1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
|
/* Copyright (c) 2003-2005 Various contributors
*
* Permission is hereby granted, free of charge, to any person obtaining a copy
* of this software and associated documentation files (the "Software"), to
* deal in the Software without restriction, including without limitation the
* rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
* sell copies of the Software, and to permit persons to whom the Software is
* furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
* AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
* IN THE SOFTWARE.
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
#include "mt32emu.h"
#if defined(MACOSX) || defined(SOLARIS) || defined(__MINGW32__)
// Older versions of Mac OS X didn't supply a powf function, so using it
// will cause a binary incompatibility when trying to run a binary built
// on a newer OS X release on an olderr one. And Solaris 8 doesn't provide
// powf, floorf, fabsf etc. at all.
// Cross-compiled MinGW32 toolchains suffer from a cross-compile bug in
// libstdc++. math/stubs.o should be empty, but it comes with a symbol for
// powf, resulting in a linker error because of multiple definitions.
// Hence we re-define them here. The only potential drawback is that it
// might be a little bit slower this way.
#define powf(x,y) ((float)pow(x,y))
#define floorf(x) ((float)floorf(x))
#define fabsf(x) ((float)fabs(x))
#endif
#define FIXEDPOINT_UDIV(x, y, point) (((x) << (point)) / ((y)))
#define FIXEDPOINT_SDIV(x, y, point) (((x) * (1 << point)) / ((y)))
#define FIXEDPOINT_UMULT(x, y, point) (((x) * (y)) >> point)
#define FIXEDPOINT_SMULT(x, y, point) (((x) * (y)) / (1 << point))
using namespace MT32Emu;
Partial::Partial(Synth *useSynth) {
this->synth = useSynth;
ownerPart = -1;
poly = NULL;
pair = NULL;
#if MT32EMU_ACCURATENOTES == 1
for (int i = 0; i < 3; i++) {
noteLookupStorage.waveforms[i] = new Bit16s[65536];
}
noteLookup = ¬eLookupStorage;
#endif
}
Partial::~Partial() {
#if MT32EMU_ACCURATENOTES == 1
for (int i = 0; i < 3; i++) {
delete[] noteLookupStorage.waveforms[i];
}
delete[] noteLookupStorage.wavTable;
#endif
}
int Partial::getOwnerPart() const {
return ownerPart;
}
bool Partial::isActive() {
return ownerPart > -1;
}
const dpoly *Partial::getDpoly() const {
return this->poly;
}
void Partial::activate(int part) {
// This just marks the partial as being assigned to a part
ownerPart = part;
}
void Partial::deactivate() {
ownerPart = -1;
if (poly != NULL) {
for (int i = 0; i < 4; i++) {
if (poly->partials[i] == this) {
poly->partials[i] = NULL;
break;
}
}
if (pair != NULL) {
pair->pair = NULL;
}
}
}
void Partial::initKeyFollow(int key) {
// Setup partial keyfollow
// Note follow relative to middle C
// Calculate keyfollow for pitch
#if 1
float rel = key == -1 ? 0.0f : (key - MIDDLEC);
float newPitch = rel * patchCache->pitchKeyfollow + patchCache->pitch + patchCache->pitchShift;
//FIXME:KG: Does it truncate the keyfollowed pitch to a semitone (towards MIDDLEC)?
//int newKey = (int)(rel * patchCache->pitchKeyfollow);
//float newPitch = newKey + patchCache->pitch + patchCache->pitchShift;
#else
float rel = key == -1 ? 0.0f : (key + patchCache->pitchShift - MIDDLEC);
float newPitch = rel * patchCache->pitchKeyfollow + patchCache->pitch;
#endif
#if MT32EMU_ACCURATENOTES == 1
noteVal = newPitch;
synth->printDebug("key=%d, pitch=%f, pitchKeyfollow=%f, pitchShift=%f, newPitch=%f", key, patchCache->pitch, patchCache->pitchKeyfollow, patchCache->pitchShift, newPitch);
#else
float newPitchInt;
float newPitchFract = modff(newPitch, &newPitchInt);
if (newPitchFract > 0.5f) {
newPitchInt += 1.0f;
newPitchFract -= 1.0f;
}
noteVal = (int)newPitchInt;
fineShift = (int)(powf(2.0f, newPitchFract / 12.0f) * 4096.0f);
synth->printDebug("key=%d, pitch=%f, pitchKeyfollow=%f, pitchShift=%f, newPitch=%f, noteVal=%d, fineShift=%d", key, patchCache->pitch, patchCache->pitchKeyfollow, patchCache->pitchShift, newPitch, noteVal, fineShift);
#endif
// FIXME:KG: Raise/lower by octaves until in the supported range.
