1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
|
/* ScummVM - Graphic Adventure Engine
*
* ScummVM is the legal property of its developers, whose names
* are too numerous to list here. Please refer to the COPYRIGHT
* file distributed with this source distribution.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public License
* as published by the Free Software Foundation; either version 2
* of the License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*
*/
#include "sword25/util/double_serialization.h"
#include "common/scummsys.h"
namespace Util {
SerializedDouble encodeDouble(double value) {
// Split the value into its significand and exponent
int exponent;
double significand = frexp(value, &exponent);
// Shift the the first part of the significand into the integer range
double shiftedsignificandPart = ldexp(abs(significand), 32);
uint32 significandOne = uint32(floor(shiftedsignificandPart));
// Shift the remainder of the significand into the integer range
shiftedsignificandPart -= significandOne;
uint32 significandTwo = (uint32)(ldexp(shiftedsignificandPart, 31));
SerializedDouble returnValue;
returnValue.significandOne = significandOne; // SignificandOne
returnValue.signAndSignificandTwo = ((uint32)(value < 0 ? 1 : 0) << 31) | // Sign
significandTwo; // SignificandTwo
returnValue.exponent = (int16)exponent;
return returnValue;
}
double decodeDouble(SerializedDouble value) {
// Expand the exponent and the parts of the significand
int exponent = (int)value.exponent;
double expandedsignificandOne = (double)value.significandOne;
double expandedsignificandTwo = (double)(value.signAndSignificandTwo & 0x7FFFFFFF);
// Deflate the significand
double shiftedsignificand = ldexp(expandedsignificandTwo, -21);
double significand = ldexp(expandedsignificandOne + shiftedsignificand, -32);
// Re-calculate the actual double
double returnValue = ldexp(significand, exponent);
// Check the sign bit and return
return ((value.signAndSignificandTwo & 0x80000000) == 0x80000000) ? -returnValue : returnValue;
}
#if 0
// Why these are needed?
uint64 encodeDouble_64(double value) {
// Split the value into its significand and exponent
int exponent;
double significand = frexp(value, &exponent);
// Shift the significand into the integer range
double shiftedsignificand = ldexp(abs(significand), 53);
// Combine everything using the IEEE standard
uint64 uintsignificand = (uint64)shiftedsignificand;
return ((uint64)(value < 0 ? 1 : 0) << 63) | // Sign
((uint64)(exponent + 1023) << 52) | // Exponent stored as an offset to 1023
(uintsignificand & 0x000FFFFFFFFFFFFFLL); // significand with MSB inferred
}
double decodeDouble_64(uint64 value) {
// Expand the exponent and significand
int exponent = (int)((value >> 52) & 0x7FF) - 1023;
double expandedsignificand = (double)(0x10000000000000LL /* Inferred MSB */ | (value & 0x000FFFFFFFFFFFFFLL));
// Deflate the significand
int temp;
double significand = frexp(expandedsignificand, &temp);
// Re-calculate the actual double
double returnValue = ldexp(significand, exponent);
// Check the sign bit and return
return ((value & 0x8000000000000000LL) == 0x8000000000000000LL) ? -returnValue : returnValue;
}
CompactSerializedDouble encodeDouble_Compact(double value) {
// Split the value into its significand and exponent
int exponent;
double significand = frexp(value, &exponent);
// Shift the the first part of the significand into the integer range
double shiftedsignificandPart = ldexp(abs(significand), 32);
uint32 significandOne = uint32(floor(shiftedsignificandPart));
// Shift the remainder of the significand into the integer range
shiftedsignificandPart -= significandOne;
uint32 significandTwo = (uint32)(ldexp(shiftedsignificandPart, 21));
CompactSerializedDouble returnValue;
returnValue.signAndSignificandOne = ((uint32)(value < 0 ? 1 : 0) << 31) | // Sign
(significandOne & 0x7FFFFFFF); // significandOne with MSB inferred
// Exponent stored as an offset to 1023
returnValue.exponentAndSignificandTwo = ((uint32)(exponent + 1023) << 21) | significandTwo;
return returnValue;
}
double decodeDouble_Compact(CompactSerializedDouble value) {
// Expand the exponent and the parts of the significand
int exponent = (int)(value.exponentAndSignificandTwo >> 21) - 1023;
double expandedsignificandOne = (double)(0x80000000 /* Inferred MSB */ | (value.signAndSignificandOne & 0x7FFFFFFF));
double expandedsignificandTwo = (double)(value.exponentAndSignificandTwo & 0x1FFFFF);
// Deflate the significand
double shiftedsignificand = ldexp(expandedsignificandTwo, -21);
double significand = ldexp(expandedsignificandOne + shiftedsignificand, -32);
// Re-calculate the actual double
double returnValue = ldexp(significand, exponent);
// Check the sign bit and return
return ((value.signAndSignificandOne & 0x80000000) == 0x80000000) ? -returnValue : returnValue;
}
#endif
} // End of namespace Sword25
|