/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // // Partially based on ffmpeg code. // // Copyright (c) 2001 Fabrice Bellard. // First version by Francois Revol revol@free.fr // Seek function by Gael Chardon gael.dev@4now.net // #include "video/qt_decoder.h" #include "audio/audiostream.h" #include "common/debug.h" #include "common/endian.h" #include "common/memstream.h" #include "common/system.h" #include "common/textconsole.h" #include "common/util.h" // Video codecs #include "video/codecs/codec.h" #include "video/codecs/cinepak.h" #include "video/codecs/mjpeg.h" #include "video/codecs/qtrle.h" #include "video/codecs/rpza.h" #include "video/codecs/smc.h" #include "video/codecs/cdtoons.h" namespace Video { //////////////////////////////////////////// // QuickTimeDecoder //////////////////////////////////////////// QuickTimeDecoder::QuickTimeDecoder() { _curFrame = -1; _startTime = _nextFrameStartTime = 0; _audHandle = Audio::SoundHandle(); _scaledSurface = 0; _dirtyPalette = false; _palette = 0; } QuickTimeDecoder::~QuickTimeDecoder() { close(); } uint16 QuickTimeDecoder::getWidth() const { if (_videoTrackIndex < 0) return 0; return (Common::Rational(_tracks[_videoTrackIndex]->width) / getScaleFactorX()).toInt(); } uint16 QuickTimeDecoder::getHeight() const { if (_videoTrackIndex < 0) return 0; return (Common::Rational(_tracks[_videoTrackIndex]->height) / getScaleFactorY()).toInt(); } uint32 QuickTimeDecoder::getFrameCount() const { if (_videoTrackIndex < 0) return 0; return _tracks[_videoTrackIndex]->frameCount; } Common::Rational QuickTimeDecoder::getScaleFactorX() const { if (_videoTrackIndex < 0) return 1; return (_scaleFactorX * _tracks[_videoTrackIndex]->scaleFactorX); } Common::Rational QuickTimeDecoder::getScaleFactorY() const { if (_videoTrackIndex < 0) return 1; return (_scaleFactorY * _tracks[_videoTrackIndex]->scaleFactorY); } uint32 QuickTimeDecoder::getFrameDuration() { if (_videoTrackIndex < 0) return 0; uint32 curFrameIndex = 0; for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount; i++) { curFrameIndex += _tracks[_videoTrackIndex]->timeToSample[i].count; if ((uint32)_curFrame < curFrameIndex) { // Ok, now we have what duration this frame has. return _tracks[_videoTrackIndex]->timeToSample[i].duration; } } // This should never occur error ("Cannot find duration for frame %d", _curFrame); return 0; } Graphics::PixelFormat QuickTimeDecoder::getPixelFormat() const { Codec *codec = findDefaultVideoCodec(); if (!codec) return Graphics::PixelFormat::createFormatCLUT8(); return codec->getPixelFormat(); } uint32 QuickTimeDecoder::findKeyFrame(uint32 frame) const { for (int i = _tracks[_videoTrackIndex]->keyframeCount - 1; i >= 0; i--) if (_tracks[_videoTrackIndex]->keyframes[i] <= frame) return _tracks[_videoTrackIndex]->keyframes[i]; // If none found, we'll assume the requested frame is a key frame return frame; } void QuickTimeDecoder::seekToFrame(uint32 frame) { assert(_videoTrackIndex >= 0); assert(frame < _tracks[_videoTrackIndex]->frameCount); // Stop all audio (for now) stopAudio(); // Track down the keyframe _curFrame = findKeyFrame(frame) - 1; while (_curFrame < (int32)frame - 1) decodeNextFrame(); // Map out the starting point _nextFrameStartTime = 0; uint32 curFrame = 0; for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount && curFrame < frame; i++) { for (int32 j = 0; j < _tracks[_videoTrackIndex]->timeToSample[i].count && curFrame < frame; j++) { curFrame++; _nextFrameStartTime += _tracks[_videoTrackIndex]->timeToSample[i].duration; } } // Adjust the video starting point const Audio::Timestamp curVideoTime(0, _nextFrameStartTime, _tracks[_videoTrackIndex]->timeScale); _startTime = g_system->getMillis() - curVideoTime.msecs(); resetPauseStartTime(); // Adjust the audio starting point if (_audioTrackIndex >= 0) { _audioStartOffset = curVideoTime; // Seek to the new audio location setAudioStreamPos(_audioStartOffset); // Restart the audio startAudio(); } } void QuickTimeDecoder::seekToTime(Audio::Timestamp time) { // Use makeQuickTimeStream() instead if (_videoTrackIndex < 0) error("Audio-only seeking not supported"); // Try to find the last frame that should have been decoded uint32 frame = 0; Audio::Timestamp totalDuration(0, _tracks[_videoTrackIndex]->timeScale); bool done = false; for (int32 i = 0; i < _tracks[_videoTrackIndex]->timeToSampleCount && !done; i++) { for (int32 j = 0; j < _tracks[_videoTrackIndex]->timeToSample[i].count; j++) { totalDuration = totalDuration.addFrames(_tracks[_videoTrackIndex]->timeToSample[i].duration); if (totalDuration > time) { done = true; break; } frame++; } } seekToFrame(frame); } void QuickTimeDecoder::startAudio() { if (_audStream) { updateAudioBuffer(); g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audHandle, _audStream, -1, Audio::Mixer::kMaxChannelVolume, 0, DisposeAfterUse::NO); } // else no audio or the audio compression is not supported } void QuickTimeDecoder::stopAudio() { if (_audStream) g_system->getMixer()->stopHandle(_audHandle); } void QuickTimeDecoder::pauseVideoIntern(bool pause) { if (_audStream) g_system->getMixer()->pauseHandle(_audHandle, pause); } Codec *QuickTimeDecoder::findDefaultVideoCodec() const { if (_videoTrackIndex < 0 || _tracks[_videoTrackIndex]->sampleDescs.empty()) return 0; return ((VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[0])->_videoCodec; } const Graphics::Surface *QuickTimeDecoder::decodeNextFrame() { if (_videoTrackIndex < 0 || _curFrame >= (int32)getFrameCount() - 1) return 0; if (_startTime == 0) _startTime = g_system->getMillis(); _curFrame++; _nextFrameStartTime += getFrameDuration(); // Update the audio while we're at it updateAudioBuffer(); // Get the next packet uint32 descId; Common::SeekableReadStream *frameData = getNextFramePacket(descId); if (!frameData || !descId || descId > _tracks[_videoTrackIndex]->sampleDescs.size()) return 0; // Find which video description entry we want VideoSampleDesc *entry = (VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[descId - 1]; if (!entry->_videoCodec) return 0; const Graphics::Surface *frame = entry->_videoCodec->decodeImage(frameData); delete frameData; // Update the palette if (entry->_videoCodec->containsPalette()) { // The codec itself contains a palette if (entry->_videoCodec->hasDirtyPalette()) { _palette = entry->_videoCodec->getPalette(); _dirtyPalette = true; } } else { // Check if the video description has been updated byte *palette = entry->_palette; if (palette != _palette) { _palette = palette; _dirtyPalette = true; } } return scaleSurface(frame); } const Graphics::Surface *QuickTimeDecoder::scaleSurface(const Graphics::Surface *frame) { if (getScaleFactorX() == 1 && getScaleFactorY() == 1) return frame; assert(_scaledSurface); for (int32 j = 0; j < _scaledSurface->h; j++) for (int32 k = 0; k < _scaledSurface->w; k++) memcpy(_scaledSurface->getBasePtr(k, j), frame->getBasePtr((k * getScaleFactorX()).toInt() , (j * getScaleFactorY()).toInt()), frame->format.bytesPerPixel); return _scaledSurface; } bool QuickTimeDecoder::endOfVideo() const { return (!