while (noteVal > HIGHEST_NOTE) // FIXME:KG: see tables.cpp: >108?
noteVal -= 12;
while (noteVal < LOWEST_NOTE) // FIXME:KG: see tables.cpp: <12?
noteVal += 12;
// Calculate keyfollow for filter
int keyfollow = ((key - MIDDLEC) * patchCache->filtkeyfollow) / 4096;
if (keyfollow > 108)
keyfollow = 108;
else if (keyfollow < -108)
keyfollow = -108;
filtVal = synth->tables.tvfKeyfollowMult[keyfollow + 108];
realVal = synth->tables.tvfKeyfollowMult[(noteVal - MIDDLEC) + 108];
}
int Partial::getKey() const {
if (poly == NULL) {
return -1;
} else {
return poly->key;
}
}
void Partial::startPartial(dpoly *usePoly, const PatchCache *useCache, Partial *pairPartial) {
if (usePoly == NULL || useCache == NULL) {
synth->printDebug("*** Error: Starting partial for owner %d, usePoly=%s, useCache=%s", ownerPart, usePoly == NULL ? "*** NULL ***" : "OK", useCache == NULL ? "*** NULL ***" : "OK");
return;
}
patchCache = useCache;
poly = usePoly;
mixType = patchCache->structureMix;
structurePosition = patchCache->structurePosition;
play = true;
initKeyFollow(poly->freqnum); // Initialises noteVal, filtVal and realVal
#if MT32EMU_ACCURATENOTES == 0
noteLookup = &synth->tables.noteLookups[noteVal - LOWEST_NOTE];
#else
Tables::initNote(synth, ¬eLookupStorage, noteVal, (float)synth->myProp.sampleRate, synth->masterTune, synth->pcmWaves, NULL);
#endif
keyLookup = &synth->tables.keyLookups[poly->freqnum - 12];
if (patchCache->PCMPartial) {
pcmNum = patchCache->pcm;
if (synth->controlROMMap->pcmCount > 128) {
// CM-32L, etc. support two "banks" of PCMs, selectable by waveform type parameter.
if (patchCache->waveform > 1) {
pcmNum += 128;
}
}
pcmWave = &synth->pcmWaves[pcmNum];
} else {
pcmWave = NULL;
}
lfoPos = 0;
pulsewidth = patchCache->pulsewidth + synth->tables.pwVelfollowAdd[patchCache->pwsens][poly->vel];
if (pulsewidth > 100) {
pulsewidth = 100;
} else if (pulsewidth < 0) {
pulsewidth = 0;
}
for (int e = 0; e < 3; e++) {
envs[e].envpos = 0;
envs[e].envstat = -1;
envs[e].envbase = 0;
envs[e].envdist = 0;
envs[e].envsize = 0;
envs[e].sustaining = false;
envs[e].decaying = false;
envs[e].prevlevel = 0;
envs[e].counter = 0;
envs[e].count = 0;
}
ampEnvVal = 0;
pitchEnvVal = 0;
pitchSustain = false;
loopPos = 0;
partialOff.pcmoffset = partialOff.pcmplace = 0;
pair = pairPartial;
useNoisePair = pairPartial == NULL && (mixType == 1 || mixType == 2);
age = 0;
alreadyOutputed = false;
memset(history,0,sizeof(history));
}
Bit16s *Partial::generateSamples(long length) {
if (!isActive() || alreadyOutputed) {
return NULL;
}
if (poly == NULL) {
synth->printDebug("*** ERROR: poly is NULL at Partial::generateSamples()!");
return NULL;
}
alreadyOutputed = true;
// Generate samples
Bit16s *partialBuf = &myBuffer[0];
Bit32u volume = *poly->volumeptr;
while (length--) {
Bit32s envval;
Bit32s sample = 0;
if (!envs[EnvelopeType_amp].sustaining) {
if (envs[EnvelopeType_amp].count <= 0) {
Bit32u ampval = getAmpEnvelope();
if (!play) {
deactivate();
break;
}
if (ampval > 100) {
ampval = 100;
}
ampval = synth->tables.volumeMult[ampval];
