/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #include "snes9x.h" #include "dsp1.h" #include "missing.h" #include "memmap.h" #include #include "dsp1emu.c" #include "dsp2emu.c" //#include "dsp3emu.cpp" void (*SetDSP)(uint8, uint16) = &DSP1SetByte; uint8(*GetDSP)(uint16) = &DSP1GetByte; void S9xInitDSP1() { static bool8 init = FALSE; if (!init) { InitDSP(); init = TRUE; } } void S9xResetDSP1() { S9xInitDSP1(); DSP1.waiting4command = TRUE; DSP1.in_count = 0; DSP1.out_count = 0; DSP1.in_index = 0; DSP1.out_index = 0; DSP1.first_parameter = TRUE; } uint8 S9xGetDSP(uint16 address) { uint8 t; #ifdef DEBUGGER if (Settings.TraceDSP) { sprintf(String, "DSP read: 0x%04X", address); S9xMessage(S9X_TRACE, S9X_TRACE_DSP1, String); } #endif t = (*GetDSP)(address); //DSP1GetByte(address); return (t); } void S9xSetDSP(uint8 byte, uint16 address) { #ifdef DEBUGGER missing.unknowndsp_write = address; if (Settings.TraceDSP) { sprintf(String, "DSP write: 0x%04X=0x%02X", address, byte); S9xMessage(S9X_TRACE, S9X_TRACE_DSP1, String); } #endif (*SetDSP)(byte, address); //DSP1SetByte(byte, address); } void DSP1SetByte(uint8 byte, uint16 address) { if ((address & 0xf000) == 0x6000 || (address & 0x7fff) < 0x4000) { // if ((address & 1) == 0) // { if ((DSP1.command == 0x0A || DSP1.command == 0x1A) && DSP1.out_count != 0) { DSP1.out_count--; DSP1.out_index++; return; } else if (DSP1.waiting4command) { DSP1.command = byte; DSP1.in_index = 0; DSP1.waiting4command = FALSE; DSP1.first_parameter = TRUE; // printf("Op%02X\n",byte); // Mario Kart uses 0x00, 0x02, 0x06, 0x0c, 0x28, 0x0a switch (byte) { case 0x00: DSP1.in_count = 2; break; case 0x30: case 0x10: DSP1.in_count = 2; break; case 0x20: DSP1.in_count = 2; break; case 0x24: case 0x04: DSP1.in_count = 2; break; case 0x08: DSP1.in_count = 3; break; case 0x18: DSP1.in_count = 4; break; case 0x28: DSP1.in_count = 3; break; case 0x38: DSP1.in_count = 4; break; case 0x2c: case 0x0c: DSP1.in_count = 3; break; case 0x3c: case 0x1c: DSP1.in_count = 6; break; case 0x32: case 0x22: case 0x12: case 0x02: DSP1.in_count = 7; break; case 0x0a: DSP1.in_count = 1; break; case 0x3a: case 0x2a: case 0x1a: DSP1. command = 0x1a; DSP1.in_count = 1; break; case 0x16: case 0x26: case 0x36: case 0x06: DSP1.in_count = 3; break; case 0x1e: case 0x2e: case 0x3e: case 0x0e: DSP1.in_count = 2; break; case 0x05: case 0x35: case 0x31: case 0x01: DSP1.in_count = 4; break; case 0x15: case 0x11: DSP1.in_count = 4; break; case 0x25: case 0x21: DSP1.in_count = 4; break; case 0x09: case 0x39: case 0x3d: case 0x0d: DSP1.in_count = 3; break; case 0x19: case 0x1d: DSP1.in_count = 3; break; case 0x29: case 0x2d: DSP1.in_count = 3; break; case 0x33: case 0x03: DSP1.in_count = 3; break; case 0x13: DSP1.in_count = 3; break; case 0x23: DSP1.in_count = 3; break; case 0x3b: case 0x0b: DSP1.in_count = 3; break; case 0x1b: DSP1.in_count = 3; break; case 0x2b: DSP1.in_count = 3; break; case 0x34: case 0x14: DSP1.in_count = 6; break; case 0x07: case 0x0f: DSP1.in_count = 1; break; case 0x27: case 0x2F: DSP1.in_count = 1; break; case 0x17: case 0x37: case 0x3F: DSP1.command = 0x1f; case 0x1f: DSP1.in_count = 1; break; // case 0x80: DSP1.in_count = 2; break; default: //printf("Op%02X\n",byte); case 0x80: DSP1.in_count = 0; DSP1.waiting4command = TRUE; DSP1.first_parameter = TRUE; break; } DSP1.in_count <<= 1; } else { DSP1.parameters [DSP1.in_index] = byte; DSP1.first_parameter = FALSE; DSP1.in_index++; } if (DSP1.waiting4command || (DSP1.first_parameter && byte == 0x80)) { DSP1.waiting4command = TRUE; DSP1.first_parameter = FALSE; } else if (DSP1.first_parameter && (DSP1.in_count != 0 || (DSP1.in_count == 0 && DSP1.in_index == 0))) { } // else if (DSP1.first_parameter) // { // } else { if (DSP1.in_count) { //DSP1.parameters [DSP1.in_index] |= (byte << 8); if (--DSP1.in_count == 0) { // Actually execute the command DSP1.waiting4command = TRUE; DSP1.out_index = 0; switch (DSP1.command) { case 0x1f: DSP1.out_count = 2048; break; case 