_audStream || _audStream->endOfData()) && (!findDefaultVideoCodec() || SeekableVideoDecoder::endOfVideo()); } uint32 QuickTimeDecoder::getElapsedTime() const { if (_audStream) return g_system->getMixer()->getSoundElapsedTime(_audHandle) + _audioStartOffset.msecs(); return SeekableVideoDecoder::getElapsedTime(); } uint32 QuickTimeDecoder::getTimeToNextFrame() const { if (endOfVideo() || _curFrame < 0) return 0; // Convert from the QuickTime rate base to 1000 uint32 nextFrameStartTime = _nextFrameStartTime * 1000 / _tracks[_videoTrackIndex]->timeScale; uint32 elapsedTime = getElapsedTime(); if (nextFrameStartTime <= elapsedTime) return 0; return nextFrameStartTime - elapsedTime; } bool QuickTimeDecoder::loadFile(const Common::String &filename) { if (!Common::QuickTimeParser::parseFile(filename)) return false; init(); return true; } bool QuickTimeDecoder::loadStream(Common::SeekableReadStream *stream) { if (!Common::QuickTimeParser::parseStream(stream)) return false; init(); return true; } void QuickTimeDecoder::init() { Audio::QuickTimeAudioDecoder::init(); _videoTrackIndex = -1; _startTime = 0; // Find video streams for (uint32 i = 0; i < _tracks.size(); i++) if (_tracks[i]->codecType == CODEC_TYPE_VIDEO && _videoTrackIndex < 0) _videoTrackIndex = i; // Start the audio codec if we've got one that we can handle if (_audStream) { startAudio(); _audioStartOffset = Audio::Timestamp(0); } // Initialize video, if present if (_videoTrackIndex >= 0) { for (uint32 i = 0; i < _tracks[_videoTrackIndex]->sampleDescs.size(); i++) ((VideoSampleDesc *)_tracks[_videoTrackIndex]->sampleDescs[i])->initCodec(); if (getScaleFactorX() != 1 || getScaleFactorY() != 1) { // We have to initialize the scaled surface _scaledSurface = new Graphics::Surface(); _scaledSurface->create(getWidth(), getHeight(), getPixelFormat()); } } } Common::QuickTimeParser::SampleDesc *QuickTimeDecoder::readSampleDesc(Track *track, uint32 format) { if (track->codecType == CODEC_TYPE_VIDEO) { debug(0, "Video Codec FourCC: \'%s\'", tag2str(format)); VideoSampleDesc *entry = new VideoSampleDesc(track, format); _fd->readUint16BE(); // version _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor _fd->readUint32BE(); // temporal quality _fd->readUint32BE(); // spacial quality uint16 width = _fd->readUint16BE(); // width uint16 height = _fd->readUint16BE(); // height // The width is most likely invalid for entries after the first one // so only set the overall width if it is not zero here. if (width) track->width = width; if (height) track->height = height; _fd->readUint32BE(); // horiz resolution _fd->readUint32BE(); // vert resolution _fd->readUint32BE(); // data size, always 0 _fd->readUint16BE(); // frames per samples byte codecName[32]; _fd->read(codecName, 32); // codec name, pascal string (FIXME: true for mp4?) if (codecName[0] <= 31) { memcpy(entry->_codecName, &codecName[1], codecName[0]); entry->_codecName[codecName[0]] = 0; } entry->_bitsPerSample = _fd->readUint16BE(); // depth entry->_colorTableId = _fd->readUint16BE(); // colortable id // figure out the palette situation byte colorDepth = entry->_bitsPerSample & 0x1F; bool colorGreyscale = (entry->_bitsPerSample & 