/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ #include "common/debug.h" #include "common/endian.h" #include "common/system.h" #include "common/stream.h" #include "common/textconsole.h" #include "graphics/surface.h" #include "video/dxa_decoder.h" #ifdef USE_ZLIB #include "common/zlib.h" #endif namespace Video { DXADecoder::DXADecoder() { } DXADecoder::~DXADecoder() { close(); } bool DXADecoder::loadStream(Common::SeekableReadStream *stream) { close(); uint32 tag = stream->readUint32BE(); if (tag != MKTAG('D','E','X','A')) { close(); return false; } DXAVideoTrack *track = new DXAVideoTrack(stream); addTrack(track); readSoundData(stream); track->setFrameStartPos(); return true; } void DXADecoder::readSoundData(Common::SeekableReadStream *stream) { // Skip over the tag by default stream->readUint32BE(); } DXADecoder::DXAVideoTrack::DXAVideoTrack(Common::SeekableReadStream *stream) { _fileStream = stream; _curFrame = -1; _frameStartOffset = 0; _decompBuffer = 0; _inBuffer = 0; memset(_palette, 0, 256 * 3); uint8 flags = _fileStream->readByte(); _frameCount = _fileStream->readUint16BE(); int32 frameRate = _fileStream->readSint32BE(); if (frameRate > 0) _frameRate = 1000 / frameRate; else if (frameRate < 0) _frameRate = 100000 / (-frameRate); else _frameRate = 10; _width = _fileStream->readUint16BE(); _height = _fileStream->readUint16BE(); if (flags & 0x80) { _scaleMode = S_INTERLACED; _curHeight = _height / 2; } else if (flags & 0x40) { _scaleMode = S_DOUBLE; _curHeight = _height / 2; } else { _scaleMode = S_NONE; _curHeight = _height; } _surface = new Graphics::Surface(); _surface->format = Graphics::PixelFormat::createFormatCLUT8(); debug(2, "flags 0x0%x framesCount %d width %d height %d rate %d", flags, getFrameCount(), getWidth(), getHeight(), getFrameRate().toInt()); _frameSize = _width * _height; _decompBufferSize = _frameSize; _frameBuffer1 = new byte[_frameSize]; memset(_frameBuffer1, 0, _frameSize); _frameBuffer2 = new byte[_frameSize]; memset(_frameBuffer2, 0, _frameSize); _scaledBuffer = 0; if (_scaleMode != S_NONE) { _scaledBuffer = new byte[_frameSize]; memset(_scaledBuffer, 0, _frameSize); } #ifdef DXA_EXPERIMENT_MAXD // Check for an extended header if (flags & 1) { uint32 size; do { tag = _fileStream->readUint32BE(); if (tag != 0) size = _fileStream->readUint32BE(); switch (tag) { case 0: // No more tags break; case MKTAG('M','A','X','D'): assert(size == 4); _decompBufferSize = _fileStream->readUint32BE(); break; default: // Unknown tag - skip it. while (size > 0) { byte dummy = _fileStream->readByte(); size--; } break; } } while (tag != 0); } #endif } DXADecoder::DXAVideoTrack::~DXAVideoTrack() { delete _fileStream; delete _surface; delete[] _frameBuffer1; delete[] _frameBuffer2; delete[] _scaledBuffer; delete[] _inBuffer; delete[] _decompBuffer; } bool DXADecoder::DXAVideoTrack::rewind() { _curFrame = -1; _fileStream->seek(_frameStartOffset); return true; } Graphics::PixelFormat DXADecoder::DXAVideoTrack::getPixelFormat() const { return _surface->format; } void DXADecoder::DXAVideoTrack::setFrameStartPos() { _frameStartOffset = _fileStream->pos(); } void DXADecoder::DXAVideoTrack::decodeZlib(byte *data, int size, int totalSize) { #ifdef USE_ZLIB unsigned long dstLen = totalSize; Common::uncompress(data, &dstLen, _inBuffer, size); #endif } #define BLOCKW 4 #define BLOCKH 4 void DXADecoder::DXAVideoTrack::decode12(int size) { #ifdef USE_ZLIB if (!