/* ScummVM - Graphic Adventure Engine * * ScummVM is the legal property of its developers, whose names * are too numerous to list here. Please refer to the COPYRIGHT * file distributed with this source distribution. * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * as published by the Free Software Foundation; either version 2 * of the License, or (at your option) any later version. * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * You should have received a copy of the GNU General Public License * along with this program; if not, write to the Free Software * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. * */ // // Heavily based on ffmpeg code. // // Copyright (c) 2001 Fabrice Bellard. // First version by Francois Revol revol@free.fr // Seek function by Gael Chardon gael.dev@4now.net // #include "video/qt_decoder.h" #include "common/debug.h" #include "common/endian.h" #include "common/macresman.h" #include "common/memstream.h" #include "common/util.h" #include "common/zlib.h" #include "common/stream.h" #include "common/system.h" #include "common/textconsole.h" #include "common/types.h" #include "graphics/pixelformat.h" #include "graphics/surface.h" #include "audio/audiostream.h" // Audio codecs #include "audio/decoders/adpcm.h" #include "audio/decoders/raw.h" // Video codecs #include "video/codecs/codec.h" #include "video/codecs/cinepak.h" #include "video/codecs/mjpeg.h" #include "video/codecs/qdm2.h" #include "video/codecs/qtrle.h" #include "video/codecs/rpza.h" #include "video/codecs/smc.h" #include "video/codecs/cdtoons.h" namespace Video { //////////////////////////////////////////// // QuickTimeDecoder //////////////////////////////////////////// QuickTimeDecoder::QuickTimeDecoder() { _audStream = NULL; _beginOffset = 0; _curFrame = -1; _startTime = _nextFrameStartTime = 0; _audHandle = Audio::SoundHandle(); _numStreams = 0; _fd = 0; _scaledSurface = 0; _scaleFactorX = 1; _scaleFactorY = 1; _dirtyPalette = false; _resFork = new Common::MacResManager(); _palette = 0; initParseTable(); } QuickTimeDecoder::~QuickTimeDecoder() { close(); delete _resFork; } uint16 QuickTimeDecoder::getWidth() const { if (_videoStreamIndex < 0) return 0; return (Common::Rational(_streams[_videoStreamIndex]->width) / getScaleFactorX()).toInt(); } uint16 QuickTimeDecoder::getHeight() const { if (_videoStreamIndex < 0) return 0; return (Common::Rational(_streams[_videoStreamIndex]->height) / getScaleFactorY()).toInt(); } uint32 QuickTimeDecoder::getFrameCount() const { if (_videoStreamIndex < 0) return 0; return _streams[_videoStreamIndex]->nb_frames; } Common::Rational QuickTimeDecoder::getScaleFactorX() const { if (_videoStreamIndex < 0) return 1; return (_scaleFactorX * _streams[_videoStreamIndex]->scaleFactorX); } Common::Rational QuickTimeDecoder::getScaleFactorY() const { if (_videoStreamIndex < 0) return 1; return (_scaleFactorY * _streams[_videoStreamIndex]->scaleFactorY); } uint32 QuickTimeDecoder::getFrameDuration() { if (_videoStreamIndex < 0) return 0; uint32 curFrameIndex = 0; for (int32 i = 0; i < _streams[_videoStreamIndex]->stts_count; i++) { curFrameIndex += _streams[_videoStreamIndex]->stts_data[i].count; if ((uint32)_curFrame < curFrameIndex) { // Ok, now we have what duration this frame has. return _streams[_videoStreamIndex]->stts_data[i].duration; } } // This should never occur error ("Cannot find duration for frame %d", _curFrame); return 0; } Graphics::PixelFormat QuickTimeDecoder::getPixelFormat() const { Codec *codec = findDefaultVideoCodec(); if (!codec) return Graphics::PixelFormat::createFormatCLUT8(); return codec->getPixelFormat(); } uint32 QuickTimeDecoder::findKeyFrame(uint32 frame) const { for (int i = _streams[_videoStreamIndex]->keyframe_count - 1; i >= 0; i--) if (_streams[_videoStreamIndex]->keyframes[i] <= frame) return _streams[_videoStreamIndex]->keyframes[i]; // If none found, we'll assume the requested frame is a key frame return frame; } void QuickTimeDecoder::seekToFrame(uint32 frame) { assert(_videoStreamIndex >= 0); assert(frame < _streams[_videoStreamIndex]->nb_frames); // Stop all audio (for now) stopAudio(); // Track down the keyframe _curFrame = findKeyFrame(frame) - 1; while (_curFrame < (int32)frame - 1) decodeNextFrame(); // Map out the starting point _nextFrameStartTime = 0; uint32 curFrame = 0; for (int32 i = 0; i < _streams[_videoStreamIndex]->stts_count && curFrame < frame; i++) { for (int32 j = 0; j < _streams[_videoStreamIndex]->stts_data[i].count && curFrame < frame; j++) { curFrame++; _nextFrameStartTime += _streams[_videoStreamIndex]->stts_data[i].duration; } } // Adjust the video starting point const Audio::Timestamp curVideoTime(0, _nextFrameStartTime, _streams[_videoStreamIndex]->time_scale); _startTime = g_system->getMillis() - curVideoTime.msecs(); resetPauseStartTime(); // Adjust the audio starting point if (_audioStreamIndex >= 0) { _audioStartOffset = curVideoTime; // Re-create the audio stream STSDEntry *entry = &_streams[_audioStreamIndex]->stsdEntries[0]; _audStream = Audio::makeQueuingAudioStream(entry->sampleRate, entry->channels == 2); // First, we need to track down what