ampval = FIXEDPOINT_UMULT(ampval, synth->tables.tvaVelfollowMult[poly->vel][(int)patchCache->ampEnv.velosens], 8);
//if (envs[EnvelopeType_amp].sustaining)
ampEnvVal = ampval;
}
--envs[EnvelopeType_amp].count;
}
unsigned int lfoShift = 0x1000;
if (pitchSustain) {
// Calculate LFO position
// LFO does not kick in completely until pitch envelope sustains
if (patchCache->lfodepth > 0) {
lfoPos++;
if (lfoPos >= patchCache->lfoperiod)
lfoPos = 0;
int lfoatm = FIXEDPOINT_UDIV(lfoPos, patchCache->lfoperiod, 16);
int lfoatr = synth->tables.sintable[lfoatm];
lfoShift = synth->tables.lfoShift[patchCache->lfodepth][lfoatr];
}
} else {
// Calculate Pitch envelope
envval = getPitchEnvelope();
int pd = patchCache->pitchEnv.depth;
pitchEnvVal = synth->tables.pitchEnvVal[pd][envval];
}
int delta;
// Wrap positions or end if necessary
if (patchCache->PCMPartial) {
// PCM partial
delta = noteLookup->wavTable[pcmNum];
int len = pcmWave->len;
if (partialOff.pcmplace >= len) {
if (pcmWave->loop) {
//partialOff.pcmplace = partialOff.pcmoffset = 0;
partialOff.pcmplace %= len;
} else {
play = false;
deactivate();
break;
}
}
} else {
// Synthesis partial
delta = 0x10000;
partialOff.pcmplace %= (Bit16u)noteLookup->div2;
}
// Build delta for position of next sample
// Fix delta code
Bit32u tdelta = delta;
#if MT32EMU_ACCURATENOTES == 0
tdelta = FIXEDPOINT_UMULT(tdelta, fineShift, 12);
#endif
tdelta = FIXEDPOINT_UMULT(tdelta, pitchEnvVal, 12);
tdelta = FIXEDPOINT_UMULT(tdelta, lfoShift, 12);
tdelta = FIXEDPOINT_UMULT(tdelta, bendShift, 12);
delta = (int)tdelta;
// Get waveform - either PCM or synthesized sawtooth or square
if (ampEnvVal > 0) {
if (patchCache->PCMPartial) {
// Render PCM sample
int ra, rb, dist;
Bit32u taddr;
Bit32u pcmAddr = pcmWave->addr;
if (delta < 0x10000) {
// Linear sound interpolation
taddr = pcmAddr + partialOff.pcmplace;
ra = synth->pcmROMData[taddr];
taddr++;
if (taddr == pcmAddr + pcmWave->len) {
// Past end of PCM
if (pcmWave->loop) {
rb = synth->pcmROMData[pcmAddr];
} else {
rb = 0;
}
} else {
rb = synth->pcmROMData[taddr];
}
dist = rb - ra;
sample = (ra + ((dist * (Bit32s)(partialOff.pcmoffset >> 8)) >> 8));
} else {
// Sound decimation
// The right way to do it is to use a lowpass filter on the waveform before selecting
// a point. This is too slow. The following approximates this as fast as possible
int idelta = delta >> 16;
taddr = pcmAddr + partialOff.pcmplace;
ra = synth->pcmROMData[taddr++];
for (int ix = 0; ix < idelta - 1; ix++) {
if (taddr == pcmAddr + pcmWave->len) {
// Past end of PCM
if (pcmWave->loop) {
taddr = pcmAddr;
} else {
// Behave as if all subsequent samples were 0
break;
}
}
ra += synth->pcmROMData[taddr++];
}
sample = ra / idelta;
}
} else {
// Render synthesised sample
int toff = partialOff.pcmplace;
int minorplace = partialOff.pcmoffset >> 14;
Bit32s filterInput;
Bit32s filtval = getFiltEnvelope();
//synth->printDebug("Filtval: %d", filtval);
if ((patchCache->waveform & 1) == 0) {
// Square waveform. Made by combining two pregenerated bandlimited
// sawtooth waveforms
