/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #include "fxemu.h" #include "fxinst.h" #include #include #include /* The FxChip Emulator's internal variables */ FxRegs_s GSU; /* This will be initialized when loading a ROM */ uint32(**fx_ppfFunctionTable)(uint32) = 0; void (**fx_ppfPlotTable)() = 0; void (**fx_ppfOpcodeTable)() = 0; #if 0 void fx_setCache() { uint32 c; GSU.bCacheActive = TRUE; GSU.pvRegisters[0x3e] &= 0xf0; c = (uint32)GSU.pvRegisters[0x3e]; c |= ((uint32)GSU.pvRegisters[0x3f]) << 8; if (c == GSU.vCacheBaseReg) return; GSU.vCacheBaseReg = c; GSU.vCacheFlags = 0; if (c < (0x10000 - 512)) { uint8 const* t = &ROM(c); memcpy(GSU.pvCache, t, 512); } else { uint8 const* t1; uint8 const* t2; uint32 i = 0x10000 - c; t1 = &ROM(c); t2 = &ROM(0); memcpy(GSU.pvCache, t1, i); memcpy(&GSU.pvCache[i], t2, 512 - i); } } #endif void FxCacheWriteAccess(uint16 vAddress) { #if 0 if (!GSU.bCacheActive) { uint8 v = GSU.pvCache[GSU.pvCache[vAddress & 0x1ff]; fx_setCache(); GSU.pvCache[GSU.pvCache[vAddress & 0x1ff] = v; } #endif if ((vAddress & 0x00f) == 0x00f) GSU.vCacheFlags |= 1 << ((vAddress & 0x1f0) >> 4); } void FxFlushCache() { GSU.vCacheFlags = 0; GSU.vCacheBaseReg = 0; GSU.bCacheActive = FALSE; // GSU.vPipe = 0x1; } static INLINE void fx_backupCache() { #if 0 uint32 i; uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if (v) for (i = 0; i < 32; i++) { if (v & 1) { if (c < (0x10000 - 16)) { uint8* t = &GSU.pvPrgBank[c]; memcpy(&GSU.avCacheBackup[i << 4], t, 16); memcpy(t, &GSU.pvCache[i << 4], 16); } else { uint8* t1; uint8* t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(&GSU.avCacheBackup[i << 4], t1, a); memcpy(t1, &GSU.pvCache[i << 4], a); memcpy(&GSU.avCacheBackup[(i << 4) + a], t2, 16 - a); memcpy(t2, &GSU.pvCache[(i << 4) + a], 16 - a); } } c = USEX16(c + 16); v >>= 1; } #endif } static INLINE void fx_restoreCache() { #if 0 uint32 i; uint32 v = GSU.vCacheFlags; uint32 c = USEX16(GSU.vCacheBaseReg); if (v) for (i = 0; i < 32; i++) { if (v & 1) { if (c < (0x10000 - 16)) { uint8* t = &GSU.pvPrgBank[c]; memcpy(t, &GSU.avCacheBackup[i << 4], 16); memcpy(&GSU.pvCache[i << 4], t, 16); } else { uint8* t1; uint8* t2; uint32 a = 0x10000 - c; t1 = &GSU.pvPrgBank[c]; t2 = &GSU.pvPrgBank[0]; memcpy(t1, &GSU.avCacheBackup[i << 4], a); memcpy(&GSU.pvCache[i << 4], t1, a); memcpy(t2, &GSU.avCacheBackup[(i << 4) + a], 16 - a); memcpy(&GSU.pvCache[(i << 4) + a], t2, 16 - a); } } c = USEX16(c + 16); v >>= 1; } #endif } void fx_flushCache() { fx_restoreCache(); GSU.vCacheFlags = 0; GSU.bCacheActive = FALSE; } void fx_updateRamBank(uint8 Byte) { // Update BankReg and Bank pointer GSU.vRamBankReg = (uint32)Byte & (FX_RAM_BANKS - 1); GSU.pvRamBank = GSU.apvRamBank[Byte & 0x3]; } static INLINE void fx_readRegisterSpace() { int i; uint8* p; static uint32 avHeight[] = { 128, 160, 192, 256 }; static uint32 avMult[] = { 16, 32, 32, 64 }; GSU.vErrorCode = 0; /* Update R0-R15 */ p = GSU.pvRegisters; for (i = 0; i < 16; i++) { GSU.avReg[i] = *p++; GSU.avReg[i] += ((uint32)(*p++)) << 8; } /* Update other registers */ p = GSU.pvRegisters; GSU.vStatusReg = (uint32)p[GSU_SFR]; GSU.vStatusReg |= ((uint32)p[GSU_SFR + 1]) << 8; GSU.vPrgBankReg = (uint32)p[GSU_PBR]; GSU.vRomBankReg = (uint32)p[GSU_ROMBR]; GSU.vRamBankReg = ((uint32)p[GSU_RAMBR]) & (FX_RAM_BANKS - 1); GSU.vCacheBaseReg = (uint32)p[GSU_CBR]; GSU.vCacheBaseReg |= ((uint32)p[GSU_CBR + 1]) << 8; /* Update status register variables */ GSU.vZero = !