only) stages = getVlc2(s, svq1_intra_multistage[level].table, 3, 3) - 1; if (stages == -1) { for (y=0; y < height; y++) { memset (&dst[y*(pitch / 4)], 0, width); } continue; // skip vector } if ((stages > 0) && (level >= 4)) { warning("Error (svq1_decode_block_intra): invalid vector: stages=%i level=%i", stages, level); return -1; // invalid vector } mean = getVlc2(s, svq1_intra_mean.table, 8, 3); if (stages == 0) { for (y=0; y < height; y++) { memset (&dst[y*(pitch / 4)], mean, width); } } else { // SVQ1_CALC_CODEBOOK_ENTRIES(svq1_intra_codebooks); const uint32 *codebook = (const uint32 *) svq1_intra_codebooks[level]; uint32 bit_cache = s->getBits(4*stages); // calculate codebook entries for this vector for (j=0; j < stages; j++) { entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1); } mean -= (stages * 128); n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); // SVQ1_DO_CODEBOOK_INTRA() for (y=0; y < height; y++) { for (x=0; x < (width / 4); x++, codebook++) { n1 = n4; n2 = n4; // SVQ1_ADD_CODEBOOK() // add codebook entries to vector for (j=0; j < stages; j++) { n3 = codebook[entries[j]] ^ 0x80808080; n1 += ((n3 & 0xFF00FF00) >> 8); n2 += (n3 & 0x00FF00FF); } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= (n3 & 0x00FF00FF); } if (n2 & 0xFF00FF00) { n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= (n3 & 0x00FF00FF); } // store result dst[x] = (n1 << 8) | n2; } dst += (pitch / 4); } } } return 0; } static int svq1DecodeBlockNonIntra(Common::BitStream *s, uint8 *pixels, int pitch) { uint8 *list[63]; uint32 *dst; int entries[6]; int i, j, m, n; int mean, stages; int x, y, width, height, level; uint32 n1, n2, n3, n4; // initialize list for breadth first processing of vectors list[0] = pixels; // recursively process vector for (i=0, m=1, n=1, level=5; i < n; i++) { // SVQ1_PROCESS_VECTOR() for (; level > 0; i++) { // process next depth if (i == m) { m = n; if (--level == 0) break; } // divide block if next bit set if (s->getBit() == 0) break; // add child nodes list[n++] = list[i]; list[n++] = list[i] + (((level & 1) ? pitch : 1) << ((level / 2) + 1)); } // destination address and vector size dst = (uint32 *) list[i]; width = 1 << ((4 + level) /2); height = 1 << ((3 + level) /2); // get number of stages (-1 skips vector, 0 for mean only) stages = getVlc2(s, svq1_inter_multistage[level].table, 3, 2) - 1; if (stages == -1) continue; // skip vector if ((stages > 0) && (level >= 4)) { warning("Error (svq1_decode_block_non_intra): invalid vector: stages=%i level=%i", stages, level); return -1; // invalid vector } mean = getVlc2(s, svq1_inter_mean.table, 9, 3) - 256; // SVQ1_CALC_CODEBOOK_ENTRIES(svq1_inter_codebooks); const uint32 *codebook = (const uint32 *) svq1_inter_codebooks[level]; uint32 bit_cache = s->getBits(4*stages); // calculate codebook entries for this vector for (j=0; j < stages; j++) { entries[j] = (((bit_cache >> (4*(stages - j - 1))) & 0xF) + 16*j) << (level + 1); } mean -= (stages * 128); n4 = ((mean + (mean >> 31)) << 16) | (mean & 0xFFFF); // SVQ1_DO_CODEBOOK_NONINTRA() for (y=0; y < height; y++) { for (x=0; x < (width / 4); x++, codebook++) { n3 = dst[x]; // add mean value to vector n1 = ((n3 & 0xFF00FF00) >> 8) + n4; n2 = (n3 & 0x00FF00FF) + n4; //SVQ1_ADD_CODEBOOK() // add codebook entries to vector for (j=0; j < stages; j++) { n3 = codebook[entries[j]] ^ 0x80808080; n1 += ((n3 & 0xFF00FF00) >> 8); n2 += (n3 & 0x00FF00FF); } // clip to [0..255] if (n1 & 0xFF00FF00) { n3 = ((( n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 += 0x7F007F00; n1 |= (((~n1 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n1 &= (n3 & 0x00FF00FF); } if (n2 & 0xFF00FF00) { n3 = ((( n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 += 0x7F007F00; n2 |= (((~n2 >> 15) & 0x00010001) | 0x01000100) - 0x00010001; n2 &= (n3 & 0x00FF00FF); } // store result dst[x] = (n1 << 8) | n2; } dst += (pitch / 4); } } return 0; } // median of 3 static inline int mid_pred(int a, int b, int c) { if (a > b) { if (c > b) { if (c > a) b = a; else b = c; } } else { if (b > c) { if (c > a) b = c; else b = a; } } return b; } static int svq1DecodeMotionVector(Common::BitStream *s, Common::Point *mv, Common::Point **pmv) { for (int i=0; i < 2; i++) { // get motion code int diff = getVlc2(s, svq1_motion_component.table, 7, 2); if (diff < 0) return -1; else if (diff) { if (s->getBit()) diff= -diff; } // add median of motion vector predictors and clip result if (i == 1) mv->y = ((diff + mid_pred(pmv[0]->y, pmv[1]->y, pmv[2]->y)) << 26) >> 26; else mv->x = ((diff + mid_pred(pmv[0]->x, pmv[1]->x, pmv[2]->x)) << 26) >> 26; } return 0; } static void svq1SkipBlock(uint8 *current, uint8 *previous, int pitch, int x, int y) { uint8 *src; uint8 *dst; src = &previous[x + y*pitch]; dst = current; for (int i = 0; i < 16; i++) { memcpy(dst, src, 16); src += pitch; dst += pitch; } } static int svq1MotionInterBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint8 *src; uint8 *dst; Common::Point mv; Common::Point *pmv[3]; int result; // predict and decode motion vector pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1DecodeMotionVector(ss, &mv, pmv); if (result != 0) return result; motion[0].x = motion[(x / 8) + 2].x = motion[(x / 8) + 3].x = mv.x; motion[0].y = motion[(x / 8) + 2].y = motion[(x / 8) + 3].y = mv.y; if(y + (mv.y >> 1)<0) mv.y= 0; if(x + (mv.x >> 1)<0) mv.x= 0; #if 0 int w = (s->width+15)&~15; int h = (s->height+15)&~15; if(x + (mv.x >> 1)<0 || y + (mv.y >> 1)<0 || x + (mv.x >> 1) + 16 > w || y + (mv.y >> 1) + 16> h) debug(1, "%d %d %d %d", x, y, x + (mv.x >> 1), y + (mv.y >> 1)); #endif src = &previous[(x + (mv.x >> 1)) + (y + (mv.y >> 1))*pitch]; dst = current; // FIXME //MpegEncContext *s //s->dsp.put_pixels_tab[0][((mv.y & 1) << 1) | (mv.x & 1)](dst,src,pitch,16); return 0; } static int svq1MotionInter4vBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint8 *src; uint8 *dst; Common::Point mv; Common::Point *pmv[4]; int i, result; // predict and