Bit32u ofsA = ((toff << 2) + minorplace) % noteLookup->waveformSize[0];
int width = FIXEDPOINT_UMULT(noteLookup->div2, synth->tables.pwFactor[pulsewidth], 7);
Bit32u ofsB = (ofsA + width) % noteLookup->waveformSize[0];
Bit16s pa = noteLookup->waveforms[0][ofsA];
Bit16s pb = noteLookup->waveforms[0][ofsB];
filterInput = pa - pb;
// Non-bandlimited squarewave
/*
ofs = FIXEDPOINT_UMULT(noteLookup->div2, synth->tables.pwFactor[patchCache->pulsewidth], 8);
if (toff < ofs)
sample = 1 * WGAMP;
else
sample = -1 * WGAMP;
*/
} else {
// Sawtooth. Made by combining the full cosine and half cosine according
// to how it looks on the MT-32. What it really does it takes the
// square wave and multiplies it by a full cosine
int waveoff = (toff << 2) + minorplace;
if (toff < noteLookup->sawTable[pulsewidth])
filterInput = noteLookup->waveforms[1][waveoff % noteLookup->waveformSize[1]];
else
filterInput = noteLookup->waveforms[2][waveoff % noteLookup->waveformSize[2]];
// This is the correct way
// Seems slow to me (though bandlimited) -- doesn't seem to
// sound any better though
/*
//int pw = (patchCache->pulsewidth * pulsemod[filtval]) >> 8;
Bit32u ofs = toff % (noteLookup->div2 >> 1);
Bit32u ofs3 = toff + FIXEDPOINT_UMULT(noteLookup->div2, synth->tables.pwFactor[patchCache->pulsewidth], 9);
ofs3 = ofs3 % (noteLookup->div2 >> 1);
pa = noteLookup->waveforms[0][ofs];
pb = noteLookup->waveforms[0][ofs3];
sample = ((pa - pb) * noteLookup->waveforms[2][toff]) / 2;
*/
}
//Very exact filter
if (filtval > ((FILTERGRAN * 15) / 16))
filtval = ((FILTERGRAN * 15) / 16);
sample = (Bit32s)(floorf((synth->iirFilter)((float)filterInput, &history[0], synth->tables.filtCoeff[filtval][(int)patchCache->filtEnv.resonance])) / synth->tables.resonanceFactor[patchCache->filtEnv.resonance]);
if (sample < -32768) {
synth->printDebug("Overdriven amplitude for %d: %d:=%d < -32768", patchCache->waveform, filterInput, sample);
sample = -32768;
}
else if (sample > 32767) {
synth->printDebug("Overdriven amplitude for %d: %d:=%d > 32767", patchCache->waveform, filterInput, sample);
sample = 32767;
}
}
}
// Add calculated delta to our waveform offset
Bit32u absOff = ((partialOff.pcmplace << 16) | partialOff.pcmoffset);
absOff += delta;
partialOff.pcmplace = (Bit16u)((absOff & 0xFFFF0000) >> 16);
partialOff.pcmoffset = (Bit16u)(absOff & 0xFFFF);
// Put volume envelope over generated sample
sample = FIXEDPOINT_SMULT(sample, ampEnvVal, 9);
sample = FIXEDPOINT_SMULT(sample, volume, 7);
envs[EnvelopeType_amp].envpos++;
envs[EnvelopeType_pitch].envpos++;
envs[EnvelopeType_filt].envpos++;
*partialBuf++ = (Bit16s)sample;
}
// We may have deactivated and broken out of the loop before the end of the buffer,
// if so then fill the remainder with 0s.
if (++length > 0)
memset(partialBuf, 0, length * 2);
return &myBuffer[0];
}
void Partial::setBend(float factor) {
if (!patchCache->useBender || factor == 0.0f) {
bendShift = 4096;
return;
}
// NOTE:KG: We can't do this smoothly with lookup tables, unless we use several MB.
// FIXME:KG: Bend should be influenced by pitch key-follow too, according to docs.