_decompBuffer) { _decompBuffer = new byte[_decompBufferSize]; memset(_decompBuffer, 0, _decompBufferSize); } /* decompress the input data */ decodeZlib(_decompBuffer, size, _decompBufferSize); byte *dat = _decompBuffer; memcpy(_frameBuffer2, _frameBuffer1, _frameSize); for (uint32 by = 0; by < _height; by += BLOCKH) { for (uint32 bx = 0; bx < _width; bx += BLOCKW) { byte type = *dat++; byte *b2 = _frameBuffer1 + bx + by * _width; switch (type) { case 0: break; case 10: case 11: case 12: case 13: case 14: case 15: case 1: { unsigned short diffMap; if (type >= 10 && type <= 15) { static const struct { uint8 sh1, sh2; } shiftTbl[6] = { {0, 0}, {8, 0}, {8, 8}, {8, 4}, {4, 0}, {4, 4} }; diffMap = ((*dat & 0xF0) << shiftTbl[type-10].sh1) | ((*dat & 0x0F) << shiftTbl[type-10].sh2); dat++; } else { diffMap = *(unsigned short*)dat; dat += 2; } for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { if (diffMap & 0x8000) { b2[xc] = *dat++; } diffMap <<= 1; } b2 += _width; } break; } case 2: { byte color = *dat++; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = color; } b2 += _width; } break; } case 3: { for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = *dat++; } b2 += _width; } break; } case 4: { byte mbyte = *dat++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; byte *b1 = _frameBuffer2 + (bx+mx) + (by+my) * _width; for (int yc = 0; yc < BLOCKH; yc++) { memcpy(b2, b1, BLOCKW); b1 += _width; b2 += _width; } break; } case 5: break; default: error("decode12: Unknown type %d", type); } } } #endif } void DXADecoder::DXAVideoTrack::decode13(int size) { #ifdef USE_ZLIB uint8 *codeBuf, *dataBuf, *motBuf, *maskBuf; if (!_decompBuffer) { _decompBuffer = new byte[_decompBufferSize]; memset(_decompBuffer, 0, _decompBufferSize); } /* decompress the input data */ decodeZlib(_decompBuffer, size, _decompBufferSize); memcpy(_frameBuffer2, _frameBuffer1, _frameSize); int codeSize = _width * _curHeight / 16; int dataSize, motSize; dataSize = READ_BE_UINT32(&_decompBuffer[0]); motSize = READ_BE_UINT32(&_decompBuffer[4]); //maskSize = READ_BE_UINT32(&_decompBuffer[8]); codeBuf = &_decompBuffer[12]; dataBuf = &codeBuf[codeSize]; motBuf = &dataBuf[dataSize]; maskBuf = &motBuf[motSize]; for (uint32 by = 0; by < _curHeight; by += BLOCKH) { for (uint32 bx = 0; bx < _width; bx += BLOCKW) { uint8 type = *codeBuf++; uint8 *b2 = (uint8 *)_frameBuffer1 + bx + by * _width; switch (type) { case 0: break; case 1: { uint16 diffMap = READ_BE_UINT16(maskBuf); maskBuf += 2; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { if (diffMap & 0x8000) { b2[xc] = *dataBuf++; } diffMap <<= 1; } b2 += _width; } break; } case 2: { uint8 color = *dataBuf++; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = color; } b2 += _width; } break; } case 3: { for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = *dataBuf++; } b2 += _width; } break; } case 4: { uint8 mbyte = *motBuf++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; uint8 *b1 = (uint8 *)_frameBuffer2 + (bx+mx) + (by+my) * _width; for (int yc = 0; yc < BLOCKH; yc++) { memcpy(b2, b1, BLOCKW); b1 += _width; b2 += _width; } break; } case 8: { static const int subX[4] = {0, 2, 0, 2}; static const int subY[4] = {0, 