(GSU.vStatusReg & FLG_Z); GSU.vSign = (GSU.vStatusReg & FLG_S) << 12; GSU.vOverflow = (GSU.vStatusReg & FLG_OV) << 16; GSU.vCarry = (GSU.vStatusReg & FLG_CY) >> 2; /* Set bank pointers */ GSU.pvRamBank = GSU.apvRamBank[GSU.vRamBankReg & 0x3]; GSU.pvRomBank = GSU.apvRomBank[GSU.vRomBankReg]; GSU.pvPrgBank = GSU.apvRomBank[GSU.vPrgBankReg]; /* Set screen pointers */ GSU.pvScreenBase = &GSU.pvRam[ USEX8(p[GSU_SCBR]) << 10 ]; i = (int)(!!(p[GSU_SCMR] & 0x04)); i |= ((int)(!!(p[GSU_SCMR] & 0x20))) << 1; GSU.vScreenHeight = GSU.vScreenRealHeight = avHeight[i]; GSU.vMode = p[GSU_SCMR] & 0x03; #if 0 if (GSU.vMode == 2) error illegal color depth GSU.vMode; #endif if (i == 3) GSU.vScreenSize = (256 / 8) * (256 / 8) * 32; else GSU.vScreenSize = (GSU.vScreenHeight / 8) * (256 / 8) * avMult[GSU.vMode]; if (GSU.vPlotOptionReg & 0x10) { /* OBJ Mode (for drawing into sprites) */ GSU.vScreenHeight = 256; } #if 0 if (GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536)) error illegal address for screen base register #else if (GSU.pvScreenBase + GSU.vScreenSize > GSU.pvRam + (GSU.nRamBanks * 65536)) GSU.pvScreenBase = GSU.pvRam + (GSU.nRamBanks * 65536) - GSU.vScreenSize; #endif GSU.pfPlot = fx_apfPlotTable[GSU.vMode]; GSU.pfRpix = fx_apfPlotTable[GSU.vMode + 5]; fx_ppfOpcodeTable[0x04c] = GSU.pfPlot; fx_ppfOpcodeTable[0x14c] = GSU.pfRpix; fx_ppfOpcodeTable[0x24c] = GSU.pfPlot; fx_ppfOpcodeTable[0x34c] = GSU.pfRpix; fx_computeScreenPointers(); fx_backupCache(); } void fx_dirtySCBR() { GSU.vSCBRDirty = TRUE; } void fx_computeScreenPointers() { if (GSU.vMode != GSU.vPrevMode || GSU.vPrevScreenHeight != GSU.vScreenHeight || GSU.vSCBRDirty) { int i; GSU.vSCBRDirty = FALSE; /* Make a list of pointers to the start of each screen column */ switch (GSU.vScreenHeight) { case 128: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = i << 8; } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = i << 9; } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = i << 10; } break; } break; case 160: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 6); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 7); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 8); } break; } break; case 192: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 4); GSU.x[i] = (i << 8) + (i << 7); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 5); GSU.x[i] = (i << 9) + (i << 8); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + (i << 6); GSU.x[i] = (i << 10) + (i << 9); } break; } break; case 256: switch (GSU.vMode) { case 0: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 9) + ((i & 0xf) << 8); GSU.x[i] = ((i & 0x10) << 8) + ((i & 0xf) << 4); } break; case 1: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 10) + ((i & 0xf) << 9); GSU.x[i] = ((i & 0x10) << 9) + ((i & 0xf) << 5); } break; case 2: case 3: for (i = 0; i < 32; i++) { GSU.apvScreen[i] = GSU.pvScreenBase + ((i & 0x10) << 11) + ((i & 0xf) << 10); GSU.x[i] = ((i & 0x10) << 10) + ((i & 0xf) << 6); } break; } break; } GSU.vPrevMode = GSU.vMode; GSU.vPrevScreenHeight = GSU.vScreenHeight; } } static INLINE void fx_writeRegisterSpace() { int i; uint8* p; p = GSU.pvRegisters; for (i = 0; i < 16; i++) { *p++ = (uint8)GSU.avReg[i]; *p++ = (uint8)(GSU.avReg[i] >> 8); } /* Update status register */ if (USEX16(GSU.vZero) == 0) SF(Z); else CF(Z); if (GSU.vSign & 0x8000) SF(S); else CF(S); if (GSU.vOverflow >= 0x8000 || GSU.vOverflow < -0x8000) SF(OV); else CF(OV); if (GSU.vCarry) SF(CY); else CF(CY); p = GSU.pvRegisters; p[GSU_SFR] = (uint8)GSU.vStatusReg; p[GSU_SFR + 1] = (uint8)(GSU.vStatusReg >> 8); p[GSU_PBR] = (uint8)GSU.vPrgBankReg; p[GSU_ROMBR] = (uint8)GSU.vRomBankReg; p[GSU_RAMBR] = (uint8)GSU.vRamBankReg; p[GSU_CBR] = (uint8)GSU.vCacheBaseReg; p[GSU_CBR + 1] = (uint8)(GSU.vCacheBaseReg >> 8); fx_restoreCache(); } /* Reset the FxChip */ void FxReset(FxInit_s* psFxInfo) { int i; static uint32(**appfFunction[])(uint32) = { &fx_apfFunctionTable[0], #if 0 &fx_a_apfFunctionTable[0], &fx_r_apfFunctionTable[0], &fx_ar_apfFunctionTable[0], #endif }; static void (**appfPlot[])() = { &fx_apfPlotTable[0], #if 0 &fx_a_apfPlotTable[0], &fx_r_apfPlotTable[0], &fx_ar_apfPlotTable[0], #endif }; static void (**appfOpcode[])() = { &fx_apfOpcodeTable[0], #if 0 &fx_a_apfOpcodeTable[0], &fx_r_apfOpcodeTable[0], &fx_ar_apfOpcodeTable[0], #endif }; /* Get function pointers for the current emulation mode */ fx_ppfFunctionTable = appfFunction[psFxInfo->vFlags & 0x3]; fx_ppfPlotTable = appfPlot[psFxInfo->vFlags & 0x3]; fx_ppfOpcodeTable = appfOpcode[psFxInfo->vFlags & 0x3]; /* Clear all internal variables */ memset((uint8*)&GSU, 0, sizeof(FxRegs_s)); /* Set default registers */ GSU.pvSreg = GSU.pvDreg = &R0; /* Set RAM and ROM pointers */ GSU.pvRegisters = psFxInfo->pvRegisters; GSU.nRamBanks = psFxInfo->nRamBanks; GSU.pvRam = psFxInfo->pvRam; GSU.nRomBanks = psFxInfo->nRomBanks; GSU.pvRom = psFxInfo->pvRom; GSU.vPrevScreenHeight = ~0; GSU.vPrevMode = ~0; /* The GSU can't access more than 2mb (16mbits) */ if (GSU.nRomBanks > 0x20) GSU.nRomBanks = 0x20; /* Clear FxChip register space */ memset(GSU.pvRegisters, 0, 0x300); /* Set FxChip version Number */ GSU.pvRegisters[0x3b] = 0; /* Make ROM bank table */ for (i = 0; i < 256; i++) { uint32 b = i & 0x7f; if (b >= 0x40) { if (GSU.nRomBanks > 1) b %= GSU.nRomBanks; else b &= 1; GSU.apvRomBank[i] = &GSU.pvRom[ b << 16 ]; } else { b %= GSU.nRomBanks * 2; GSU.apvRomBank[i] = &GSU.pvRom[(b << 16) + 0x200000]; } } /* Make RAM bank table */ for (i = 0; i < 4; i++) { GSU.apvRamBank[i] = &GSU.pvRam[(i % GSU.nRamBanks) << 16]; GSU.apvRomBank[0x70 + i] = GSU.apvRamBank[i]; } /* Start with a nop in the pipe */ GSU.vPipe = 0x01; /* Set pointer to GSU cache */ GSU.pvCache = &GSU.pvRegisters[0x100]; fx_readRegisterSpace(); } static uint8 fx_checkStartAddress() { /* Check if we start inside the cache */ if (GSU.bCacheActive && R15 >= GSU.vCacheBaseReg && R15 < (GSU.vCacheBaseReg + 512)) return TRUE; /* Check if we're in an unused area */ if (GSU.vPrgBankReg < 0x40 && R15 < 0x8000) return FALSE; if (GSU.vPrgBankReg >= 0x60 && GSU.vPrgBankReg <= 0x6f) return FALSE; if (GSU.vPrgBankReg >= 0x74) return FALSE; /* Check if we're in RAM and the RAN flag is not set */ if (GSU.vPrgBankReg >= 0x70 && GSU.vPrgBankReg <= 0x73 && !(SCMR & (1 << 3))) return FALSE; /* If not, we're in ROM, so check if the RON flag is set */ if (!(SCMR & (1 << 4))) return FALSE; return TRUE; } /* Execute until the next stop instruction */ int FxEmulate(uint32 nInstructions) { uint32 vCount; /* Read registers and initialize GSU session */ fx_readRegisterSpace(); /* Check if the start address is valid */ if (!fx_checkStartAddress()) { CF(G); fx_writeRegisterSpace(); return 0; } /* Execute GSU session */ CF(IRQ); vCount = fx_ppfFunctionTable[FX_FUNCTION_RUN](nInstructions); /* Store GSU registers */ fx_writeRegisterSpace(); /* Check for error code */ if (GSU.vErrorCode) return GSU.vErrorCode; else return vCount; } /* Errors */ int FxGetErrorCode() { return GSU.vErrorCode; } int FxGetIllegalAddress() { return GSU.vIllegalAddress; } /* Access to internal registers */ uint32 FxGetColorRegister() { return GSU.vColorReg & 0xff; } uint32 FxGetPlotOptionRegister() { return GSU.vPlotOptionReg & 0x1f; } uint32 FxGetSourceRegisterIndex() { return GSU.pvSreg - GSU.avReg; } uint32 FxGetDestinationRegisterIndex() { return GSU.pvDreg - GSU.avReg; } uint8 FxPipe() { return GSU.vPipe; }