0x20) != 0; debug(0, "color depth: %d", colorDepth); // if the depth is 2, 4, or 8 bpp, file is palettized if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) { // Initialize the palette entry->_palette = new byte[256 * 3]; memset(entry->_palette, 0, 256 * 3); if (colorGreyscale) { debug(0, "Greyscale palette"); // compute the greyscale palette uint16 colorCount = 1 << colorDepth; int16 colorIndex = 255; byte colorDec = 256 / (colorCount - 1); for (byte j = 0; j < colorCount; j++) { entry->_palette[j * 3] = entry->_palette[j * 3 + 1] = entry->_palette[j * 3 + 2] = colorIndex; colorIndex -= colorDec; if (colorIndex < 0) colorIndex = 0; } } else if (entry->_colorTableId & 0x08) { // if flag bit 3 is set, use the default palette //uint16 colorCount = 1 << colorDepth; warning("Predefined palette! %dbpp", colorDepth); } else { debug(0, "Palette from file"); // load the palette from the file uint32 colorStart = _fd->readUint32BE(); /* uint16 colorCount = */ _fd->readUint16BE(); uint16 colorEnd = _fd->readUint16BE(); for (uint32 j = colorStart; j <= colorEnd; j++) { // each R, G, or B component is 16 bits; // only use the top 8 bits; skip alpha bytes // up front _fd->readByte(); _fd->readByte(); entry->_palette[j * 3] = _fd->readByte(); _fd->readByte(); entry->_palette[j * 3 + 1] = _fd->readByte(); _fd->readByte(); entry->_palette[j * 3 + 2] = _fd->readByte(); _fd->readByte(); } } } return entry; } // Pass it on up return Audio::QuickTimeAudioDecoder::readSampleDesc(track, format); } void QuickTimeDecoder::close() { stopAudio(); if (_scaledSurface) { _scaledSurface->free(); delete _scaledSurface; _scaledSurface = 0; } Common::QuickTimeParser::close(); SeekableVideoDecoder::reset(); } Common::SeekableReadStream *QuickTimeDecoder::getNextFramePacket(uint32 &descId) { if (_videoTrackIndex < 0) return NULL; // First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for. int32 totalSampleCount = 0; int32 sampleInChunk = 0; int32 actualChunk = -1; for (uint32 i = 0; i < _tracks[_videoTrackIndex]->chunkCount; i++) { int32 sampleToChunkIndex = -1; for (uint32 j = 0; j < _tracks[_videoTrackIndex]->sampleToChunkCount; j++) if (i >= _tracks[_videoTrackIndex]->sampleToChunk[j].first) sampleToChunkIndex = j; if (sampleToChunkIndex < 0) error("This chunk (%d) is imaginary", sampleToChunkIndex); totalSampleCount += _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].count; if (totalSampleCount > getCurFrame()) { actualChunk = i; descId = _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].id; sampleInChunk = _tracks[_videoTrackIndex]->sampleToChunk[sampleToChunkIndex].count - totalSampleCount + getCurFrame(); break; } } if (actualChunk < 0) { warning ("Could not find data for frame %d", getCurFrame()); return NULL; } // Next seek to that frame _fd->seek(_tracks[_videoTrackIndex]->chunkOffsets[actualChunk]); // Then, if the chunk holds more than one frame, seek to where the frame we want is located for (int32 i = getCurFrame() - sampleInChunk; i < getCurFrame(); i++) { if (_tracks[_videoTrackIndex]->sampleSize != 0) _fd->skip(_tracks[_videoTrackIndex]->sampleSize); else _fd->skip(_tracks[_videoTrackIndex]->sampleSizes[i]); } // Finally, read in the raw data for the frame //printf ("Frame Data[%d]: Offset = %d, Size = %d\n", getCurFrame(), _fd->pos(), _tracks[_videoTrackIndex]->sampleSizes[getCurFrame()]); if (_tracks[_videoTrackIndex]->sampleSize != 0) return _fd->readStream(_tracks[_videoTrackIndex]->sampleSize); return _fd->readStream(_tracks[_videoTrackIndex]->sampleSizes[getCurFrame()]); } void QuickTimeDecoder::updateAudioBuffer() { if (!