audio sample we need Audio::Timestamp curAudioTime(0, _streams[_audioStreamIndex]->time_scale); uint sample = 0; bool done = false; for (int32 i = 0; i < _streams[_audioStreamIndex]->stts_count && !done; i++) { for (int32 j = 0; j < _streams[_audioStreamIndex]->stts_data[i].count; j++) { curAudioTime = curAudioTime.addFrames(_streams[_audioStreamIndex]->stts_data[i].duration); if (curAudioTime > curVideoTime) { done = true; break; } sample++; } } // Now to track down what chunk it's in _curAudioChunk = 0; uint32 totalSamples = 0; for (uint32 i = 0; i < _streams[_audioStreamIndex]->chunk_count; i++, _curAudioChunk++) { int sampleToChunkIndex = -1; for (uint32 j = 0; j < _streams[_audioStreamIndex]->sample_to_chunk_sz; j++) if (i >= _streams[_audioStreamIndex]->sample_to_chunk[j].first) sampleToChunkIndex = j; assert(sampleToChunkIndex >= 0); totalSamples += _streams[_audioStreamIndex]->sample_to_chunk[sampleToChunkIndex].count; if (sample < totalSamples) { totalSamples -= _streams[_audioStreamIndex]->sample_to_chunk[sampleToChunkIndex].count; break; } } // Reposition the audio stream readNextAudioChunk(); if (sample != totalSamples) { // HACK: Skip a certain amount of samples from the stream // (There's got to be a better way to do this!) int16 *tempBuffer = new int16[sample - totalSamples]; _audStream->readBuffer(tempBuffer, sample - totalSamples); delete[] tempBuffer; debug(3, "Skipping %d audio samples", sample - totalSamples); } // Restart the audio startAudio(); } } void QuickTimeDecoder::seekToTime(Audio::Timestamp time) { // TODO: Audio-only seeking (or really, have QuickTime sounds) if (_videoStreamIndex < 0) error("Audio-only seeking not supported"); // Try to find the last frame that should have been decoded uint32 frame = 0; Audio::Timestamp totalDuration(0, _streams[_videoStreamIndex]->time_scale); bool done = false; for (int32 i = 0; i < _streams[_videoStreamIndex]->stts_count && !done; i++) { for (int32 j = 0; j < _streams[_videoStreamIndex]->stts_data[i].count; j++) { totalDuration = totalDuration.addFrames(_streams[_videoStreamIndex]->stts_data[i].duration); if (totalDuration > time) { done = true; break; } frame++; } } seekToFrame(frame); } Codec *QuickTimeDecoder::createCodec(uint32 codecTag, byte bitsPerPixel) { if (codecTag == MKTAG('c','v','i','d')) { // Cinepak: As used by most Myst and all Riven videos as well as some Myst ME videos. "The Chief" videos also use this. return new CinepakDecoder(bitsPerPixel); } else if (codecTag == MKTAG('r','p','z','a')) { // Apple Video ("Road Pizza"): Used by some Myst videos. return new RPZADecoder(getWidth(), getHeight()); } else if (codecTag == MKTAG('r','l','e',' ')) { // QuickTime RLE: Used by some Myst ME videos. return new QTRLEDecoder(getWidth(), getHeight(), bitsPerPixel); } else if (codecTag == MKTAG('s','m','c',' ')) { // Apple SMC: Used by some Myst videos. return new SMCDecoder(getWidth(), getHeight()); } else if (codecTag == MKTAG('S','V','Q','1')) { // Sorenson Video 1: Used by some Myst ME videos. warning("Sorenson Video 1 not yet supported"); } else if (codecTag == MKTAG('S','V','Q','3')) { // Sorenson Video 3: Used by some Myst ME videos. warning("Sorenson Video 3 not yet supported"); } else if (codecTag == MKTAG('j','p','e','g')) { // Motion JPEG: Used by some Myst ME 10th Anniversary videos. return new JPEGDecoder(); } else if (codecTag == MKTAG('Q','k','B','k')) { // CDToons: Used by most of the Broderbund games. return new CDToonsDecoder(getWidth(), getHeight()); } else { warning("Unsupported codec \'%s\'", tag2str(codecTag)); } return NULL; } void QuickTimeDecoder::startAudio() { if (_audStream) { // No audio/audio not supported updateAudioBuffer(); g_system->getMixer()->playStream(Audio::Mixer::kPlainSoundType, &_audHandle, _audStream); } } void QuickTimeDecoder::stopAudio() { if (_audStream) { g_system->getMixer()->stopHandle(_audHandle); _audStream = NULL; // the mixer automatically frees the stream } } void QuickTimeDecoder::pauseVideoIntern(bool pause) { if (_audStream) g_system->getMixer()->pauseHandle(_audHandle, pause); } Codec *QuickTimeDecoder::findDefaultVideoCodec() const { if (_videoStreamIndex < 0 || !_streams[_videoStreamIndex]->stsdEntryCount) return 0; return _streams[_videoStreamIndex]->stsdEntries[0].videoCodec; } const Graphics::Surface *QuickTimeDecoder::decodeNextFrame() { if (_videoStreamIndex < 0 || _curFrame >= (int32)getFrameCount() - 1) return 0; if (_startTime == 0) _startTime = g_system->getMillis(); _curFrame++; _nextFrameStartTime += getFrameDuration(); // Update the audio while we're at it updateAudioBuffer(); // Get the next packet uint32 descId; Common::SeekableReadStream *frameData = getNextFramePacket(descId); if (!frameData || !descId || descId > _streams[_videoStreamIndex]->stsdEntryCount) return 0; // Find which video description entry we want STSDEntry *entry = &_streams[_videoStreamIndex]->stsdEntries[descId - 1]; if (!entry->videoCodec) return 0; const Graphics::Surface *frame = entry->videoCodec->decodeImage(frameData); delete frameData; // Update the palette if (entry->videoCodec->containsPalette()) { // The codec itself contains a palette if (entry->videoCodec->hasDirtyPalette()) { _palette = entry->videoCodec->getPalette(); _dirtyPalette = true; } } else { // Check if the video description has been updated byte *palette = entry->palette; if (palette != _palette) { _palette = palette; _dirtyPalette = true; } } return scaleSurface(frame); } const Graphics::Surface *QuickTimeDecoder::scaleSurface(const Graphics::Surface *frame) { if (getScaleFactorX() == 1 && getScaleFactorY() == 1) return frame; assert(_scaledSurface); for (int32 j = 0; j < _scaledSurface->h; j++) for (int32 k = 0; k < _scaledSurface->w; k++) memcpy(_scaledSurface->getBasePtr(k, j), frame->getBasePtr((k * getScaleFactorX()).toInt() , (j * getScaleFactorY()).toInt()), frame->format.bytesPerPixel); return _scaledSurface; } bool QuickTimeDecoder::endOfVideo() const { return (!_audStream || _audStream->endOfData()) && (!findDefaultVideoCodec() || SeekableVideoDecoder::endOfVideo()); } uint32 QuickTimeDecoder::getElapsedTime() const { if (_audStream) return g_system->getMixer()->getSoundElapsedTime(_audHandle) + _audioStartOffset.msecs(); return SeekableVideoDecoder::getElapsedTime(); } uint32 QuickTimeDecoder::getTimeToNextFrame() const { if (endOfVideo() || _curFrame < 0) return 0; // Convert from the QuickTime rate base to 1000 uint32 nextFrameStartTime = _nextFrameStartTime * 1000 / _streams[_videoStreamIndex]->time_scale; uint32 elapsedTime = getElapsedTime(); if (nextFrameStartTime <= elapsedTime) return 0; return nextFrameStartTime - elapsedTime; } bool QuickTimeDecoder::loadFile(const Common::String &filename) { if (!_resFork->open(filename) || !_resFork->hasDataFork()) return false; _foundMOOV = false; _numStreams = 0; _videoStreamIndex = _audioStreamIndex = -1; _startTime = 0; MOVatom atom = { 0, 0, 0xffffffff }; if (_resFork->hasResFork()) { // Search for a 'moov' resource Common::MacResIDArray idArray = _resFork->getResIDArray(MKTAG('m','o','o','v')); if (!idArray.empty()) _fd = _resFork->getResource(MKTAG('m','o','o','v'), idArray[0]); if (_fd) { atom.size = _fd->size(); if (readDefault(atom) < 0 || !_foundMOOV) return false; } delete _fd; atom.type = 0; atom.offset = 0; atom.size = 0xffffffff; } _fd = _resFork->getDataFork(); if (readDefault(atom) < 0 || !_foundMOOV) return false; init(); return true; } bool QuickTimeDecoder::loadStream(Common::SeekableReadStream *stream) { _fd = stream; _foundMOOV = false; _numStreams = 0; _videoStreamIndex = _audioStreamIndex = -1; _startTime = 0; MOVatom atom = { 0, 0, 0xffffffff }; if (readDefault(atom) < 0 || !_foundMOOV) { _fd = 0; return false; } init(); return true; } void QuickTimeDecoder::init() { // Remove non-Video/Audio streams for (uint32 i = 0; i < _numStreams;) { if (_streams[i]->codec_type == CODEC_TYPE_MOV_OTHER) { delete _streams[i]; for (uint32 j = i + 1; j < _numStreams; j++) _streams[j - 1] = _streams[j]; _numStreams--; } else i++; } // Adjust time/duration for (uint32 i = 0; i < _numStreams; i++) { MOVStreamContext *sc = _streams[i]; if (!sc->time_rate) sc->time_rate = 1; if (!sc->time_scale) sc->time_scale = _timeScale; sc->duration /= sc->time_rate; if (sc->codec_type == CODEC_TYPE_VIDEO && _videoStreamIndex < 0) _videoStreamIndex = i; else if (sc->codec_type == CODEC_TYPE_AUDIO && _audioStreamIndex < 0) _audioStreamIndex = i; } // Initialize audio, if present if (_audioStreamIndex >= 0) { STSDEntry *entry = &_streams[_audioStreamIndex]->stsdEntries[0]; if (checkAudioCodecSupport(entry->codecTag)) { _audStream = Audio::makeQueuingAudioStream(entry->sampleRate, entry->channels == 2); _curAudioChunk = 0; // Make sure the bits per sample transfers to the sample size if (entry->codecTag == MKTAG('r','a','w',' ') || entry->codecTag == MKTAG('t','w','o','s')) _streams[_audioStreamIndex]->sample_size = (entry->bitsPerSample / 8) * entry->channels; startAudio(); } _audioStartOffset = Audio::Timestamp(0); } // Initialize video, if present if (_videoStreamIndex >= 0) { for (uint32 i = 0; i < _streams[_videoStreamIndex]->stsdEntryCount; i++) { STSDEntry *entry = &_streams[_videoStreamIndex]->stsdEntries[i]; entry->videoCodec = createCodec(entry->codecTag, entry->bitsPerSample & 0x1F); } if (getScaleFactorX() != 1 || getScaleFactorY() != 1) { // We have to initialize the scaled surface _scaledSurface = new Graphics::Surface(); _scaledSurface->create(getWidth(), getHeight(), getPixelFormat()); } } } void QuickTimeDecoder::initParseTable() { static const ParseTable