decode motion vector (0) pmv[0] = &motion[0]; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 2]; pmv[2] = &motion[(x / 8) + 4]; } result = svq1DecodeMotionVector(ss, &mv, pmv); if (result != 0) return result; // predict and decode motion vector (1) pmv[0] = &mv; if (y == 0) { pmv[1] = pmv[2] = pmv[0]; } else { pmv[1] = &motion[(x / 8) + 3]; } result = svq1DecodeMotionVector(ss, &motion[0], pmv); if (result != 0) return result; // predict and decode motion vector (2) pmv[1] = &motion[0]; pmv[2] = &motion[(x / 8) + 1]; result = svq1DecodeMotionVector(ss, &motion[(x / 8) + 2], pmv); if (result != 0) return result; // predict and decode motion vector (3) pmv[2] = &motion[(x / 8) + 2]; pmv[3] = &motion[(x / 8) + 3]; result = svq1DecodeMotionVector(ss, pmv[3], pmv); if (result != 0) return result; // form predictions for (i=0; i < 4; i++) { int mvx = pmv[i]->x + (i&1)*16; int mvy = pmv[i]->y + (i>>1)*16; ///XXX /FIXME clipping or padding? if(y + (mvy >> 1)<0) mvy = 0; if(x + (mvx >> 1)<0) mvx = 0; #if 0 int w = (s->width+15)&~15; int h = (s->height+15)&~15; if(x + (mvx >> 1)<0 || y + (mvy >> 1)<0 || x + (mvx >> 1) + 8 > w || y + (mvy >> 1) + 8> h) debug(1, "%d %d %d %d", x, y, x + (mvx >> 1), y + (mvy >> 1)); #endif src = &previous[(x + (mvx >> 1)) + (y + (mvy >> 1))*pitch]; dst = current; // FIXME //MpegEncContext *s //s->dsp.put_pixels_tab[1][((mvy & 1) << 1) | (mvx & 1)](dst,src,pitch,8); // select next block if (i & 1) { current += 8*(pitch - 1); } else { current += 8; } } return 0; } static int svq1DecodeDeltaBlock(Common::BitStream *ss, uint8 *current, uint8 *previous, int pitch, Common::Point *motion, int x, int y) { uint32 block_type; int result = 0; // get block type block_type = getVlc2(ss, svq1_block_type.table, 2, 2); // reset motion vectors if (block_type == SVQ1_BLOCK_SKIP || block_type == SVQ1_BLOCK_INTRA) { motion[0].x = motion[0].y = motion[(x / 8) + 2].x = motion[(x / 8) + 2].y = motion[(x / 8) + 3].x = motion[(x / 8) + 3].y = 0; } switch (block_type) { case SVQ1_BLOCK_SKIP: svq1SkipBlock(current, previous, pitch, x, y); break; case SVQ1_BLOCK_INTER: result = svq1MotionInterBlock(ss, current, previous, pitch, motion, x, y); if (result != 0) { warning("Error in svq1MotionInterBlock %i", result); break; } result = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTER_4V: result = svq1MotionInter4vBlock(ss, current, previous, pitch, motion, x, y); if (result != 0) { warning("Error in svq1MotionInter4vBlock %i", result); break; } result = svq1DecodeBlockNonIntra(ss, current, pitch); break; case SVQ1_BLOCK_INTRA: result = svq1DecodeBlockIntra(ss, current, pitch); break; } return result; } #define GET_DATA(v, table, i, wrap, size)\ {\ const uint8 *ptr = (const uint8 *)table + i * wrap;\ switch(size) {\ case 1:\ v = *(const uint8 *)ptr;\ break;\ case 2:\ v = *(const uint16 *)ptr;\ break;\ default:\ v = *(const uint32 *)ptr;\ break;\ }\ } static int build_table(VLC *vlc, int table_nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size, int