0x00: // Multiple Op00Multiplicand = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op00Multiplier = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); DSPOp00(); DSP1.out_count = 2; DSP1.output [0] = Op00Result & 0xFF; DSP1.output [1] = (Op00Result >> 8) & 0xFF; break; case 0x20: // Multiple Op20Multiplicand = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op20Multiplier = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); DSPOp20(); DSP1.out_count = 2; DSP1.output [0] = Op20Result & 0xFF; DSP1.output [1] = (Op20Result >> 8) & 0xFF; break; case 0x30: case 0x10: // Inverse Op10Coefficient = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op10Exponent = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); DSPOp10(); DSP1.out_count = 4; DSP1.output [0] = (uint8)(((int16) Op10CoefficientR) & 0xFF); DSP1.output [1] = (uint8)((((int16) Op10CoefficientR) >> 8) & 0xFF); DSP1.output [2] = (uint8)(((int16) Op10ExponentR) & 0xff); DSP1.output [3] = (uint8)((((int16) Op10ExponentR) >> 8) & 0xff); break; case 0x24: case 0x04: // Sin and Cos of angle Op04Angle = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op04Radius = (uint16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); DSPOp04(); DSP1.out_count = 4; DSP1.output [0] = (uint8)(Op04Sin & 0xFF); DSP1.output [1] = (uint8)((Op04Sin >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op04Cos & 0xFF); DSP1.output [3] = (uint8)((Op04Cos >> 8) & 0xFF); break; case 0x08: // Radius Op08X = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op08Y = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op08Z = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp08(); DSP1.out_count = 4; DSP1.output [0] = (uint8)(((int16) Op08Ll) & 0xFF); DSP1.output [1] = (uint8)((((int16) Op08Ll) >> 8) & 0xFF); DSP1.output [2] = (uint8)(((int16) Op08Lh) & 0xFF); DSP1.output [3] = (uint8)((((int16) Op08Lh) >> 8) & 0xFF); break; case 0x18: // Range Op18X = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op18Y = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op18Z = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op18R = (int16)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); DSPOp18(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op18D & 0xFF); DSP1.output [1] = (uint8)((Op18D >> 8) & 0xFF); break; case 0x38: // Range Op38X = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op38Y = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op38Z = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op38R = (int16)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); DSPOp38(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op38D & 0xFF); DSP1.output [1] = (uint8)((Op38D >> 8) & 0xFF); break; case 0x28: // Distance (vector length) Op28X = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op28Y = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op28Z = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp28(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op28R & 0xFF); DSP1.output [1] = (uint8)((Op28R >> 8) & 0xFF); break; case 0x2c: case 0x0c: // Rotate (2D rotate) Op0CA = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op0CX1 = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op0CY1 = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp0C(); DSP1.out_count = 4; DSP1.output [0] = (uint8)(Op0CX2 & 0xFF); DSP1.output [1] = (uint8)((Op0CX2 >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op0CY2 & 0xFF); DSP1.output [3] = (uint8)((Op0CY2 >> 8) & 0xFF); break; case 0x3c: case 0x1c: // Polar (3D rotate) Op1CZ = (DSP1.parameters [0] | (DSP1.parameters[1] << 8)); //MK: reversed X and Y on neviksti and John's advice. Op1CY = (DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op1CX = (DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op1CXBR = (DSP1.parameters [6] | (DSP1.parameters[7] << 8)); Op1CYBR = (DSP1.parameters [8] | (DSP1.parameters[9] << 8)); Op1CZBR = (DSP1.parameters [10] | (DSP1.parameters[11] << 