p[] = { { &QuickTimeDecoder::readDefault, MKTAG('d','i','n','f') }, { &QuickTimeDecoder::readLeaf, MKTAG('d','r','e','f') }, { &QuickTimeDecoder::readDefault, MKTAG('e','d','t','s') }, { &QuickTimeDecoder::readELST, MKTAG('e','l','s','t') }, { &QuickTimeDecoder::readHDLR, MKTAG('h','d','l','r') }, { &QuickTimeDecoder::readDefault, MKTAG('m','d','a','t') }, { &QuickTimeDecoder::readMDHD, MKTAG('m','d','h','d') }, { &QuickTimeDecoder::readDefault, MKTAG('m','d','i','a') }, { &QuickTimeDecoder::readDefault, MKTAG('m','i','n','f') }, { &QuickTimeDecoder::readMOOV, MKTAG('m','o','o','v') }, { &QuickTimeDecoder::readMVHD, MKTAG('m','v','h','d') }, { &QuickTimeDecoder::readLeaf, MKTAG('s','m','h','d') }, { &QuickTimeDecoder::readDefault, MKTAG('s','t','b','l') }, { &QuickTimeDecoder::readSTCO, MKTAG('s','t','c','o') }, { &QuickTimeDecoder::readSTSC, MKTAG('s','t','s','c') }, { &QuickTimeDecoder::readSTSD, MKTAG('s','t','s','d') }, { &QuickTimeDecoder::readSTSS, MKTAG('s','t','s','s') }, { &QuickTimeDecoder::readSTSZ, MKTAG('s','t','s','z') }, { &QuickTimeDecoder::readSTTS, MKTAG('s','t','t','s') }, { &QuickTimeDecoder::readTKHD, MKTAG('t','k','h','d') }, { &QuickTimeDecoder::readTRAK, MKTAG('t','r','a','k') }, { &QuickTimeDecoder::readLeaf, MKTAG('u','d','t','a') }, { &QuickTimeDecoder::readLeaf, MKTAG('v','m','h','d') }, { &QuickTimeDecoder::readCMOV, MKTAG('c','m','o','v') }, { &QuickTimeDecoder::readWAVE, MKTAG('w','a','v','e') }, { 0, 0 } }; _parseTable = p; } int QuickTimeDecoder::readDefault(MOVatom atom) { uint32 total_size = 0; MOVatom a; int err = 0; a.offset = atom.offset; while(((total_size + 8) < atom.size) && !_fd->eos() && _fd->pos() < _fd->size() && !err) { a.size = atom.size; a.type = 0; if (atom.size >= 8) { a.size = _fd->readUint32BE(); a.type = _fd->readUint32BE(); // Some QuickTime videos with resource forks have mdat chunks // that are of size 0. Adjust it so it's the correct size. if (a.type == MKTAG('m','d','a','t') && a.size == 0) a.size = _fd->size(); } total_size += 8; a.offset += 8; debug(4, "type: %08x %.4s sz: %x %x %x", a.type, tag2str(a.type), a.size, atom.size, total_size); if (a.size == 1) { // 64 bit extended size warning("64 bit extended size is not supported in QuickTime"); return -1; } if (a.size == 0) { a.size = atom.size - total_size; if (a.size <= 8) break; } uint32 i = 0; for (; _parseTable[i].type != 0 && _parseTable[i].type != a.type; i++) // empty; if (a.size < 8) break; a.size -= 8; if (_parseTable[i].type == 0) { // skip leaf atoms data debug(0, ">>> Skipped [%s]", tag2str(a.type)); _fd->seek(a.size, SEEK_CUR); } else { uint32 start_pos = _fd->pos(); err = (this->*_parseTable[i].func)(a); uint32 left = a.size - _fd->pos() + start_pos; if (left > 0) // skip garbage at atom end _fd->seek(left, SEEK_CUR); } a.offset += a.size; total_size += a.size; } if (!err && total_size < atom.size) _fd->seek(atom.size - total_size, SEEK_SET); return err; } int QuickTimeDecoder::readLeaf(MOVatom atom) { if (atom.size > 1) _fd->seek(atom.size, SEEK_SET); return 0; } int QuickTimeDecoder::readMOOV(MOVatom atom) { if (readDefault(atom) < 0) return -1; // We parsed the 'moov' atom, so we don't need anything else _foundMOOV = true; return 1; } int QuickTimeDecoder::readCMOV(MOVatom atom) { #ifdef USE_ZLIB // Read in the dcom atom _fd->readUint32BE(); if (_fd->readUint32BE() != MKTAG('d','c','o','m')) return -1; if (_fd->readUint32BE() != MKTAG('z','l','i','b')) { warning("Unknown cmov compression type"); return -1; } // Read in the cmvd atom uint32 compressedSize = _fd->readUint32BE() - 12; if (_fd->readUint32BE() != MKTAG('c','m','v','d')) return -1; uint32 uncompressedSize = _fd->readUint32BE(); // Read in data byte *compressedData = (byte *)malloc(compressedSize); _fd->read(compressedData, compressedSize); // Create uncompressed stream byte *uncompressedData = (byte *)malloc(uncompressedSize); // Uncompress the data unsigned long dstLen = uncompressedSize; if (!Common::uncompress(uncompressedData, &dstLen, compressedData, compressedSize)) { warning ("Could not uncompress cmov chunk"); free(compressedData); free(uncompressedData); return -1; } // Load data into a new MemoryReadStream and assign _fd to be that Common::SeekableReadStream *oldStream = _fd; _fd = new Common::MemoryReadStream(uncompressedData, uncompressedSize, DisposeAfterUse::YES); // Read the contents of the uncompressed data MOVatom a = { MKTAG('m','o','o','v'), 0, uncompressedSize }; int err = readDefault(a); // Assign the file handle back to the original handle free(compressedData); delete _fd; _fd = oldStream; return err; #else warning ("zlib not found, cannot read QuickTime cmov atom"); return -1; #endif } int QuickTimeDecoder::readMVHD(MOVatom atom) { byte version = _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags if (version == 1) { warning("QuickTime version 1"); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } _timeScale = _fd->readUint32BE(); // time scale debug(0, "time scale = %i\n", _timeScale); // duration _duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); _fd->readUint32BE(); // preferred scale _fd->readUint16BE(); // preferred volume _fd->seek(10, SEEK_CUR); // reserved // We only need two values from the movie display matrix. Most of the values are just // skipped. xMod and yMod are 16:16 fixed point numbers, the last part of the 3x3 matrix // is 2:30. uint32 xMod = _fd->readUint32BE(); _fd->skip(12); uint32 yMod = _fd->readUint32BE(); _fd->skip(16); _scaleFactorX = Common::Rational(0x10000, xMod); _scaleFactorY = Common::Rational(0x10000, yMod); _scaleFactorX.debugPrint(1, "readMVHD(): scaleFactorX ="); _scaleFactorY.debugPrint(1, "readMVHD(): scaleFactorY ="); _fd->readUint32BE(); // preview time _fd->readUint32BE(); // preview duration _fd->readUint32BE(); // poster time _fd->readUint32BE(); // selection time _fd->readUint32BE(); // selection duration _fd->readUint32BE(); // current time _fd->readUint32BE(); // next track ID return 0; } int QuickTimeDecoder::readTRAK(MOVatom atom) { MOVStreamContext *sc = new MOVStreamContext(); if (!sc) return -1; sc->codec_type = CODEC_TYPE_MOV_OTHER; sc->start_time = 0; // XXX: check _streams[_numStreams++] = sc; return readDefault(atom); } int QuickTimeDecoder::readTKHD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; byte version = _fd->readByte(); _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags // //MOV_TRACK_ENABLED 0x0001 //MOV_TRACK_IN_MOVIE 0x0002 //MOV_TRACK_IN_PREVIEW 0x0004 //MOV_TRACK_IN_POSTER 0x0008 // if (version == 1) { _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } /* st->id = */_fd->readUint32BE(); // track id (NOT 0 !) _fd->readUint32BE(); // reserved //st->start_time = 0; // check (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // highlevel (considering edits) duration in movie timebase _fd->readUint32BE(); // reserved _fd->readUint32BE(); // reserved _fd->readUint16BE(); // layer _fd->readUint16BE(); // alternate group _fd->readUint16BE(); // volume _fd->readUint16BE(); // reserved // We only need the two values from the displacement matrix for a track. // See readMVHD() for more information. uint32 xMod = _fd->readUint32BE(); _fd->skip(12); uint32 yMod = _fd->readUint32BE(); _fd->skip(16); st->scaleFactorX = Common::Rational(0x10000, xMod); st->scaleFactorY = Common::Rational(0x10000, yMod); st->scaleFactorX.debugPrint(1, "readTKHD(): scaleFactorX ="); st->scaleFactorY.debugPrint(1, "readTKHD(): scaleFactorY ="); // these are fixed-point, 16:16 // uint32 tkWidth = _fd->readUint32BE() >> 16; // track width // uint32 tkHeight = _fd->readUint32BE() >> 16; // track height return 0; } // edit list atom int QuickTimeDecoder::readELST(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->editCount = _fd->readUint32BE(); st->editList = new EditListEntry[st->editCount]; debug(2, "Track %d edit list count: %d", _numStreams - 1, st->editCount); for (uint32 i = 0; i < st->editCount; i++){ st->editList[i].trackDuration = _fd->readUint32BE(); st->editList[i].mediaTime = _fd->readSint32BE(); st->editList[i].mediaRate = Common::Rational(_fd->readUint32BE(), 0x10000); debugN(3, "\tDuration = %d, Media Time = %d, ", st->editList[i].trackDuration, st->editList[i].mediaTime); st->editList[i].mediaRate.debugPrint(3, "Media Rate ="); } if (st->editCount != 1) warning("Multiple edit list entries. Things may go awry"); return 0; } int QuickTimeDecoder::readHDLR(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags // component type uint32 ctype = _fd->readUint32LE(); uint32 type = _fd->readUint32BE(); // component subtype debug(0, "ctype= %s (0x%08lx)", tag2str(ctype), (long)ctype); debug(0, "stype= %s", tag2str(type)); if(ctype == MKTAG('m','h','l','r')) // MOV debug(0, "MOV detected"); else if(ctype == 0) { warning("MP4 streams are not supported"); return -1; } if (type == MKTAG('v','i','d','e')) st->codec_type = CODEC_TYPE_VIDEO; else if (type == MKTAG('s','o','u','n')) st->codec_type = CODEC_TYPE_AUDIO; _fd->readUint32BE(); // component manufacture _fd->readUint32BE(); // component flags _fd->readUint32BE(); // component flags mask if (atom.size <= 24) return 0; // nothing left to read // .mov: PASCAL string byte len = _fd->readByte(); _fd->seek(len, SEEK_CUR); _fd->seek(atom.size - (_fd->pos() - atom.offset), SEEK_CUR); return 0; } int QuickTimeDecoder::readMDHD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; byte version = _fd->readByte(); if (version > 1) return 1; // unsupported _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags if (version == 1) { _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); _fd->readUint32BE(); } else { _fd->readUint32BE(); // creation time _fd->readUint32BE(); // modification time } st->time_scale = _fd->readUint32BE(); st->duration = (version == 1) ? (_fd->readUint32BE(), _fd->readUint32BE()) : _fd->readUint32BE(); // duration _fd->readUint16BE(); // language _fd->readUint16BE(); // quality return 0; } int QuickTimeDecoder::readSTSD(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->stsdEntryCount = _fd->readUint32BE(); st->stsdEntries = new STSDEntry[st->stsdEntryCount]; for (uint32 i = 0; i < st->stsdEntryCount; i++) { // Parsing Sample description table STSDEntry *entry = &st->stsdEntries[i]; MOVatom a = { 0, 0, 0 }; uint32 start_pos = _fd->pos(); int size = _fd->readUint32BE(); // size uint32 format = _fd->readUint32BE(); // data format _fd->readUint32BE(); // reserved _fd->readUint16BE(); // reserved _fd->readUint16BE(); // index debug(0, "size=%d 4CC= %s codec_type=%d", size, tag2str(format), st->codec_type); entry->codecTag = format; if (st->codec_type == CODEC_TYPE_VIDEO) { debug(0, "Video Codec FourCC: \'%s\'", tag2str(format)); _fd->readUint16BE(); // version _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor _fd->readUint32BE(); // temporal quality _fd->readUint32BE(); // spacial quality uint16 width = _fd->readUint16BE(); // width uint16 height = _fd->readUint16BE(); // height // The width is most likely invalid