float bendSemitones = factor * patchCache->benderRange; // -24 .. 24
float mult = powf(2.0f, bendSemitones / 12.0f);
synth->printDebug("setBend(): factor=%f, benderRange=%f, semitones=%f, mult=%f\n", factor, patchCache->benderRange, bendSemitones, mult);
bendShift = (int)(mult * 4096.0f);
}
Bit16s *Partial::mixBuffers(Bit16s * buf1, Bit16s *buf2, int len) {
if (buf1 == NULL)
return buf2;
if (buf2 == NULL)
return buf1;
Bit16s *outBuf = buf1;
#if MT32EMU_USE_MMX >= 1
// KG: This seems to be fine
int donelen = i386_mixBuffers(buf1, buf2, len);
len -= donelen;
buf1 += donelen;
buf2 += donelen;
#endif
while (len--) {
*buf1 = *buf1 + *buf2;
buf1++, buf2++;
}
return outBuf;
}
Bit16s *Partial::mixBuffersRingMix(Bit16s * buf1, Bit16s *buf2, int len) {
if (buf1 == NULL)
return NULL;
if (buf2 == NULL) {
Bit16s *outBuf = buf1;
while (len--) {
if (*buf1 < -8192)
*buf1 = -8192;
else if (*buf1 > 8192)
*buf1 = 8192;
buf1++;
}
return outBuf;
}
Bit16s *outBuf = buf1;
#if MT32EMU_USE_MMX >= 1
// KG: This seems to be fine
int donelen = i386_mixBuffersRingMix(buf1, buf2, len);
len -= donelen;
buf1 += donelen;
buf2 += donelen;
#endif
while (len--) {
float a, b;
a = ((float)*buf1) / 8192.0f;
b = ((float)*buf2) / 8192.0f;
a = (a * b) + a;
if (a > 1.0f)
a = 1.0f;
if (a < -1.0f)
a = -1.0f;
*buf1 = (Bit16s)(a * 8192.0f);
buf1++;
buf2++;
//buf1[i] = (Bit16s)(((Bit32s)buf1[i] * (Bit32s)buf2[i]) >> 10) + buf1[i];
}
return outBuf;
}
Bit16s *Partial::mixBuffersRing(Bit16s * buf1, Bit16s *buf2, int len) {
if (buf1 == NULL) {
return NULL;
}
if (buf2 == NULL) {
return NULL;
}
Bit16s *outBuf = buf1;
#if MT32EMU_USE_MMX >= 1
// FIXME:KG: Not really checked as working
int donelen = i386_mixBuffersRing(buf1, buf2, len);
len -= donelen;
buf1 += donelen;
buf2 += donelen;
#endif
while (len--) {
float a, b;
a = ((float)*buf1) / 8192.0f;
b = ((float)*buf2) / 8192.0f;
a *= b;
if (a > 1.0f)
a = 1.0f;
if (a < -1.0f)
a = -1.0f;
*buf1 = (Bit16s)(a * 8192.0f);
buf1++;
buf2++;
}
return outBuf;
}
void Partial::mixBuffersStereo(Bit16s *buf1, Bit16s *buf2, Bit16s *outBuf, int len) {
if (buf2 == NULL) {
while (len--) {
*outBuf++ = *buf1++;
*outBuf++ = 0;
}
} else if (buf1 == NULL) {
while (len--) {
*outBuf++ = 0;
*outBuf++ = *buf2++;
}
} else {
while (len--) {
*outBuf++ = *buf1++;
*outBuf++ = *buf2++;
}
}
}
bool Partial::produceOutput(Bit16s *partialBuf, long length) {
if (!isActive() || alreadyOutputed)
return false;
if (poly == NULL) {
synth->printDebug("*** ERROR: poly is NULL at Partial::produceOutput()!");
return false;
}
Bit16s *pairBuf = NULL;
// Check for dependant partial
if (pair != NULL) {
if (!pair->alreadyOutputed) {
// Note: pair may have become NULL after this
pairBuf = pair->generateSamples(length);
}
} else if (useNoisePair) {
// Generate noise for pairless ring mix
pairBuf = synth->tables.noiseBuf;
}
Bit16s *myBuf = generateSamples(length);
if (myBuf == NULL && pairBuf == NULL)
return false;
Bit16s *p1buf, *p2buf;
if (structurePosition == 0 || pairBuf == NULL) {
p1buf = myBuf;
p2buf = pairBuf;
} else {
p2buf = myBuf;
p1buf = pairBuf;
}
//synth->printDebug("mixType: %d", mixType);
Bit16s *mixedBuf;
switch (mixType) {
case 0:
// Standard sound mix
mixedBuf = mixBuffers(p1buf, p2buf, length);
break;
case 1:
// Ring modulation with sound mix
mixedBuf = mixBuffersRingMix(p1buf, p2buf, length);
break;
case 2:
// Ring modulation alone
mixedBuf = mixBuffersRing(p1buf, p2buf, length);
break;
case 3:
// Stereo mixing. One partial to one speaker channel, one to another.