0, 2, 2}; uint8 subMask = *maskBuf++; for (int subBlock = 0; subBlock < 4; subBlock++) { int sx = bx + subX[subBlock], sy = by + subY[subBlock]; b2 = (uint8 *)_frameBuffer1 + sx + sy * _width; switch (subMask & 0xC0) { // 00: skip case 0x00: default: break; // 01: solid color case 0x40: { uint8 subColor = *dataBuf++; for (int yc = 0; yc < BLOCKH / 2; yc++) { for (int xc = 0; xc < BLOCKW / 2; xc++) { b2[xc] = subColor; } b2 += _width; } break; } // 02: motion vector case 0x80: { uint8 mbyte = *motBuf++; int mx = (mbyte >> 4) & 0x07; if (mbyte & 0x80) mx = -mx; int my = mbyte & 0x07; if (mbyte & 0x08) my = -my; uint8 *b1 = (uint8 *)_frameBuffer2 + (sx+mx) + (sy+my) * _width; for (int yc = 0; yc < BLOCKH / 2; yc++) { memcpy(b2, b1, BLOCKW / 2); b1 += _width; b2 += _width; } break; } // 03: raw case 0xC0: for (int yc = 0; yc < BLOCKH / 2; yc++) { for (int xc = 0; xc < BLOCKW / 2; xc++) { b2[xc] = *dataBuf++; } b2 += _width; } break; } subMask <<= 2; } break; } case 32: case 33: case 34: { int count = type - 30; uint8 pixels[4]; memcpy(pixels, dataBuf, count); dataBuf += count; if (count == 2) { uint16 code = READ_BE_UINT16(maskBuf); maskBuf += 2; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = pixels[code & 1]; code >>= 1; } b2 += _width; } } else { uint32 code = READ_BE_UINT32(maskBuf); maskBuf += 4; for (int yc = 0; yc < BLOCKH; yc++) { for (int xc = 0; xc < BLOCKW; xc++) { b2[xc] = pixels[code & 3]; code >>= 2; } b2 += _width; } } break; } default: error("decode13: Unknown type %d", type); } } } #endif } const Graphics::Surface *DXADecoder::DXAVideoTrack::decodeNextFrame() { uint32 tag = _fileStream->readUint32BE(); if (tag == MKTAG('C','M','A','P')) { _fileStream->read(_palette, 256 * 3); _dirtyPalette = true; } tag = _fileStream->readUint32BE(); if (tag == MKTAG('F','R','A','M')) { byte type = _fileStream->readByte(); uint32 size = _fileStream->readUint32BE(); if (!_inBuffer || _inBufferSize < size) { delete[] _inBuffer; _inBuffer = new byte[size]; memset(_inBuffer, 0, size); _inBufferSize = size; } _fileStream->read(_inBuffer, size); switch (type) { case 2: decodeZlib(_frameBuffer1, size, _frameSize); break; case 3: decodeZlib(_frameBuffer2, size, _frameSize); break; case 12: decode12(size); break; case 13: decode13(size); break; default: error("decodeFrame: Unknown compression type %d", type); } if (type == 3) { for (uint32 j = 0; j < _curHeight; ++j) { for (uint32 i = 0; i < _width; ++i) { const int offs = j * _width + i; _frameBuffer1[offs] ^= _frameBuffer2[offs]; } } } } switch (_scaleMode) { case S_INTERLACED: for (int cy = 0; cy < _curHeight; cy++) { memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width); memset(&_scaledBuffer[((2 * cy) + 1) * _width], 0, _width); } _surface->setPixels(_scaledBuffer); break; case S_DOUBLE: for (int cy = 0; cy < _curHeight; cy++) { memcpy(&_scaledBuffer[2 * cy * _width], &_frameBuffer1[cy * _width], _width); memcpy(&_scaledBuffer[((2 * cy) + 1) * _width], &_frameBuffer1[cy * _width], _width); } _surface->setPixels(_scaledBuffer); break; case S_NONE: _surface->setPixels(_frameBuffer1); break; default: break; } // Copy in the relevant info to the Surface _surface->w = getWidth(); _surface->h = getHeight(); _surface->pitch = getWidth(); _curFrame++; return _surface; } } // End of namespace Video