8)); DSPOp1C(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op1CXAR & 0xFF); DSP1.output [1] = (uint8)((Op1CXAR >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op1CYAR & 0xFF); DSP1.output [3] = (uint8)((Op1CYAR >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op1CZAR & 0xFF); DSP1.output [5] = (uint8)((Op1CZAR >> 8) & 0xFF); break; case 0x32: case 0x22: case 0x12: case 0x02: // Parameter (Projection) Op02FX = (short)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op02FY = (short)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op02FZ = (short)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op02LFE = (short)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); Op02LES = (short)(DSP1.parameters [8] | (DSP1.parameters[9] << 8)); Op02AAS = (unsigned short)(DSP1.parameters [10] | (DSP1.parameters[11] << 8)); Op02AZS = (unsigned short)(DSP1.parameters [12] | (DSP1.parameters[13] << 8)); DSPOp02(); DSP1.out_count = 8; DSP1.output [0] = (uint8)(Op02VOF & 0xFF); DSP1.output [1] = (uint8)((Op02VOF >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op02VVA & 0xFF); DSP1.output [3] = (uint8)((Op02VVA >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op02CX & 0xFF); DSP1.output [5] = (uint8)((Op02CX >> 8) & 0xFF); DSP1.output [6] = (uint8)(Op02CY & 0xFF); DSP1.output [7] = (uint8)((Op02CY >> 8) & 0xFF); break; case 0x3a: //1a Mirror case 0x2a: //1a Mirror case 0x1a: // Raster mode 7 matrix data case 0x0a: Op0AVS = (short)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); DSPOp0A(); DSP1.out_count = 8; DSP1.output [0] = (uint8)(Op0AA & 0xFF); DSP1.output [2] = (uint8)(Op0AB & 0xFF); DSP1.output [4] = (uint8)(Op0AC & 0xFF); DSP1.output [6] = (uint8)(Op0AD & 0xFF); DSP1.output [1] = (uint8)((Op0AA >> 8) & 0xFF); DSP1.output [3] = (uint8)((Op0AB >> 8) & 0xFF); DSP1.output [5] = (uint8)((Op0AC >> 8) & 0xFF); DSP1.output [7] = (uint8)((Op0AD >> 8) & 0xFF); DSP1.in_index = 0; break; case 0x16: case 0x26: case 0x36: case 0x06: // Project object Op06X = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op06Y = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op06Z = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp06(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op06H & 0xff); DSP1.output [1] = (uint8)((Op06H >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op06V & 0xFF); DSP1.output [3] = (uint8)((Op06V >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op06S & 0xFF); DSP1.output [5] = (uint8)((Op06S >> 8) & 0xFF); break; case 0x1e: case 0x2e: case 0x3e: case 0x0e: // Target Op0EH = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op0EV = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); DSPOp0E(); DSP1.out_count = 4; DSP1.output [0] = (uint8)(Op0EX & 0xFF); DSP1.output [1] = (uint8)((Op0EX >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op0EY & 0xFF); DSP1.output [3] = (uint8)((Op0EY >> 8) & 0xFF); break; // Extra commands used by Pilot Wings case 0x05: case 0x35: case 0x31: case 0x01: // Set attitude matrix A Op01m = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op01Zr = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op01Yr = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op01Xr = (int16)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); DSPOp01(); break; case 0x15: case 0x11: // Set attitude matrix B Op11m = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op11Zr = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op11Yr = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op11Xr = (int16)(DSP1.parameters [7] | (DSP1.parameters[7] << 8)); DSPOp11(); break; case 0x25: case 0x21: // Set attitude matrix C Op21m = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op21Zr = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op21Yr = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op21Xr = (int16)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); DSPOp21(); break; case 0x09: case 0x39: case 0x3d: case 0x0d: // Objective matrix