// FIXME:KG: Surely we should be multiplying by the left/right volumes here?
mixBuffersStereo(p1buf, p2buf, partialBuf, length);
return true;
default:
mixedBuf = mixBuffers(p1buf, p2buf, length);
break;
}
if (mixedBuf == NULL)
return false;
Bit16s leftvol, rightvol;
leftvol = patchCache->pansetptr->leftvol;
rightvol = patchCache->pansetptr->rightvol;
#if MT32EMU_USE_MMX >= 2
// FIXME:KG: This appears to introduce crackle
int donelen = i386_partialProductOutput(length, leftvol, rightvol, partialBuf, mixedBuf);
length -= donelen;
mixedBuf += donelen;
partialBuf += donelen * 2;
#endif
while (length--) {
*partialBuf++ = (Bit16s)(((Bit32s)*mixedBuf * (Bit32s)leftvol) >> 15);
*partialBuf++ = (Bit16s)(((Bit32s)*mixedBuf * (Bit32s)rightvol) >> 15);
mixedBuf++;
}
return true;
}
Bit32s Partial::getFiltEnvelope() {
int reshigh;
int cutoff, depth;
EnvelopeStatus *tStat = &envs[EnvelopeType_filt];
if (tStat->decaying) {
reshigh = tStat->envbase;
reshigh = (reshigh + ((tStat->envdist * tStat->envpos) / tStat->envsize));
if (tStat->envpos >= tStat->envsize)
reshigh = 0;
} else {
if (tStat->envstat==4) {
reshigh = patchCache->filtsustain;
if (!poly->sustain) {
startDecay(EnvelopeType_filt, reshigh);
}
} else {
if ((tStat->envstat==-1) || (tStat->envpos >= tStat->envsize)) {
if (tStat->envstat==-1)
tStat->envbase = 0;
else
tStat->envbase = patchCache->filtEnv.envlevel[tStat->envstat];
tStat->envstat++;
tStat->envpos = 0;
if (tStat->envstat == 3) {
tStat->envsize = synth->tables.envTime[(int)patchCache->filtEnv.envtime[tStat->envstat]];
} else {
Bit32u envTime = (int)patchCache->filtEnv.envtime[tStat->envstat];
if (tStat->envstat > 1) {
int envDiff = abs(patchCache->filtEnv.envlevel[tStat->envstat] - patchCache->filtEnv.envlevel[tStat->envstat - 1]);
if (envTime > synth->tables.envDeltaMaxTime[envDiff]) {
envTime = synth->tables.envDeltaMaxTime[envDiff];
}
}
tStat->envsize = (synth->tables.envTime[envTime] * keyLookup->envTimeMult[(int)patchCache->filtEnv.envtkf]) >> 8;
}
tStat->envsize++;
tStat->envdist = patchCache->filtEnv.envlevel[tStat->envstat] - tStat->envbase;
}
reshigh = tStat->envbase;
reshigh = (reshigh + ((tStat->envdist * tStat->envpos) / tStat->envsize));
}
tStat->prevlevel = reshigh;
}
cutoff = patchCache->filtEnv.cutoff;
//if (patchCache->waveform==1) reshigh = (reshigh * 3) >> 2;
depth = patchCache->filtEnv.envdepth;
//int sensedep = (depth * 127-patchCache->filtEnv.envsense) >> 7;
depth = FIXEDPOINT_UMULT(depth, synth->tables.tvfVelfollowMult[poly->vel][(int)patchCache->filtEnv.envsense], 8);
int bias = patchCache->tvfbias;
int dist;
if (bias != 0) {
//FIXME:KG: Is this really based on pitch (as now), or key pressed?
//synth->printDebug("Cutoff before %d", cutoff);
if (patchCache->tvfdir == 0) {
if (noteVal < bias) {
dist = bias - noteVal;
cutoff = FIXEDPOINT_UMULT(cutoff, synth->tables.tvfBiasMult[patchCache->tvfblevel][dist], 8);
}
} else {
// > Bias
if (noteVal > bias) {
dist = noteVal - bias;
cutoff = FIXEDPOINT_UMULT(cutoff, synth->tables.tvfBiasMult[patchCache->tvfblevel][dist], 8);
}
}
//synth->printDebug("Cutoff after %d", cutoff);
}
depth = (depth * keyLookup->envDepthMult[patchCache->filtEnv.envdkf]) >> 8;
reshigh = (reshigh * depth) >> 7;
Bit32s tmp;
cutoff *= filtVal;
cutoff /= realVal; //FIXME:KG: With filter keyfollow 0, this makes no sense. What's correct?