code_prefix, int n_prefix, int flags) { int i, j, k, n, table_size, table_index, nb, n1, index, code_prefix2, symbol; uint32 code; int16 (*table)[2]; table_size = 1 << table_nb_bits; table_index = allocTable(vlc, table_size, flags & 4); if (table_index < 0) return -1; table = &vlc->table[table_index]; for(i = 0; i < table_size; i++) { table[i][1] = 0; //bits table[i][0] = -1; //codes } // first pass: map codes and compute auxillary table sizes for(i = 0; i < nb_codes; i++) { GET_DATA(n, bits, i, bits_wrap, bits_size); GET_DATA(code, codes, i, codes_wrap, codes_size); // we accept tables with holes if (n <= 0) continue; if (!symbols) symbol = i; else GET_DATA(symbol, symbols, i, symbols_wrap, symbols_size); // if code matches the prefix, it is in the table n -= n_prefix; if(flags & 2) code_prefix2= code & (n_prefix>=32 ? 0xffffffff : (1 << n_prefix)-1); else code_prefix2= code >> n; if (n > 0 && code_prefix2 == code_prefix) { if (n <= table_nb_bits) { // no need to add another table j = (code << (table_nb_bits - n)) & (table_size - 1); nb = 1 << (table_nb_bits - n); for(k = 0; k < nb; k++) { if(flags & 2) j = (code >> n_prefix) + (k<> ((flags & 2) ? n_prefix : n)) & ((1 << table_nb_bits) - 1); // compute table size n1 = -table[j][1]; //bits if (n > n1) n1 = n; table[j][1] = -n1; //bits } } } // second pass : fill auxillary tables recursively for(i = 0;i < table_size; i++) { n = table[i][1]; //bits if (n < 0) { n = -n; if (n > table_nb_bits) { n = table_nb_bits; table[i][1] = -n; //bits } index = build_table(vlc, n, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, symbols, symbols_wrap, symbols_size, (flags & 2) ? (code_prefix | (i << n_prefix)) : ((code_prefix << table_nb_bits) | i), n_prefix + table_nb_bits, flags); if (index < 0) return -1; // note: realloc has been done, so reload tables table = &vlc->table[table_index]; table[i][0] = index; //code } } return table_index; } /* Build VLC decoding tables suitable for use with get_vlc(). 'nb_bits' set thee decoding table size (2^nb_bits) entries. The bigger it is, the faster is the decoding. But it should not be too big to save memory and L1 cache. '9' is a good compromise. 'nb_codes' : number of vlcs codes 'bits' : table which gives the size (in bits) of each vlc code. 'codes' : table which gives the bit pattern of of each vlc code. 'symbols' : table which gives the values to be returned from get_vlc(). 'xxx_wrap' : give the number of bytes between each entry of the 'bits' or 'codes' tables. 'xxx_size' : gives the number of bytes of each entry of the 'bits' or 'codes' tables. 'wrap' and 'size' allows to use any memory configuration and types (byte/word/long) to store the 'bits', 'codes', and 'symbols' tables. 