_audStream) return; uint32 numberOfChunksNeeded = 0; if (_videoTrackIndex < 0 || _curFrame == (int32)_tracks[_videoTrackIndex]->frameCount - 1) { // If we have no video, there's nothing to base our buffer against // However, one must ask why a QuickTimeDecoder is being used instead of the nice makeQuickTimeStream() function // If we're on the last frame, make sure all audio remaining is buffered numberOfChunksNeeded = _tracks[_audioTrackIndex]->chunkCount; } else { Audio::QuickTimeAudioDecoder::AudioSampleDesc *entry = (Audio::QuickTimeAudioDecoder::AudioSampleDesc *)_tracks[_audioTrackIndex]->sampleDescs[0]; // Calculate the amount of chunks we need in memory until the next frame uint32 timeToNextFrame = getTimeToNextFrame(); uint32 timeFilled = 0; uint32 curAudioChunk = _curAudioChunk - _audStream->numQueuedStreams(); for (; timeFilled < timeToNextFrame && curAudioChunk < _tracks[_audioTrackIndex]->chunkCount; numberOfChunksNeeded++, curAudioChunk++) { uint32 sampleCount = entry->getAudioChunkSampleCount(curAudioChunk); assert(sampleCount); timeFilled += sampleCount * 1000 / entry->_sampleRate; } // Add a couple extra to ensure we don't underrun numberOfChunksNeeded += 3; } // Keep three streams in buffer so that if/when the first two end, it goes right into the next while (_audStream->numQueuedStreams() < numberOfChunksNeeded && _curAudioChunk < _tracks[_audioTrackIndex]->chunkCount) queueNextAudioChunk(); } QuickTimeDecoder::VideoSampleDesc::VideoSampleDesc(Common::QuickTimeParser::Track *parentTrack, uint32 codecTag) : Common::QuickTimeParser::SampleDesc(parentTrack, codecTag) { memset(_codecName, 0, 32); _colorTableId = 0; _palette = 0; _videoCodec = 0; _bitsPerSample = 0; } QuickTimeDecoder::VideoSampleDesc::~VideoSampleDesc() { delete[] _palette; delete _videoCodec; } void QuickTimeDecoder::VideoSampleDesc::initCodec() { switch (_codecTag) { case MKTAG('c','v','i','d'): // Cinepak: As used by most Myst and all Riven videos as well as some Myst ME videos. "The Chief" videos also use this. _videoCodec = new CinepakDecoder(_bitsPerSample & 0x1f); break; case MKTAG('r','p','z','a'): // Apple Video ("Road Pizza"): Used by some Myst videos. _videoCodec = new RPZADecoder(_parentTrack->width, _parentTrack->height); break; case MKTAG('r','l','e',' '): // QuickTime RLE: Used by some Myst ME videos. _videoCodec = new QTRLEDecoder(_parentTrack->width, _parentTrack->height, _bitsPerSample & 0x1f); break; case MKTAG('s','m','c',' '): // Apple SMC: Used by some Myst videos. _videoCodec = new SMCDecoder(_parentTrack->width, _parentTrack->height); break; case MKTAG('S','V','Q','1'): // Sorenson Video 1: Used by some Myst ME videos. warning("Sorenson Video 1 not yet supported"); break; case MKTAG('S','V','Q','3'): // Sorenson Video 3: Used by some Myst ME videos. warning("Sorenson Video 3 not yet supported"); break; case MKTAG('j','p','e','g'): // Motion JPEG: Used by some Myst ME 10th Anniversary videos. _videoCodec = new JPEGDecoder(); break; case MKTAG('Q','k','B','k'): // CDToons: Used by most of the Broderbund games. _videoCodec = new CDToonsDecoder(_parentTrack->width, _parentTrack->height); break; default: warning("Unsupported codec \'%s\'", tag2str(_codecTag)); } } } // End of namespace Video