1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#ifndef COMMON_ARRAY_H
#define COMMON_ARRAY_H
#include "common/scummsys.h"
#include "common/algorithm.h"
#include "common/textconsole.h" // For error()
namespace Common {
/**
* This class implements a dynamically sized container, which
* can be accessed similar to a regular C++ array. Accessing
* elements is performed in constant time (like with plain arrays).
* In addition, one can append, insert and remove entries (this
* is the 'dynamic' part). Doing that in general takes time
* proportional to the number of elements in the array.
*
* The container class closest to this in the C++ standard library is
* std::vector. However, there are some differences. The most important one is
* that std::vector has a far more sophisticated (and complicated) memory
* management scheme. There, only elements that 'live' are actually constructed
* (i.e., have their constructor called), and objects that are removed are
* immediately destructed (have their destructor called).
* With Common::Array, this is not the case; instead, it simply uses new[] and
* delete[] to allocate whole blocks of objects, possibly more than are
* currently 'alive'. This simplifies memory management, but may have
* undesirable side effects when one wants to use an Array of complex
* data types.
*
* @todo Improve the storage management of this class.
* In particular, don't use new[] and delete[], but rather
* construct/destruct objects manually. This way, we can
* ensure that storage which is not currently used does not
* correspond to a live active object.
* (This is only of interest for array of non-POD objects).
*/
template<class T>
class Array {
protected:
uint _capacity;
uint _size;
T *_storage;
public:
typedef T *iterator;
typedef const T *const_iterator;
typedef T value_type;
public:
Array() : _capacity(0), _size(0), _storage(0) {}
Array(const Array<T> &array) : _capacity(array._size), _size(array._size), _storage(0) {
if (array._storage) {
allocCapacity(_size);
copy(array._storage, array._storage + _size, _storage);
}
}
/**
* Construct an array by copying data from a regular array.
*/
template<class T2>
Array(const T2 *data, int n) {
_size = n;
allocCapacity(n);
copy(data, data + _size, _storage);
}
~Array() {
delete[] _storage;
_storage = 0;
_capacity = _size = 0;
}
/** Appends element to the end of the array. */
void push_back(const T &element) {
if (_size + 1 <= _capacity)
_storage[_size++] = element;
else
insert_aux(end(), &element, &element + 1);
}
void push_back(const Array<T> &array) {
if (_size + array.size() <= _capacity) {
copy(array.begin(), array.end(), end());
_size += array.size();
} else
insert_aux(end(), array.begin(), array.end());
}
/** Removes the last element of the array. */
void pop_back() {
assert(_size > 0);
_size--;
}
/** Returns a reference to the first element of the array. */
T &front() {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the first element of the array. */
const T &front() const {
assert(_size > 0);
return _storage[0];
}
/** Returns a reference to the last element of the array. */
T &back() {
assert(_size > 0);
return _storage[_size-1];
}
/** Returns a reference to the last element of the array. */
const T &back() const {
assert(_size > 0);
return _storage[_size-1];
}
void insert_at(int idx, const T &element) {
assert(idx >= 0 && (uint)idx <= _size);
insert_aux(_storage + idx, &element, &element + 1);
}
void insert_at(int idx, const Array<T> &array) {
assert(idx >= 0 && (uint)idx <= _size);
insert_aux(_storage + idx, array.begin(), array.end());
}
T remove_at(int idx) {
assert(idx >= 0 && (uint)idx < _size);
T tmp = _storage[idx];
copy(_storage + idx + 1, _storage + _size, _storage + idx);
_size--;
return tmp;
}
// TODO: insert, remove, ...
T& operator[](int idx) {
assert(idx >= 0 && (uint)idx < _size);
return _storage[idx];
}
const T& operator[](int idx) const {
assert(idx >= 0 && (uint)idx < _size);
return _storage[idx];
}
Array<T>& operator=(const Array<T> &array) {
if (this == &array)
return *this;
delete[] _storage;
_size = array._size;
allocCapacity(_size);
copy(array._storage, array._storage + _size, _storage);
return *this;
}
uint size() const {
return _size;
}
void clear() {
delete[] _storage;
_storage = 0;
_size = 0;
_capacity = 0;
}
bool empty() const {
return (_size == 0);
}
bool operator==(const Array<T> &other) const {
if (this == &other)
return true;
if (_size != other._size)
return false;
for (uint i = 0; i < _size; ++i) {
if (_storage[i] != other._storage[i])
return false;
}
return true;
}
bool operator!=(const Array<T> &other) const {
return !(*this == other);
}
iterator begin() {
return _storage;
}
iterator end() {
return _storage + _size;
}
const_iterator begin() const {
return _storage;
}
const_iterator end() const {
return _storage + _size;
}
void reserve(uint newCapacity) {
if (newCapacity <= _capacity)
return;
T *oldStorage = _storage;
allocCapacity(newCapacity);
if (oldStorage) {
// Copy old data
copy(oldStorage, oldStorage + _size, _storage);
delete[] oldStorage;
}
}
void resize(uint newSize) {
reserve(newSize);
for (uint i = _size; i < newSize; ++i)
_storage[i] = T();
_size = newSize;
}
void assign(const T *srcBegin, const T *srcEnd) {
resize(distance(srcBegin, srcEnd)); //fixme: ineffective?
T *dst = _storage;
while(srcBegin != srcEnd)
*dst++ = *srcBegin++;
}
protected:
static uint roundUpCapacity(uint capacity) {
// Round up capacity to the next power of 2;
// we use a minimal capacity of 8.
uint capa = 8;
while (capa < capacity)
capa <<= 1;
return capa;
}
void allocCapacity(uint capacity) {
_capacity = capacity;
if (capacity) {
_storage = new T[capacity];
if (!_storage)
::error("Common::Array: failure to allocate %d bytes", capacity);
} else {
_storage = 0;
}
}
/**
* Insert a range of elements coming from this or another array.
* Unlike std::vector::insert, this method does not accept
* arbitrary iterators, mainly because our iterator system is
* seriously limited and does not distinguish between input iterators,
* output iterators, forward iterators or random access iterators.
*
* So, we simply restrict to Array iterators. Extending this to arbitrary
* random access iterators would be trivial.
*
* Moreover, this method does not handle all cases of inserting a subrange
* of an array into itself; this is why it is private for now.
*/
iterator insert_aux(iterator pos, const_iterator first, const_iterator last) {
assert(_storage <= pos && pos <= _storage + _size);
assert(first <= last);
const uint n = last - first;
if (n) {
const uint idx = pos - _storage;
T *oldStorage = _storage;
if (_size + n > _capacity || (_storage <= first && first <= _storage + _size) ) {
// If there is not enough space, allocate more and
// copy old elements over.
// Likewise, if this is a self-insert, we allocate new
// storage to avoid conflicts. This is not the most efficient
// way to ensure that, but probably the simplest on.
allocCapacity(roundUpCapacity(_size + n));
copy(oldStorage, oldStorage + idx, _storage);
pos = _storage + idx;
}
// Make room for the new elements by shifting back
// existing ones.
copy_backward(oldStorage + idx, oldStorage + _size, _storage + _size + n);
// Insert the new elements.
copy(first, last, pos);
// Finally, update the internal state
if (_storage != oldStorage) {
delete[] oldStorage;
}
_size += n;
}
return pos;
}
};
} // End of namespace Common
#endif
|