'use_static' should be set to 1 for tables, which should be freed with av_free_static(), 0 if free_vlc() will be used. */ void initVlcSparse(VLC *vlc, int nb_bits, int nb_codes, const void *bits, int bits_wrap, int bits_size, const void *codes, int codes_wrap, int codes_size, const void *symbols, int symbols_wrap, int symbols_size) { vlc->bits = nb_bits; if(vlc->table_size && vlc->table_size == vlc->table_allocated) { return; } else if(vlc->table_size) { error("called on a partially initialized table"); } if (build_table(vlc, nb_bits, nb_codes, bits, bits_wrap, bits_size, codes, codes_wrap, codes_size, symbols, symbols_wrap, symbols_size, 0, 0, 4 | 2) < 0) { free(&vlc->table); return; // Error } if(vlc->table_size != vlc->table_allocated) error("SVQ1 needed %d had %d", vlc->table_size, vlc->table_allocated); } SVQ1Decoder::SVQ1Decoder(uint16 width, uint16 height) { _surface = new Graphics::Surface(); _surface->create(width, height, g_system->getScreenFormat()); _current[0] = new byte[width*height]; _current[1] = new byte[(width/4)*(height/4)]; _current[2] = new byte[(width/4)*(height/4)]; _last[0] = 0; _last[1] = 0; _last[2] = 0; // Setup Variable Length Code Tables static int16 tableA[6][2]; svq1_block_type.table = tableA; svq1_block_type.table_allocated = 6; initVlcSparse(&svq1_block_type, 2, 4, &svq1_block_type_vlc[0][1], 2, 1, &svq1_block_type_vlc[0][0], 2, 1, NULL, 0, 0); static int16 tableB[176][2]; svq1_motion_component.table = tableB; svq1_motion_component.table_allocated = 176; initVlcSparse(&svq1_motion_component, 7, 33, &mvtab[0][1], 2, 1, &mvtab[0][0], 2, 1, NULL, 0, 0); uint16 offset = 0; for (uint8 i = 0; i < 6; i++) { static const uint8 sizes[2][6] = {{14, 10, 14, 18, 16, 18}, {10, 10, 14, 14, 14, 16}}; static int16 tableC[168][2]; svq1_intra_multistage[i].table = &tableC[offset]; svq1_intra_multistage[i].table_allocated = sizes[0][i]; offset += sizes[0][i]; initVlcSparse(&svq1_intra_multistage[i], 3, 8, &svq1_intra_multistage_vlc[i][0][1], 2, 1, &svq1_intra_multistage_vlc[i][0][0], 2, 1, NULL, 0, 0); svq1_inter_multistage[i].table = &tableC[offset]; svq1_inter_multistage[i].table_allocated = sizes[1][i]; offset += sizes[1][i]; initVlcSparse(&svq1_inter_multistage[i], 3, 8, &svq1_inter_multistage_vlc[i][0][1], 2, 1, &svq1_inter_multistage_vlc[i][0][0], 2, 1, NULL, 0, 0); } static int16 tableD[632][2]; svq1_intra_mean.table = tableD; svq1_intra_mean.table_allocated = 632; initVlcSparse(&svq1_intra_mean, 8, 256, &svq1_intra_mean_vlc[0][1], 4, 2, &svq1_intra_mean_vlc[0][0], 4, 2, NULL, 0, 0); static int16 tableE[1434][2]; svq1_inter_mean.table = tableE; svq1_inter_mean.table_allocated = 1434; initVlcSparse(&svq1_inter_mean, 9, 512, &svq1_inter_mean_vlc[0][1], 4, 2, &svq1_inter_mean_vlc[0][0], 4, 2, NULL, 0, 0); } SVQ1Decoder::~SVQ1Decoder() { _surface->free(); delete _surface; delete[] _current[0]; delete[] _current[1]; delete[] _current[2]; delete[] _last[0]; delete[] _last[1]; delete[] _last[2]; } const Graphics::Surface *SVQ1Decoder::decodeImage(Common::SeekableReadStream *stream) { debug(1, "SVQ1Decoder::decodeImage()"); Common::BitStream32BEMSB frameData(*stream); uint32 frameCode = frameData.getBits(22); debug(1, " frameCode: %d", frameCode); if ((frameCode & ~0x70) || !