for entries after the first one // so only set the overall width if it is not zero here. if (width) st->width = width; if (height) st->height = height; _fd->readUint32BE(); // horiz resolution _fd->readUint32BE(); // vert resolution _fd->readUint32BE(); // data size, always 0 _fd->readUint16BE(); // frames per samples byte codec_name[32]; _fd->read(codec_name, 32); // codec name, pascal string (FIXME: true for mp4?) if (codec_name[0] <= 31) { memcpy(entry->codecName, &codec_name[1], codec_name[0]); entry->codecName[codec_name[0]] = 0; } entry->bitsPerSample = _fd->readUint16BE(); // depth entry->colorTableId = _fd->readUint16BE(); // colortable id // figure out the palette situation byte colorDepth = entry->bitsPerSample & 0x1F; bool colorGreyscale = (entry->bitsPerSample & 0x20) != 0; debug(0, "color depth: %d", colorDepth); // if the depth is 2, 4, or 8 bpp, file is palettized if (colorDepth == 2 || colorDepth == 4 || colorDepth == 8) { // Initialize the palette entry->palette = new byte[256 * 3]; memset(entry->palette, 0, 256 * 3); if (colorGreyscale) { debug(0, "Greyscale palette"); // compute the greyscale palette uint16 colorCount = 1 << colorDepth; int16 colorIndex = 255; byte colorDec = 256 / (colorCount - 1); for (byte j = 0; j < colorCount; j++) { entry->palette[j * 3] = entry->palette[j * 3 + 1] = entry->palette[j * 3 + 2] = colorIndex; colorIndex -= colorDec; if (colorIndex < 0) colorIndex = 0; } } else if (entry->colorTableId & 0x08) { // if flag bit 3 is set, use the default palette //uint16 colorCount = 1 << colorDepth; warning("Predefined palette! %dbpp", colorDepth); } else { debug(0, "Palette from file"); // load the palette from the file uint32 colorStart = _fd->readUint32BE(); /* uint16 colorCount = */ _fd->readUint16BE(); uint16 colorEnd = _fd->readUint16BE(); for (uint32 j = colorStart; j <= colorEnd; j++) { // each R, G, or B component is 16 bits; // only use the top 8 bits; skip alpha bytes // up front _fd->readByte(); _fd->readByte(); entry->palette[j * 3] = _fd->readByte(); _fd->readByte(); entry->palette[j * 3 + 1] = _fd->readByte(); _fd->readByte(); entry->palette[j * 3 + 2] = _fd->readByte(); _fd->readByte(); } } } } else if (st->codec_type == CODEC_TYPE_AUDIO) { debug(0, "Audio Codec FourCC: \'%s\'", tag2str(format)); uint16 stsdVersion = _fd->readUint16BE(); _fd->readUint16BE(); // revision level _fd->readUint32BE(); // vendor entry->channels = _fd->readUint16BE(); // channel count entry->bitsPerSample = _fd->readUint16BE(); // sample size _fd->readUint16BE(); // compression id = 0 _fd->readUint16BE(); // packet size = 0 entry->sampleRate = (_fd->readUint32BE() >> 16); debug(0, "stsd version =%d", stsdVersion); if (stsdVersion == 0) { // Not used, except in special cases. See below. entry->samplesPerFrame = entry->bytesPerFrame = 0; } else if (stsdVersion == 1) { // Read QT version 1 fields. In version 0 these dont exist. entry->samplesPerFrame = _fd->readUint32BE(); debug(0, "stsd samples_per_frame =%d",entry->samplesPerFrame); _fd->readUint32BE(); // bytes per packet entry->bytesPerFrame = _fd->readUint32BE(); debug(0, "stsd bytes_per_frame =%d", entry->bytesPerFrame); _fd->readUint32BE(); // bytes per sample } else { warning("Unsupported QuickTime STSD audio version %d", stsdVersion); return 1; } // Version 0 videos (such as the Riven ones) don't have this set, // but we need it later on. Add it in here. if (format == MKTAG('i','m','a','4')) { entry->samplesPerFrame = 64; entry->bytesPerFrame = 34 * entry->channels; } if (entry->sampleRate == 0 && st->time_scale > 1) entry->sampleRate = st->time_scale; } else { // other codec type, just skip (rtp, mp4s, tmcd ...) _fd->seek(size - (_fd->pos() - start_pos), SEEK_CUR); } // this will read extra atoms at the end (wave, alac, damr, avcC, SMI ...) a.size = size - (_fd->pos() - start_pos); if (a.size > 8) readDefault(a); else if (a.size > 0) _fd->seek(a.size, SEEK_CUR); } return 0; } int QuickTimeDecoder::readSTSC(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->sample_to_chunk_sz = _fd->readUint32BE(); debug(0, "track[%i].stsc.entries = %i", _numStreams - 1, st->sample_to_chunk_sz); st->sample_to_chunk = new MOVstsc[st->sample_to_chunk_sz]; if (!st->sample_to_chunk) return -1; for (uint32 i = 0; i < st->sample_to_chunk_sz; i++) { st->sample_to_chunk[i].first = _fd->readUint32BE() - 1; st->sample_to_chunk[i].count = _fd->readUint32BE(); st->sample_to_chunk[i].id = _fd->readUint32BE(); //warning("Sample to Chunk[%d]: First = %d, Count = %d", i, st->sample_to_chunk[i].first, st->sample_to_chunk[i].count); } return 0; } int QuickTimeDecoder::readSTSS(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->keyframe_count = _fd->readUint32BE(); debug(0, "keyframe_count = %d", st->keyframe_count); st->keyframes = new uint32[st->keyframe_count]; if (!st->keyframes) return -1; for (uint32 i = 0; i < st->keyframe_count; i++) { st->keyframes[i] = _fd->readUint32BE() - 1; // Adjust here, the frames are based on 1 debug(6, "keyframes[%d] = %d", i, st->keyframes[i]); } return 0; } int QuickTimeDecoder::readSTSZ(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->sample_size = _fd->readUint32BE(); st->sample_count = _fd->readUint32BE(); debug(5, "sample_size = %d sample_count = %d", st->sample_size, st->sample_count); if (st->sample_size) return 0; // there isn't any table following st->sample_sizes = new uint32[st->sample_count]; if (!st->sample_sizes) return -1; for(uint32 i = 0; i < st->sample_count; i++) { st->sample_sizes[i] = _fd->readUint32BE(); debug(6, "sample_sizes[%d] = %d", i, st->sample_sizes[i]); } return 0; } static uint32 ff_gcd(uint32 a, uint32 b) { return b ? ff_gcd(b, a % b) : a; } int QuickTimeDecoder::readSTTS(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; uint32 duration = 0; uint32 total_sample_count = 0; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->stts_count = _fd->readUint32BE(); st->stts_data = new MOVstts[st->stts_count]; debug(0, "track[%i].stts.entries = %i", _numStreams - 1, st->stts_count); st->time_rate = 0; for (int32 i = 0; i < st->stts_count; i++) { int sample_duration; int sample_count; sample_count = _fd->readUint32BE(); sample_duration = _fd->readUint32BE(); st->stts_data[i].count = sample_count; st->stts_data[i].duration = sample_duration; st->time_rate = ff_gcd(st->time_rate, sample_duration); debug(0, "sample_count=%d, sample_duration=%d", sample_count, sample_duration); duration += sample_duration * sample_count; total_sample_count += sample_count; } st->nb_frames = total_sample_count; if (duration) st->duration = duration; return 0; } int QuickTimeDecoder::readSTCO(MOVatom atom) { MOVStreamContext *st = _streams[_numStreams - 1]; _fd->readByte(); // version _fd->readByte(); _fd->readByte(); _fd->readByte(); // flags st->chunk_count = _fd->readUint32BE(); st->chunk_offsets = new uint32[st->chunk_count]; if (!st->chunk_offsets) return -1; for (uint32 i = 0; i < st->chunk_count; i++) { // WORKAROUND/HACK: The offsets in Riven videos (ones inside the Mohawk archives themselves) // have offsets relative to the archive and not the video. This is quite nasty. We subtract // the initial offset of the stream to get the correct value inside of the stream. st->chunk_offsets[i] = _fd->readUint32BE() - _beginOffset; } return 0; } int QuickTimeDecoder::readWAVE(MOVatom atom) { if (_numStreams < 1) return 0; MOVStreamContext *st = _streams[_numStreams - 1]; if (atom.size > (1 << 30)) return -1; if (st->stsdEntries[0].codecTag == MKTAG('Q','D','M','2')) // Read extradata for QDM2 st->extradata = _fd->readStream(atom.size - 8); else if (atom.size > 8) return readDefault(atom); else _fd->skip(atom.size); return 0; } void QuickTimeDecoder::close() { stopAudio(); for (uint32 i = 0; i < _numStreams; i++) delete _streams[i]; delete _fd; _fd = 0; if (_scaledSurface) { _scaledSurface->free(); delete _scaledSurface; _scaledSurface = 0; } // The audio stream is deleted automatically _audStream = NULL; SeekableVideoDecoder::reset(); } Common::SeekableReadStream *QuickTimeDecoder::getNextFramePacket(uint32 &descId) { if (_videoStreamIndex < 0) return NULL; // First, we have to track down which chunk holds the sample and which sample in the chunk contains the frame we are looking for. int32 totalSampleCount = 0; int32 sampleInChunk = 0; int32 actualChunk = -1; for (uint32 i = 0; i < _streams[_videoStreamIndex]->chunk_count; i++) { int32 sampleToChunkIndex = -1; for (uint32 j = 0; j < _streams[_videoStreamIndex]->sample_to_chunk_sz; j++) if (i >= _streams[_videoStreamIndex]->sample_to_chunk[j].first) sampleToChunkIndex = j; if (sampleToChunkIndex < 0) error("This chunk (%d) is imaginary", sampleToChunkIndex); totalSampleCount += _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count; if (totalSampleCount > getCurFrame()) { actualChunk = i; descId = _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].id; sampleInChunk = _streams[_videoStreamIndex]->sample_to_chunk[sampleToChunkIndex].count - totalSampleCount + getCurFrame(); break; } } if (actualChunk < 0) { warning ("Could not find data for frame %d", getCurFrame()); return NULL; } // Next seek to that frame _fd->seek(_streams[_videoStreamIndex]->chunk_offsets[actualChunk]); // Then, if the chunk holds more than one frame, seek to where the frame we want is located for (int32 i = getCurFrame() - sampleInChunk; i < getCurFrame(); i++) { if (_streams[_videoStreamIndex]->sample_size != 0) _fd->skip(_streams[_videoStreamIndex]->sample_size); else _fd->skip(_streams[_videoStreamIndex]->sample_sizes[i]); } // Finally, read in the raw data for the frame //printf ("Frame Data[%d]: Offset = %d, Size = %d\n", getCurFrame(), _fd->pos(), _streams[_videoStreamIndex]->sample_sizes[getCurFrame()]); if (_streams[_videoStreamIndex]->sample_size != 0) return _fd->readStream(_streams[_videoStreamIndex]->sample_size); return _fd->readStream(_streams[_videoStreamIndex]->sample_sizes[getCurFrame()]); } bool QuickTimeDecoder::checkAudioCodecSupport(uint32 tag) { // Check if the codec is a supported codec if (tag == MKTAG('t','w','o','s') || tag == MKTAG('r','a','w',' ') || tag == MKTAG('i','m','a','4')) return true; #ifdef VIDEO_CODECS_QDM2_H if (tag == MKTAG('Q','D','M','2')) return true; #endif warning("Audio Codec Not Supported: \'%s\'", tag2str(tag)); return