A Op0DX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op0DY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op0DZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp0D(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op0DF & 0xFF); DSP1.output [1] = (uint8)((Op0DF >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op0DL & 0xFF); DSP1.output [3] = (uint8)((Op0DL >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op0DU & 0xFF); DSP1.output [5] = (uint8)((Op0DU >> 8) & 0xFF); break; case 0x19: case 0x1d: // Objective matrix B Op1DX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op1DY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op1DZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp1D(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op1DF & 0xFF); DSP1.output [1] = (uint8)((Op1DF >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op1DL & 0xFF); DSP1.output [3] = (uint8)((Op1DL >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op1DU & 0xFF); DSP1.output [5] = (uint8)((Op1DU >> 8) & 0xFF); break; case 0x29: case 0x2d: // Objective matrix C Op2DX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op2DY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op2DZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp2D(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op2DF & 0xFF); DSP1.output [1] = (uint8)((Op2DF >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op2DL & 0xFF); DSP1.output [3] = (uint8)((Op2DL >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op2DU & 0xFF); DSP1.output [5] = (uint8)((Op2DU >> 8) & 0xFF); break; case 0x33: case 0x03: // Subjective matrix A Op03F = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op03L = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op03U = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp03(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op03X & 0xFF); DSP1.output [1] = (uint8)((Op03X >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op03Y & 0xFF); DSP1.output [3] = (uint8)((Op03Y >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op03Z & 0xFF); DSP1.output [5] = (uint8)((Op03Z >> 8) & 0xFF); break; case 0x13: // Subjective matrix B Op13F = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op13L = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op13U = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp13(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op13X & 0xFF); DSP1.output [1] = (uint8)((Op13X >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op13Y & 0xFF); DSP1.output [3] = (uint8)((Op13Y >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op13Z & 0xFF); DSP1.output [5] = (uint8)((Op13Z >> 8) & 0xFF); break; case 0x23: // Subjective matrix C Op23F = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op23L = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op23U = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp23(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op23X & 0xFF); DSP1.output [1] = (uint8)((Op23X >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op23Y & 0xFF); DSP1.output [3] = (uint8)((Op23Y >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op23Z & 0xFF); DSP1.output [5] = (uint8)((Op23Z >> 8) & 0xFF); break; case 0x3b: case 0x0b: Op0BX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op0BY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op0BZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp0B(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op0BS & 0xFF); DSP1.output [1] = (uint8)((Op0BS >> 8) & 0xFF); break; case 0x1b: Op1BX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op1BY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op1BZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp1B(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op1BS & 0xFF); DSP1.output [1] = (uint8)((Op1BS >> 8) & 0xFF); break; case 0x2b: Op2BX = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op2BY = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op2BZ = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); DSPOp2B(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op2BS & 0xFF); DSP1.output [1] = (uint8)((Op2BS >> 8) & 0xFF); break; case 0x34: case 0x14: Op14Zr = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); Op14Xr = (int16)(DSP1.parameters [2] | (DSP1.parameters[3] << 8)); Op14Yr = (int16)(DSP1.parameters [4] | (DSP1.parameters[5] << 8)); Op14U = (int16)(DSP1.parameters [6] | (DSP1.parameters[7] << 8)); Op14F = (int16)(DSP1.parameters [8] | (DSP1.parameters[9] << 8)); Op14L = (int16)(DSP1.parameters [10] | (DSP1.parameters[11] << 8)); DSPOp14(); DSP1.out_count = 6; DSP1.output [0] = (uint8)(Op14Zrr & 0xFF); DSP1.output [1] = (uint8)((Op14Zrr >> 8) & 0xFF); DSP1.output [2] = (uint8)(Op14Xrr & 0xFF); DSP1.output [3] = (uint8)((Op14Xrr >> 8) & 0xFF); DSP1.output [4] = (uint8)(Op14Yrr & 0xFF); DSP1.output [5] = (uint8)((Op14Yrr >> 8) & 0xFF); break; case 0x27: case 0x2F: Op2FUnknown = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); DSPOp2F(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op2FSize & 0xFF); DSP1.output [1] = (uint8)((Op2FSize >> 8) & 0xFF); break; case 0x07: case 0x0F: Op0FRamsize = (int16)(DSP1.parameters [0] | (DSP1.parameters[1] << 8)); DSPOp0F(); DSP1.out_count = 2; DSP1.output [0] = (uint8)(Op0FPass & 0xFF); DSP1.output [1] = (uint8)((Op0FPass >> 8) & 0xFF); break; default: break; } } } } } } uint8 DSP1GetByte(uint16 address) { uint8 t; if ((address & 0xf000) == 0x6000 || // (address >= 0x8000 && address < 0xc000)) (address & 0x7fff) < 0x4000) { if (DSP1.out_count) { //if ((address & 1) == 0) t = (uint8) DSP1.output [DSP1.out_index]; //else //{ // t = (uint8) (DSP1.output [DSP1.out_index] >> 8); DSP1.out_index++; if (--DSP1.out_count == 0) { if (DSP1.command == 0x1a || DSP1.command == 0x0a) { DSPOp0A(); DSP1.out_count = 8; DSP1.out_index = 0; DSP1.output [0] = (Op0AA & 0xFF); DSP1.output [1] = (Op0AA >> 8) & 0xFF; DSP1.output [2] = (Op0AB & 0xFF); DSP1.output [3] = (Op0AB >> 8) & 0xFF; DSP1.output [4] = (Op0AC & 0xFF); DSP1.output [5] = (Op0AC >> 8) & 0xFF; DSP1.output [6] = (Op0AD & 0xFF); DSP1.output [7] = (Op0AD >> 8) & 0xFF; } if (DSP1.command == 0x1f) { if ((DSP1.out_index % 2) != 0) t = (uint8)DSP1ROM[DSP1.out_index >> 1]; else t = DSP1ROM[DSP1.out_index >> 1] >> 8; } } DSP1.waiting4command = TRUE; //} } else { // Top Gear 3000 requires this value.... // if(4==Settings.DSPVersion) t = 0xff; //Ballz3d requires this one: // else t = 0x00; } } else t = 0x80; return t; } void DSP2SetByte(uint8 byte, uint16 address) { if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP1.waiting4command) { DSP1.command = byte; DSP1.in_index = 0; DSP1.waiting4command = FALSE; // DSP1.first_parameter = TRUE; // printf("Op%02X\n",byte); switch (byte) { case 0x01: DSP1.in_count = 32; break; case 0x03: DSP1.in_count = 1; break; case 0x05: DSP1.in_count = 1; break; case 0x09: DSP1.in_count = 4; break; case 0x06: DSP1.in_count = 1; break; case 0x0D: DSP1.in_count = 2; break; default: #if 0 printf("Op%02X\n", byte); #endif case 0x0f: DSP1.in_count = 0; break; } } else { DSP1.parameters [DSP1.in_index] = byte; // DSP1.first_parameter = FALSE; DSP1.in_index++; } if (DSP1.in_count == DSP1.in_index) { //DSP1.parameters [DSP1.in_index] |= (byte << 8); // Actually execute the command DSP1.waiting4command = TRUE; DSP1.out_index = 0; switch (DSP1.command) { case 0x0D: if (DSP2Op0DHasLen) { DSP2Op0DHasLen = false; DSP1.out_count = DSP2Op0DOutLen; //execute Op5 DSP2_Op0D(); } else { DSP2Op0DInLen = DSP1.parameters[0]; DSP2Op0DOutLen = DSP1.parameters[1]; DSP1.in_index = 0; DSP1.in_count = (DSP2Op0DInLen + 1) >> 1; DSP2Op0DHasLen = true; if (byte) DSP1.waiting4command = false; } break; case 0x06: if (DSP2Op06HasLen) { DSP2Op06HasLen = false; DSP1.out_count = DSP2Op06Len; //execute Op5 DSP2_Op06(); } else { DSP2Op06Len = DSP1.parameters[0]; DSP1.in_index = 0; DSP1.in_count = DSP2Op06Len; DSP2Op06HasLen = true; if (byte) DSP1.waiting4command = false; } break; case 0x01: DSP1.out_count = 32; DSP2_Op01(); break; case 0x09: // Multiply - don't yet know if this is signed or unsigned DSP2Op09Word1 = DSP1.parameters[0] | (DSP1.parameters[1] << 8); DSP2Op09Word2 = DSP1.parameters[2] | (DSP1.parameters[3] << 8); DSP1.out_count = 4; #ifdef FAST_LSB_WORD_ACCESS *(uint32*)DSP1.output = DSP2Op09Word1 * DSP2Op09Word2; #else { uint32 temp = DSP2Op09Word1 * DSP2Op09Word2; DSP1.output[0] = temp & 0xFF; DSP1.output[1] = (temp >> 8) & 0xFF; DSP1.output[2] = (temp >> 16) & 0xFF; DSP1.output[3] = (temp >> 24) & 0xFF; } #endif break; case 0x05: if (DSP2Op05HasLen) { DSP2Op05HasLen = false; DSP1.out_count = DSP2Op05Len; //execute Op5 DSP2_Op05(); } else { DSP2Op05Len = DSP1.parameters[0]; DSP1.in_index = 0; DSP1.in_count = 2 * DSP2Op05Len; DSP2Op05HasLen = true; if (byte) DSP1.waiting4command = false; } break; case 0x03: DSP2Op05Transparent = DSP1.parameters[0]; //DSP2Op03(); break; case 0x0f: default: break; } } } } uint8 DSP2GetByte(uint16 address) { uint8 t; if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP1.out_count) { t = (uint8) DSP1.output [DSP1.out_index]; DSP1.out_index++; if (DSP1.out_count == DSP1.out_index) DSP1.out_count = 0; } else t = 0xff; } else t = 0x80; return t; } /*struct SDSP4 { bool8 waiting4command; bool8 half_command; uint16 command; uint32 in_count; uint32 in_index; uint32 out_count; uint32 out_index; uint8 parameters [512]; uint8 output [512]; }; SDSP4 DSP4; //#include "dsp4emu.cpp" bool DSP4_init=FALSE; void DSP4SetByte(uint8 byte, uint16 address) { if(!DSP4_init) { // bootup DSP4.waiting4command=1; DSP4_init=TRUE; } if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if(DSP4.out_index>16); } break; // unknown: horizontal mapping command case 0x0011: { int16 a,b,c,d,m; a = DSP4_READ_WORD(6); b = DSP4_READ_WORD(4); c = DSP4_READ_WORD(2); d = DSP4_READ_WORD(0); DSP4_UnknownOP11(a,b,c,d,m); DSP4.out_count = 2; DSP4_WRITE_WORD(0,m); break; } // track projection case 0x0001: DSP4_Op01(); break; // track projection (pass 2) case 0x0007: DSP4_Op07(); break; // zone projections (fuel/repair/lap/teleport/...) case 0x0008: DSP4_Op08(); break; // sprite transformation case 0x0009: DSP4_Op09(); break; // fast track projection case 0x000D: DSP4_Op0D(); break; // single-player selection case 0x0003: DSP4_Op03(); break; // clear OAM case 0x0005: { op06_index = 0; op06_offset = 0; for( int lcv=0; lcv<32; lcv++ ) op06_OAM[lcv] = 0; break; } // multi-player selection case 0x000E: DSP4_Op0E(); break; #undef PRINT // transfer OAM case 0x0006: { DSP4.out_count = 32; for( int lcv=0; lcv<32; lcv++ ) DSP4.output[lcv] = op06_OAM[lcv]; } break; // unknown case 0x000A: { int16 in1a = DSP4_READ_WORD(0); int16 in2a = DSP4_READ_WORD(2); int16 in3a = DSP4_READ_WORD(4); int16 out1a,out2a,out3a,out4a; // NOTE: Snes9x only! // For some odd reason, the input nybbles are reversed DSP4_Op0A(in2a,out1a,out2a,out3a,out4a); DSP4.out_count=8; // Hack: Reverse the outputs for now to compensate // Otherwise the AI gets really flaky DSP4_WRITE_WORD(0,out2a); DSP4_WRITE_WORD(2,out1a); DSP4_WRITE_WORD(4,out4a); DSP4_WRITE_WORD(6,out3a); } break; // set OAM case 0x000B: { int16 sp_x = DSP4_READ_WORD(0); int16 sp_y = DSP4_READ_WORD(2); int16 oam = DSP4_READ_WORD(4); if ((sp_y < 0) || ((sp_y & 0x01ff) < 0x00eb)) { short Row = (sp_y >> 3) & 0x1f; if (RowCount[Row] < MaxTilesPerRow) { RowCount[Row]++; // yield OAM output DSP4.out_count = 6; DSP4_WRITE_WORD(0,1); // pack OAM data: x,y,name,attr DSP4.output[2] = sp_x & 0xff; DSP4.output[3] = sp_y & 0xff; DSP4_WRITE_WORD(4,oam); // OAM: size,msb data DSP4_Op06(0,0); } } } break; default: break; } } } } uint8 DSP4GetByte(uint16 address) { uint8 t; if ((address & 0xf000) == 0x6000 || (address >= 0x8000 && address < 0xc000)) { if (DSP4.out_count) { t = (uint8) DSP4.output [DSP4.out_index]; DSP4.out_index++; if(DSP4.out_count==DSP4.out_index) DSP4.out_count=0; } else t = 0xff; } else { t = 0x80; } return t; } */