(frameCode & 0x60)) { // Invalid warning("Invalid Image at frameCode"); return _surface; } // swap some header bytes (why?) //if (frameCode != 0x20) { // uint32 *src = stream; // // for (i = 4; i < 8; i++) { // src[i] = ((src[i] << 16) | (src[i] >> 16)) ^ src[7 - i]; // } //} #if 0 static const uint16 checksum_table[256] = { 0x0000, 0x1021, 0x2042, 0x3063, 0x4084, 0x50A5, 0x60C6, 0x70E7, 0x8108, 0x9129, 0xA14A, 0xB16B, 0xC18C, 0xD1AD, 0xE1CE, 0xF1EF, 0x1231, 0x0210, 0x3273, 0x2252, 0x52B5, 0x4294, 0x72F7, 0x62D6, 0x9339, 0x8318, 0xB37B, 0xA35A, 0xD3BD, 0xC39C, 0xF3FF, 0xE3DE, 0x2462, 0x3443, 0x0420, 0x1401, 0x64E6, 0x74C7, 0x44A4, 0x5485, 0xA56A, 0xB54B, 0x8528, 0x9509, 0xE5EE, 0xF5CF, 0xC5AC, 0xD58D, 0x3653, 0x2672, 0x1611, 0x0630, 0x76D7, 0x66F6, 0x5695, 0x46B4, 0xB75B, 0xA77A, 0x9719, 0x8738, 0xF7DF, 0xE7FE, 0xD79D, 0xC7BC, 0x48C4, 0x58E5, 0x6886, 0x78A7, 0x0840, 0x1861, 0x2802, 0x3823, 0xC9CC, 0xD9ED, 0xE98E, 0xF9AF, 0x8948, 0x9969, 0xA90A, 0xB92B, 0x5AF5, 0x4AD4, 0x7AB7, 0x6A96, 0x1A71, 0x0A50, 0x3A33, 0x2A12, 0xDBFD, 0xCBDC, 0xFBBF, 0xEB9E, 0x9B79, 0x8B58, 0xBB3B, 0xAB1A, 0x6CA6, 0x7C87, 0x4CE4, 0x5CC5, 0x2C22, 0x3C03, 0x0C60, 0x1C41, 0xEDAE, 0xFD8F, 0xCDEC, 0xDDCD, 0xAD2A, 0xBD0B, 0x8D68, 0x9D49, 0x7E97, 0x6EB6, 0x5ED5, 0x4EF4, 0x3E13, 0x2E32, 0x1E51, 0x0E70, 0xFF9F, 0xEFBE, 0xDFDD, 0xCFFC, 0xBF1B, 0xAF3A, 0x9F59, 0x8F78, 0x9188, 0x81A9, 0xB1CA, 0xA1EB, 0xD10C, 0xC12D, 0xF14E, 0xE16F, 0x1080, 0x00A1, 0x30C2, 0x20E3, 0x5004, 0x4025, 0x7046, 0x6067, 0x83B9, 0x9398, 0xA3FB, 0xB3DA, 0xC33D, 0xD31C, 0xE37F, 0xF35E, 0x02B1, 0x1290, 0x22F3, 0x32D2, 0x4235, 0x5214, 0x6277, 0x7256, 0xB5EA, 0xA5CB, 0x95A8, 0x8589, 0xF56E, 0xE54F, 0xD52C, 0xC50D, 0x34E2, 0x24C3, 0x14A0, 0x0481, 0x7466, 0x6447, 0x5424, 0x4405, 0xA7DB, 0xB7FA, 0x8799, 0x97B8, 0xE75F, 0xF77E, 0xC71D, 0xD73C, 0x26D3, 0x36F2, 0x0691, 0x16B0, 0x6657, 0x7676, 0x4615, 0x5634, 0xD94C, 0xC96D, 0xF90E, 0xE92F, 0x99C8, 0x89E9, 0xB98A, 0xA9AB, 0x5844, 0x4865, 0x7806, 0x6827, 0x18C0, 0x08E1, 0x3882, 0x28A3, 0xCB7D, 0xDB5C, 0xEB3F, 0xFB1E, 0x8BF9, 0x9BD8, 0xABBB, 0xBB9A, 0x4A75, 0x5A54, 0x6A37, 0x7A16, 0x0AF1, 0x1AD0, 0x2AB3, 0x3A92, 0xFD2E, 0xED0F, 0xDD6C, 0xCD4D, 0xBDAA, 0xAD8B, 0x9DE8, 0x8DC9, 0x7C26, 0x6C07, 0x5C64, 0x4C45, 0x3CA2, 0x2C83, 0x1CE0, 0x0CC1, 0xEF1F, 0xFF3E, 0xCF5D, 0xDF7C, 0xAF9B, 0xBFBA, 0x8FD9, 0x9FF8, 0x6E17, 0x7E36, 0x4E55, 0x5E74, 0x2E93, 0x3EB2, 0x0ED1, 0x1EF0 }; #endif byte temporalReference = frameData.getBits(8); debug(1, " temporalReference: %d", temporalReference); const char* types[4] = { "I (Key)", "P (Delta from Previous)", "B (Delta from Next)", "Invalid" }; byte frameType = frameData.getBits(2); debug(1, " frameType: %d = %s Frame", frameType, types[frameType]); if (frameType == 0) { // I Frame // TODO: Validate checksum if present if (frameCode == 0x50 || frameCode == 0x60) { uint32 checksum = frameData.getBits(16); debug(1, " checksum:0x%02x", checksum); //uint16 calculate_packet_checksum (const uint8 *data, const int length) { // int