false; } Audio::AudioStream *QuickTimeDecoder::createAudioStream(Common::SeekableReadStream *stream) { if (!stream || _audioStreamIndex < 0) return NULL; STSDEntry *entry = &_streams[_audioStreamIndex]->stsdEntries[0]; if (entry->codecTag == MKTAG('t','w','o','s') || entry->codecTag == MKTAG('r','a','w',' ')) { // Fortunately, most of the audio used in Myst videos is raw... uint16 flags = 0; if (entry->codecTag == MKTAG('r','a','w',' ')) flags |= Audio::FLAG_UNSIGNED; if (entry->channels == 2) flags |= Audio::FLAG_STEREO; if (entry->bitsPerSample == 16) flags |= Audio::FLAG_16BITS; uint32 dataSize = stream->size(); byte *data = (byte *)malloc(dataSize); stream->read(data, dataSize); delete stream; return Audio::makeRawStream(data, dataSize, entry->sampleRate, flags); } else if (entry->codecTag == MKTAG('i','m','a','4')) { // Riven uses this codec (as do some Myst ME videos) return Audio::makeADPCMStream(stream, DisposeAfterUse::YES, stream->size(), Audio::kADPCMApple, entry->sampleRate, entry->channels, 34); #ifdef VIDEO_CODECS_QDM2_H } else if (entry->codecTag == MKTAG('Q','D','M','2')) { // Several Myst ME videos use this codec return makeQDM2Stream(stream, _streams[_audioStreamIndex]->extradata); #endif } error("Unsupported audio codec"); return NULL; } uint32 QuickTimeDecoder::getAudioChunkSampleCount(uint chunk) { if (_audioStreamIndex < 0) return 0; uint32 sampleCount = 0; for (uint32 j = 0; j < _streams[_audioStreamIndex]->sample_to_chunk_sz; j++) if (chunk >= _streams[_audioStreamIndex]->sample_to_chunk[j].first) sampleCount = _streams[_audioStreamIndex]->sample_to_chunk[j].count; return sampleCount; } void QuickTimeDecoder::readNextAudioChunk() { STSDEntry *entry = &_streams[_audioStreamIndex]->stsdEntries[0]; Common::MemoryWriteStreamDynamic *wStream = new Common::MemoryWriteStreamDynamic(); _fd->seek(_streams[_audioStreamIndex]->chunk_offsets[_curAudioChunk]); // First, we have to get the sample count uint32 sampleCount = getAudioChunkSampleCount(_curAudioChunk); assert(sampleCount); // Then calculate the right sizes while (sampleCount > 0) { uint32 samples = 0, size = 0; if (entry->samplesPerFrame >= 160) { samples = entry->samplesPerFrame; size = entry->bytesPerFrame; } else if (entry->samplesPerFrame > 1) { samples = MIN((1024 / entry->samplesPerFrame) * entry->samplesPerFrame, sampleCount); size = (samples / entry->samplesPerFrame) * entry->bytesPerFrame; } else { samples = MIN(1024, sampleCount); size = samples * _streams[_audioStreamIndex]->sample_size; } // Now, we read in the data for this data and output it byte *data = (byte *)malloc(size); _fd->read(data, size); wStream->write(data, size); free(data); sampleCount -= samples; } // Now queue the buffer _audStream->queueAudioStream(createAudioStream(new Common::MemoryReadStream(wStream->getData(), wStream->size(), DisposeAfterUse::YES))); delete wStream; _curAudioChunk++; } void QuickTimeDecoder::updateAudioBuffer() { if (!_audStream) return; uint32 numberOfChunksNeeded = 0; if (_curFrame == (int32)_streams[_videoStreamIndex]->nb_frames - 1) { // If we're on the last frame, make sure all audio remaining is buffered numberOfChunksNeeded = _streams[_audioStreamIndex]->chunk_count; } else { STSDEntry *entry = &_streams[_audioStreamIndex]->stsdEntries[0]; // Calculate the amount of chunks we need in memory until the next frame uint32 timeToNextFrame = getTimeToNextFrame(); uint32 timeFilled = 0; uint32 curAudioChunk = _curAudioChunk - _audStream->numQueuedStreams(); for (; timeFilled < timeToNextFrame && curAudioChunk < _streams[_audioStreamIndex]->chunk_count; numberOfChunksNeeded++, curAudioChunk++) { uint32 sampleCount = getAudioChunkSampleCount(curAudioChunk); assert(sampleCount); timeFilled += sampleCount * 1000 / entry->sampleRate; } // Add a couple extra to ensure we don't underrun numberOfChunksNeeded += 3; } // Keep three streams in buffer so that if/when the first two end, it goes right into the next while (_audStream->numQueuedStreams() < numberOfChunksNeeded && _curAudioChunk < _streams[_audioStreamIndex]->chunk_count) readNextAudioChunk(); } QuickTimeDecoder::STSDEntry::STSDEntry() { codecTag = 0; bitsPerSample = 0; memset(codecName, 0, 32); colorTableId = 0; palette = 0; videoCodec = 0; channels = 0; sampleRate = 0; samplesPerFrame = 0; bytesPerFrame = 0; } QuickTimeDecoder::STSDEntry::~STSDEntry() { delete[] palette; delete videoCodec; } QuickTimeDecoder::MOVStreamContext::MOVStreamContext() { chunk_count = 0; chunk_offsets = 0; stts_count = 0; stts_data = 0; sample_to_chunk_sz = 0; sample_to_chunk = 0; sample_size = 0; sample_count = 0; sample_sizes = 0; keyframe_count = 0; keyframes = 0; time_scale = 0; time_rate = 0; width = 0; height = 0; codec_type = CODEC_TYPE_MOV_OTHER; stsdEntryCount = 0; stsdEntries = 0; editCount = 0; editList = 0; extradata = 0; nb_frames = 0; duration = 0; start_time = 0; } QuickTimeDecoder::MOVStreamContext::~MOVStreamContext() { delete[] chunk_offsets; delete[] stts_data; delete[] sample_to_chunk; delete[] sample_sizes; delete[] keyframes; delete[] stsdEntries; delete[] editList; delete extradata; } } // End of namespace Video