reshigh *= filtVal;
reshigh /= realVal; //FIXME:KG: As above for cutoff
if (patchCache->waveform == 1) {
reshigh = (reshigh * 65) / 100;
}
if (cutoff > 100)
cutoff = 100;
else if (cutoff < 0)
cutoff = 0;
if (reshigh > 100)
reshigh = 100;
else if (reshigh < 0)
reshigh = 0;
tmp = noteLookup->nfiltTable[cutoff][reshigh];
//tmp *= keyfollow;
//tmp /= realfollow;
//synth->printDebug("Cutoff %d, tmp %d, freq %d", cutoff, tmp, tmp * 256);
return tmp;
}
bool Partial::shouldReverb() {
if (!isActive())
return false;
return patchCache->reverb;
}
Bit32u Partial::getAmpEnvelope() {
Bit32s tc;
EnvelopeStatus *tStat = &envs[EnvelopeType_amp];
if (!play)
return 0;
if (tStat->decaying) {
tc = tStat->envbase;
tc += (tStat->envdist * tStat->envpos) / tStat->envsize;
if (tc < 0)
tc = 0;
if ((tStat->envpos >= tStat->envsize) || (tc == 0)) {
play = false;
// Don't have to worry about prevlevel storage or anything, this partial's about to die
return 0;
}
} else {
if ((tStat->envstat == -1) || (tStat->envpos >= tStat->envsize)) {
if (tStat->envstat == -1)
tStat->envbase = 0;
else
tStat->envbase = patchCache->ampEnv.envlevel[tStat->envstat];
tStat->envstat++;
tStat->envpos = 0;
if (tStat->envstat == 4) {
//synth->printDebug("Envstat %d, size %d", tStat->envstat, tStat->envsize);
tc = patchCache->ampEnv.envlevel[3];
if (!poly->sustain)
startDecay(EnvelopeType_amp, tc);
else
tStat->sustaining = true;
goto PastCalc;
}
Bit8u targetLevel = patchCache->ampEnv.envlevel[tStat->envstat];
tStat->envdist = targetLevel - tStat->envbase;
Bit32u envTime = patchCache->ampEnv.envtime[tStat->envstat];
if (targetLevel == 0) {
tStat->envsize = synth->tables.envDecayTime[envTime];
} else {
int envLevelDelta = abs(tStat->envdist);
if (envTime > synth->tables.envDeltaMaxTime[envLevelDelta]) {
envTime = synth->tables.envDeltaMaxTime[envLevelDelta];
}
tStat->envsize = synth->tables.envTime[envTime];
}
// Time keyfollow is used by all sections of the envelope (confirmed on CM-32L)
tStat->envsize = FIXEDPOINT_UMULT(tStat->envsize, keyLookup->envTimeMult[(int)patchCache->ampEnv.envtkf], 8);
switch (tStat->envstat) {
case 0:
//Spot for velocity time follow
//Only used for first attack
tStat->envsize = FIXEDPOINT_UMULT(tStat->envsize, synth->tables.envTimeVelfollowMult[(int)patchCache->ampEnv.envvkf][poly->vel], 8);
//synth->printDebug("Envstat %d, size %d", tStat->envstat, tStat->envsize);
break;
case 1:
case 2:
case 3:
//synth->printDebug("Envstat %d, size %d", tStat->envstat, tStat->envsize);
break;
default:
synth->printDebug("Invalid TVA envelope number %d hit!", tStat->envstat);
break;
}
tStat->envsize++;
if (tStat->envdist != 0) {
tStat->counter = abs(tStat->envsize / tStat->envdist);
//synth->printDebug("Pos %d, envsize %d envdist %d", tStat->envstat, tStat->envsize, tStat->envdist);
} else {
tStat->counter = 0;
//synth->printDebug("Pos %d, envsize %d envdist %d", tStat->envstat, tStat->envsize, tStat->envdist);
}
}
tc = tStat->envbase;
tc = (tc + ((tStat->envdist * tStat->envpos) / tStat->envsize));
tStat->count = tStat->counter;
PastCalc:
tc = (tc * (Bit32s)patchCache->ampEnv.level) / 100;
}