value; //for (int i = 0; i < length; i++) // value = checksum_table[data[i] ^ (value >> 8)] ^ ((value & 0xFF) << 8); } } else if (frameType == 2) { // B Frame warning("B Frames not supported by SVQ1 decoder"); return _surface; } else if (frameType == 3) { // Invalid warning("Invalid Frame Type"); return _surface; } static const uint8 stringXORTable[256] = { 0x00, 0xD5, 0x7F, 0xAA, 0xFE, 0x2B, 0x81, 0x54, 0x29, 0xFC, 0x56, 0x83, 0xD7, 0x02, 0xA8, 0x7D, 0x52, 0x87, 0x2D, 0xF8, 0xAC, 0x79, 0xD3, 0x06, 0x7B, 0xAE, 0x04, 0xD1, 0x85, 0x50, 0xFA, 0x2F, 0xA4, 0x71, 0xDB, 0x0E, 0x5A, 0x8F, 0x25, 0xF0, 0x8D, 0x58, 0xF2, 0x27, 0x73, 0xA6, 0x0C, 0xD9, 0xF6, 0x23, 0x89, 0x5C, 0x08, 0xDD, 0x77, 0xA2, 0xDF, 0x0A, 0xA0, 0x75, 0x21, 0xF4, 0x5E, 0x8B, 0x9D, 0x48, 0xE2, 0x37, 0x63, 0xB6, 0x1C, 0xC9, 0xB4, 0x61, 0xCB, 0x1E, 0x4A, 0x9F, 0x35, 0xE0, 0xCF, 0x1A, 0xB0, 0x65, 0x31, 0xE4, 0x4E, 0x9B, 0xE6, 0x33, 0x99, 0x4C, 0x18, 0xCD, 0x67, 0xB2, 0x39, 0xEC, 0x46, 0x93, 0xC7, 0x12, 0xB8, 0x6D, 0x10, 0xC5, 0x6F, 0xBA, 0xEE, 0x3B, 0x91, 0x44, 0x6B, 0xBE, 0x14, 0xC1, 0x95, 0x40, 0xEA, 0x3F, 0x42, 0x97, 0x3D, 0xE8, 0xBC, 0x69, 0xC3, 0x16, 0xEF, 0x3A, 0x90, 0x45, 0x11, 0xC4, 0x6E, 0xBB, 0xC6, 0x13, 0xB9, 0x6C, 0x38, 0xED, 0x47, 0x92, 0xBD, 0x68, 0xC2, 0x17, 0x43, 0x96, 0x3C, 0xE9, 0x94, 0x41, 0xEB, 0x3E, 0x6A, 0xBF, 0x15, 0xC0, 0x4B, 0x9E, 0x34, 0xE1, 0xB5, 0x60, 0xCA, 0x1F, 0x62, 0xB7, 0x1D, 0xC8, 0x9C, 0x49, 0xE3, 0x36, 0x19, 0xCC, 0x66, 0xB3, 0xE7, 0x32, 0x98, 0x4D, 0x30, 0xE5, 0x4F, 0x9A, 0xCE, 0x1B, 0xB1, 0x64, 0x72, 0xA7, 0x0D, 0xD8, 0x8C, 0x59, 0xF3, 0x26, 0x5B, 0x8E, 0x24, 0xF1, 0xA5, 0x70, 0xDA, 0x0F, 0x20, 0xF5, 0x5F, 0x8A, 0xDE, 0x0B, 0xA1, 0x74, 0x09, 0xDC, 0x76, 0xA3, 0xF7, 0x22, 0x88, 0x5D, 0xD6, 0x03, 0xA9, 0x7C, 0x28, 0xFD, 0x57, 0x82, 0xFF, 0x2A, 0x80, 0x55, 0x01, 0xD4, 0x7E, 0xAB, 0x84, 0x51, 0xFB, 0x2E, 0x7A, 0xAF, 0x05, 0xD0, 0xAD, 0x78, 0xD2, 0x07, 0x53, 0x86, 0x2C, 0xF9 }; if ((frameCode ^ 0x10) >= 0x50) { // Decode embedded string Common::String str; uint8 stringLen = frameData.getBits(8); byte xorVal = stringXORTable[stringLen]; for (uint16 i = 0; i < stringLen-1; i++) { byte data = frameData.getBits(8); str += data ^ xorVal; xorVal = stringXORTable[data]; } debug(1, " Embedded String of %d Characters: \"%s\"", stringLen, str.c_str()); } byte unk1 = frameData.getBits(2); // Unknown debug(1, " unk1: %d", unk1); byte unk2 = frameData.getBits(2); // Unknown debug(1, " unk2: %d", unk2); bool unk3 = frameData.getBit(); // Unknown debug(1, " unk3: %d", unk3); static const struct { uint w, h; } standardFrameSizes[7] = { { 160, 120 }, // 0 { 128, 96 }, // 1 { 176, 144 }, // 2 { 352, 288 }, // 3 { 704, 576 }, // 4 { 240, 180 }, // 5 { 320, 240 } // 6 }; byte frameSizeCode = frameData.getBits(3); debug(1, " frameSizeCode: %d", frameSizeCode); uint16 frameWidth, frameHeight; if (frameSizeCode == 7) { frameWidth = frameData.getBits(12); frameHeight = frameData.getBits(12); } else { frameWidth = standardFrameSizes[frameSizeCode].w; frameHeight = standardFrameSizes[frameSizeCode].h; } debug(1, " frameWidth: %d", frameWidth); debug(1, " frameHeight: %d", frameHeight); if (frameWidth == 0 || frameHeight == 0) { // Invalid warning("Invalid Frame Size"); return _surface; } bool checksumPresent = frameData.getBit(); debug(1, " checksumPresent: %d", checksumPresent); if (checksumPresent) { bool usePacketChecksum = frameData.getBit(); debug(1, " usePacketChecksum: %d", usePacketChecksum); bool componentChecksumsAfterImageData = frameData.getBit(); debug(1, " componentChecksumsAfterImageData: %d", componentChecksumsAfterImageData); byte unk4 = frameData.getBits(2); debug(1, " unk4: %d", unk4); if (unk4 != 0) warning("Invalid Frame Header in SVQ1 Frame Decode"); } bool unk5 = frameData.getBit(); debug(1, " unk5: %d", unk5); if (unk5) { bool unk6 = frameData.getBit(); debug(1, " unk6: %d", unk6); byte unk7 = frameData.getBits(4); debug(1, " unk7: %d", unk7); bool unk8 = frameData.getBit(); debug(1, " unk8: %d", unk8); byte unk9 = frameData.getBits(2); debug(1, " unk9: %d", unk9); while (frameData.getBit()) { byte unk10 = frameData.getBits(8); debug(1, " unk10: %d", unk10); } } if (frameWidth == _surface->w && frameHeight == _surface->h) { // Decode Y, U and V component planes for (int i = 0; i < 3; i++) { int linesize, width, height; if (i == 0) { // Y Size is width * height width = frameWidth; if (width % 16) { width /= 16; width++; width *= 16; } assert(width % 16 == 0); height = frameHeight; if (height % 16) { height /= 16; height++; height *= 16; } assert(height % 16 == 0); linesize = width; } else { // U and V size is width/4 * height/4 width = frameWidth/4; if (width % 16) { width /= 16; width++; width *= 16; } assert(width % 16 == 0); height = frameHeight/4; if (height % 16) { height /= 16; height++; height *= 16; } assert(height % 16 == 0); linesize = width; } if (frameType == 0) { // I Frame // Keyframe (I) byte *current = _current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (int result = svq1DecodeBlockIntra(&frameData, ¤t[x], linesize) != 0) { warning("Error in svq1DecodeBlock %i (keyframe)", result); return _surface; } } current += 16 * linesize; } } else { // Delta frame (P or B) // Prediction Motion Vector Common::Point *pmv = new Common::Point[(width/8) + 3]; byte *previous; if(frameType == 2) { // B Frame warning("B Frame not supported currently"); //previous = _next[i]; } else previous = _last[i]; byte *current = _current[i]; for (uint16 y = 0; y < height; y += 16) { for (uint16 x = 0; x < width; x += 16) { if (int result = svq1DecodeDeltaBlock(&frameData, ¤t[x], previous, linesize, pmv, x, y) != 0) { warning("Error in svq1DecodeDeltaBlock %i", result); return _surface; } } pmv[0].x = pmv[0].y = 0; current += 16*linesize; } delete[] pmv; } } convertYUV410ToRGB(_surface, _current[0], _current[1], _current[2], frameWidth, frameHeight, frameWidth, frameWidth/2); } else warning("FrameWidth/Height Sanity Check Failed!"); return _surface; } } // End of namespace Video