// Prevlevel storage is bottle neck
tStat->prevlevel = tc;
//Bias level crap stuff now
for (int i = 0; i < 2; i++) {
if (patchCache->ampblevel[i]!=0) {
int bias = patchCache->ampbias[i];
if (patchCache->ampdir[i]==0) {
// < Bias
if (noteVal < bias) {
int dist = bias - noteVal;
tc = FIXEDPOINT_UMULT(tc, synth->tables.tvaBiasMult[patchCache->ampblevel[i]][dist], 8);
}
} else {
// > Bias
if (noteVal > bias) {
int dist = noteVal - bias;
tc = FIXEDPOINT_UMULT(tc, synth->tables.tvaBiasMult[patchCache->ampblevel[i]][dist], 8);
}
}
}
}
if (tc < 0) {
synth->printDebug("*** ERROR: tc < 0 (%d) at getAmpEnvelope()", tc);
tc = 0;
}
return (Bit32u)tc;
}
Bit32s Partial::getPitchEnvelope() {
EnvelopeStatus *tStat = &envs[EnvelopeType_pitch];
Bit32s tc;
pitchSustain = false;
if (tStat->decaying) {
if (tStat->envpos >= tStat->envsize)
tc = patchCache->pitchEnv.level[4];
else {
tc = tStat->envbase;
tc = (tc + ((tStat->envdist * tStat->envpos) / tStat->envsize));
}
} else {
if (tStat->envstat==3) {
tc = patchCache->pitchsustain;
if (poly->sustain)
pitchSustain = true;
else
startDecay(EnvelopeType_pitch, tc);
} else {
if ((tStat->envstat==-1) || (tStat->envpos >= tStat->envsize)) {
tStat->envstat++;
tStat->envbase = patchCache->pitchEnv.level[tStat->envstat];
Bit32u envTime = patchCache->pitchEnv.time[tStat->envstat];
int envDiff = abs(patchCache->pitchEnv.level[tStat->envstat] - patchCache->pitchEnv.level[tStat->envstat + 1]);
if (envTime > synth->tables.envDeltaMaxTime[envDiff]) {
envTime = synth->tables.envDeltaMaxTime[envDiff];
}
tStat->envsize = (synth->tables.envTime[envTime] * keyLookup->envTimeMult[(int)patchCache->pitchEnv.timekeyfollow]) >> 8;
tStat->envpos = 0;
tStat->envsize++;
tStat->envdist = patchCache->pitchEnv.level[tStat->envstat + 1] - tStat->envbase;
}
tc = tStat->envbase;
tc = (tc + ((tStat->envdist * tStat->envpos) / tStat->envsize));
}
tStat->prevlevel = tc;
}
return tc;
}
void Partial::startDecayAll() {
startDecay(EnvelopeType_amp, envs[EnvelopeType_amp].prevlevel);
startDecay(EnvelopeType_filt, envs[EnvelopeType_filt].prevlevel);
startDecay(EnvelopeType_pitch, envs[EnvelopeType_pitch].prevlevel);
pitchSustain = false;
}
void Partial::startDecay(EnvelopeType envnum, Bit32s startval) {
EnvelopeStatus *tStat = &envs[envnum];
tStat->sustaining = false;
tStat->decaying = true;
tStat->envpos = 0;
tStat->envbase = startval;
switch (envnum) {
case EnvelopeType_amp:
tStat->envsize = FIXEDPOINT_UMULT(synth->tables.envDecayTime[(int)patchCache->ampEnv.envtime[4]], keyLookup->envTimeMult[(int)patchCache->ampEnv.envtkf], 8);
tStat->envdist = -startval;
break;
case EnvelopeType_filt:
tStat->envsize = FIXEDPOINT_UMULT(synth->tables.envDecayTime[(int)patchCache->filtEnv.envtime[4]], keyLookup->envTimeMult[(int)patchCache->filtEnv.envtkf], 8);
tStat->envdist = -startval;
break;
case EnvelopeType_pitch:
tStat->envsize = FIXEDPOINT_UMULT(synth->tables.envDecayTime[(int)patchCache->pitchEnv.time[3]], keyLookup->envTimeMult[(int)patchCache->pitchEnv.timekeyfollow], 8);
tStat->envdist = patchCache->pitchEnv.level[4] - startval;
break;
default:
break;
}
tStat->envsize++;
}
|