/* * Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. * * (c) Copyright 1996 - 2001 Gary Henderson (gary.henderson@ntlworld.com) and * Jerremy Koot (jkoot@snes9x.com) * * Super FX C emulator code * (c) Copyright 1997 - 1999 Ivar (ivar@snes9x.com) and * Gary Henderson. * Super FX assembler emulator code (c) Copyright 1998 zsKnight and _Demo_. * * DSP1 emulator code (c) Copyright 1998 Ivar, _Demo_ and Gary Henderson. * C4 asm and some C emulation code (c) Copyright 2000 zsKnight and _Demo_. * C4 C code (c) Copyright 2001 Gary Henderson (gary.henderson@ntlworld.com). * * DOS port code contains the works of other authors. See headers in * individual files. * * Snes9x homepage: http://www.snes9x.com * * Permission to use, copy, modify and distribute Snes9x in both binary and * source form, for non-commercial purposes, is hereby granted without fee, * providing that this license information and copyright notice appear with * all copies and any derived work. * * This software is provided 'as-is', without any express or implied * warranty. In no event shall the authors be held liable for any damages * arising from the use of this software. * * Snes9x is freeware for PERSONAL USE only. Commercial users should * seek permission of the copyright holders first. Commercial use includes * charging money for Snes9x or software derived from Snes9x. * * The copyright holders request that bug fixes and improvements to the code * should be forwarded to them so everyone can benefit from the modifications * in future versions. * * Super NES and Super Nintendo Entertainment System are trademarks of * Nintendo Co., Limited and its subsidiary companies. */ #include "snes9x.h" #include "memmap.h" #include "display.h" #include "cpuexec.h" #include "apu.h" #include "spc700.h" // SPC700/Sound DSP chips have a 24.57MHz crystal on their PCB. // we only need the memhandlers #undef INLINE #define INLINE extern "C" #include "apumem.h" #define OP1 (*(IAPU.PC + 1)) #define OP2 (*(IAPU.PC + 2)) #ifdef SPC700_SHUTDOWN #define APUShutdown() \ if (Settings.Shutdown && (IAPU.PC == IAPU.WaitAddress1 || IAPU.PC == IAPU.WaitAddress2)) \ { \ if (IAPU.WaitCounter == 0) \ { \ if (!ICPU.CPUExecuting) \ CPU.APU_Cycles = CPU.Cycles = CPU.NextEvent; \ else \ CPU.APU_APUExecuting = FALSE; \ } \ else \ if (IAPU.WaitCounter >= 2) \ IAPU.WaitCounter = 1; \ else \ IAPU.WaitCounter--; \ } #else #define APUShutdown() #endif #define APUSetZN8(b)\ IAPU._Zero = (b); #define APUSetZN16(w)\ IAPU._Zero = ((w) != 0) | ((w) >> 8); void STOP (char *s) { char buffer[100]; #ifdef DEBUGGER S9xAPUOPrint (buffer, IAPU.PC - IAPU.RAM); #endif sprintf (String, "Sound CPU in unknown state executing %s at %04lX\n%s\n", s, IAPU.PC - IAPU.RAM, buffer); S9xMessage (S9X_ERROR, S9X_APU_STOPPED, String); APU.TimerEnabled[0] = APU.TimerEnabled[1] = APU.TimerEnabled[2] = FALSE; CPU.APU_APUExecuting = FALSE; #ifdef DEBUGGER CPU.Flags |= DEBUG_MODE_FLAG; #else S9xExit (); #endif } #define TCALL(n)\ {\ PushW ((IAPU.PC - IAPU.RAM + 1)); \ IAPU.PC = IAPU.RAM + (APU.ExtraRAM [((15 - n) << 1)] + \ (APU.ExtraRAM [((15 - n) << 1) + 1] << 8)); \ } // XXX: HalfCarry - BJ fixed? #define SBC(a,b)\ short Int16 = (short) (a) - (short) (b) + (short) (APUCheckCarry ()) - 1;\ IAPU._Carry = Int16 >= 0;\ if ((((a) ^ (b)) & 0x80) && (((a) ^ (uint8) Int16) & 0x80))\ APUSetOverflow ();\ else \ APUClearOverflow (); \ APUSetHalfCarry ();\ if(((a) ^ (b) ^ (uint8) Int16) & 0x10)\ APUClearHalfCarry ();\ (a) = (uint8) Int16;\ APUSetZN8 ((uint8) Int16); // XXX: HalfCarry - BJ fixed? #define ADC(a,b)\ uint16 Work16 = (a) + (b) + APUCheckCarry();\ IAPU._Carry = Work16 >= 0x100; \ if (~((a) ^ (b)) & ((b) ^ (uint8) Work16) & 0x80)\ APUSetOverflow ();\ else \ APUClearOverflow (); \ APUClearHalfCarry ();\ /*if(((a) ^ (b) ^ (uint8) Int16) & 0x10) notaz: Int16!? */\ if(((a) ^ (b) ^ (uint8) Work16) & 0x10)\ APUSetHalfCarry ();\ (a) = (uint8) Work16;\ APUSetZN8 ((uint8) Work16); #define CMP(a,b)\ short Int16 = (short) (a) - (short) (b);\ IAPU._Carry = Int16 >= 0;\ APUSetZN8 ((uint8) Int16); #define ASL(b)\ IAPU._Carry = ((b) & 0x80) != 0; \ (b) <<= 1;\ APUSetZN8 (b); #define LSR(b)\ IAPU._Carry = (b) & 1;\ (b) >>= 1;\ APUSetZN8 (b); #define ROL(b)\ uint16 Work16 = ((b) << 1) | APUCheckCarry (); \ IAPU._Carry = Work16 >= 0x100; \ (b) = (uint8) Work16; \ APUSetZN8 (b); #define ROR(b)\ uint16 Work16 = (b) | ((uint16) APUCheckCarry () << 8); \ IAPU._Carry = (uint8) Work16 & 1; \ Work16 >>= 1; \ (b) = (uint8) Work16; \ APUSetZN8 (b); #define Push(b)\ *(IAPU.RAM + 0x100 + IAPU.S) = b;\ IAPU.S--; #define Pop(b)\ IAPU.S++;\ (b) = *(IAPU.RAM + 0x100 + IAPU.S); #ifdef FAST_LSB_WORD_ACCESS #define PushW(w)\ *(uint16 *) (IAPU.RAM + 0xff + IAPU.S) = w;\ IAPU.S -= 2; #define PopW(w)\ IAPU.S += 2;\ w = *(uint16 *) (IAPU.RAM + 0xff + IAPU.S); #else #define PushW(w)\ *(IAPU.RAM + 0xff + IAPU.S) = w;\ *(IAPU.RAM + 0x100 + IAPU.S) = (w >> 8);\ IAPU.S -= 2; #define PopW(w)\ IAPU.S += 2; \ (w) = *(IAPU.RAM + 0xff + IAPU.S) + (*(IAPU.RAM + 0x100 + IAPU.S) << 8); #endif #define Relative()\ signed char Int8 = OP1;\ short Int16 = (int) (IAPU.PC + 2 - IAPU.RAM) + Int8; #define Relative2()\ signed char Int8 = OP2;\ short Int16 = (int) (IAPU.PC + 3 - IAPU.RAM) + Int8; #ifdef FAST_LSB_WORD_ACCESS #define IndexedXIndirect()\ IAPU.Address = *(uint16 *) (IAPU.DirectPage + ((OP1 + IAPU.X) & 0xff)); #define Absolute()\ IAPU.Address = *(uint16 *) (IAPU.PC + 1); #define AbsoluteX()\ IAPU.Address = *(uint16 *) (IAPU.PC + 1) + IAPU.X; #define AbsoluteY()\ IAPU.Address = *(uint16 *) (IAPU.PC + 1) + IAPU.YA.B.Y; #define MemBit()\ IAPU.Address = *(uint16 *) (IAPU.PC + 1);\ IAPU.Bit = (uint8)(IAPU.Address >> 13);\ IAPU.Address &= 0x1fff; #define IndirectIndexedY()\ IAPU.Address = *(uint16 *) (IAPU.DirectPage + OP1) + IAPU.YA.B.Y; #else #define IndexedXIndirect()\ IAPU.Address = *(IAPU.DirectPage + ((OP1 + IAPU.X) & 0xff)) + \ (*(IAPU.DirectPage + ((OP1 + IAPU.X + 1) & 0xff)) << 8); #define Absolute()\ IAPU.Address = OP1 + (OP2 << 8); #define AbsoluteX()\ IAPU.Address = OP1 + (OP2 << 8) + IAPU.X; #define AbsoluteY()\ IAPU.Address = OP1 + (OP2 << 8) + IAPU.YA.B.Y; #define MemBit()\ IAPU.Address = OP1 + (OP2 << 8);\ IAPU.Bit = (int8) (IAPU.Address >> 13);\ IAPU.Address &= 0x1fff; #define IndirectIndexedY()\ IAPU.Address = *(IAPU.DirectPage + OP1) + \ (*(IAPU.DirectPage + OP1 + 1) << 8) + \ IAPU.YA.B.Y; void Apu00 () { // NOP IAPU.PC++; } void Apu01 () { TCALL (0) } void Apu11 () { TCALL (1) } void Apu21 () { TCALL (2) } void Apu31 () { TCALL (3) } void Apu41 () { TCALL (4) } void Apu51 () { TCALL (5) } void Apu61 () { TCALL (6) } void Apu71 () { TCALL (7) } void Apu81 () { TCALL (8) } void Apu91 () { TCALL (9) } void ApuA1 () { TCALL (10) } void ApuB1 () { TCALL (11) } void ApuC1 () { TCALL (12) } void ApuD1 () { TCALL (13) } void ApuE1 () { TCALL (14) } void ApuF1 () { TCALL (15) } void Apu3F () // CALL absolute { Absolute (); // 0xB6f for Star Fox 2 PushW ((IAPU.PC + 3 - IAPU.RAM)); IAPU.PC = IAPU.RAM + IAPU.Address; } void Apu4F () // PCALL $XX { uint8 Work8 = OP1; PushW ((IAPU.PC + 2 - IAPU.RAM)); IAPU.PC = IAPU.RAM + 0xff00 + Work8; } #define SET(b) \ S9xAPUSetByteZ ((uint8) (S9xAPUGetByteZ (OP1 ) | (1 << (b))), OP1); \ IAPU.PC += 2 void Apu02 () { SET (0); } void Apu22 () { SET (1); } void Apu42 () { SET (2); } void Apu62 () { SET (3); } void Apu82 () { SET (4); } void ApuA2 () { SET (5); } void ApuC2 () { SET (6); } void ApuE2 () { SET (7); } #define CLR(b) \ S9xAPUSetByteZ ((uint8) (S9xAPUGetByteZ (OP1) & ~(1 << (b))), OP1); \ IAPU.PC += 2; void Apu12 () { CLR (0); } void Apu32 () { CLR (1); } void Apu52 () { CLR (2); } void Apu72 () { CLR (3); } void Apu92 () { CLR (4); } void ApuB2 () { CLR (5); } void ApuD2 () { CLR (6); } void ApuF2 () { CLR (7); } #define BBS(b) \ uint8 Work8 = OP1; \ Relative2 (); \ if (S9xAPUGetByteZ (Work8) & (1 << (b))) \ { \ IAPU.PC = IAPU.RAM + (uint16) Int16; \ CPU.APU_Cycles += IAPU.TwoCycles; \ } \ else \ IAPU.PC += 3 void Apu03 () { BBS (0); } void Apu23 () { BBS (1); } void Apu43 () { BBS (2); } void Apu63 () { BBS (3); } void Apu83 () { BBS (4); } void ApuA3 () { BBS (5); } void ApuC3 () { BBS (6); } void ApuE3 () { BBS (7); } #define BBC(b) \ uint8 Work8 = OP1; \ Relative2 (); \ if (!(S9xAPUGetByteZ (Work8) & (1 << (b)))) \ { \ IAPU.PC = IAPU.RAM + (uint16) Int16; \ CPU.APU_Cycles += IAPU.TwoCycles; \ } \ else \ IAPU.PC += 3 void Apu13 () { BBC (0); } void Apu33 () { BBC (1); } void Apu53 () { BBC (2); } void Apu73 () { BBC (3); } void Apu93 () { BBC (4); } void ApuB3 () { BBC (5); } void ApuD3 () { BBC (6); } void ApuF3 () { BBC (7); } void Apu04 () { // OR A,dp IAPU.YA.B.A |= S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu05 () { // OR A,abs Absolute (); IAPU.YA.B.A |= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu06 () { // OR A,(X) IAPU.YA.B.A |= S9xAPUGetByteZ (IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void Apu07 () { // OR A,(dp+X) IndexedXIndirect (); IAPU.YA.B.A |= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu08 () { // OR A,#00 IAPU.YA.B.A |= OP1; APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu09 () { // OR dp(dest),dp(src) uint8 Work8 = S9xAPUGetByteZ (OP1); Work8 |= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu14 () { // OR A,dp+X IAPU.YA.B.A |= S9xAPUGetByteZ (OP1 + IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu15 () { // OR A,abs+X AbsoluteX (); IAPU.YA.B.A |= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu16 () { // OR A,abs+Y AbsoluteY (); IAPU.YA.B.A |= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu17 () { // OR A,(dp)+Y IndirectIndexedY (); IAPU.YA.B.A |= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu18 () { // OR dp,#00 uint8 Work8 = OP1; Work8 |= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu19 () { // OR (X),(Y) uint8 Work8 = S9xAPUGetByteZ (IAPU.X) | S9xAPUGetByteZ (IAPU.YA.B.Y); APUSetZN8 (Work8); S9xAPUSetByteZ (Work8, IAPU.X); IAPU.PC++; } void Apu0A () { // OR1 C,membit MemBit (); if (!APUCheckCarry ()) { if (S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit)) APUSetCarry (); } IAPU.PC += 3; } void Apu2A () { // OR1 C,not membit MemBit (); if (!APUCheckCarry ()) { if (!(S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit))) APUSetCarry (); } IAPU.PC += 3; } void Apu4A () { // AND1 C,membit MemBit (); if (APUCheckCarry ()) { if (!(S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit))) APUClearCarry (); } IAPU.PC += 3; } void Apu6A () { // AND1 C, not membit MemBit (); if (APUCheckCarry ()) { if ((S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit))) APUClearCarry (); } IAPU.PC += 3; } void Apu8A () { // EOR1 C, membit MemBit (); if (APUCheckCarry ()) { if (S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit)) APUClearCarry (); } else { if (S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit)) APUSetCarry (); } IAPU.PC += 3; } void ApuAA () { // MOV1 C,membit MemBit (); if (S9xAPUGetByte (IAPU.Address) & (1 << IAPU.Bit)) APUSetCarry (); else APUClearCarry (); IAPU.PC += 3; } void ApuCA () { // MOV1 membit,C MemBit (); if (APUCheckCarry ()) { S9xAPUSetByte (S9xAPUGetByte (IAPU.Address) | (1 << IAPU.Bit), IAPU.Address); } else { S9xAPUSetByte (S9xAPUGetByte (IAPU.Address) & ~(1 << IAPU.Bit), IAPU.Address); } IAPU.PC += 3; } void ApuEA () { // NOT1 membit MemBit (); S9xAPUSetByte (S9xAPUGetByte (IAPU.Address) ^ (1 << IAPU.Bit), IAPU.Address); IAPU.PC += 3; } void Apu0B () { // ASL dp uint8 Work8 = S9xAPUGetByteZ (OP1); ASL (Work8); S9xAPUSetByteZ (Work8, OP1); IAPU.PC += 2; } void Apu0C () { // ASL abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); ASL (Work8); S9xAPUSetByte (Work8, IAPU.Address); IAPU.PC += 3; } void Apu1B () { // ASL dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); ASL (Work8); S9xAPUSetByteZ (Work8, OP1 + IAPU.X); IAPU.PC += 2; } void Apu1C () { // ASL A ASL (IAPU.YA.B.A); IAPU.PC++; } void Apu0D () { // PUSH PSW S9xAPUPackStatus (); Push (IAPU.P); IAPU.PC++; } void Apu2D () { // PUSH A Push (IAPU.YA.B.A); IAPU.PC++; } void Apu4D () { // PUSH X Push (IAPU.X); IAPU.PC++; } void Apu6D () { // PUSH Y Push (IAPU.YA.B.Y); IAPU.PC++; } void Apu8E () { // POP PSW Pop (IAPU.P); S9xAPUUnpackStatus (); if (APUCheckDirectPage ()) IAPU.DirectPage = IAPU.RAM + 0x100; else IAPU.DirectPage = IAPU.RAM; IAPU.PC++; } void ApuAE () { // POP A Pop (IAPU.YA.B.A); IAPU.PC++; } void ApuCE () { // POP X Pop (IAPU.X); IAPU.PC++; } void ApuEE () { // POP Y Pop (IAPU.YA.B.Y); IAPU.PC++; } void Apu0E () { // TSET1 abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); S9xAPUSetByte (Work8 | IAPU.YA.B.A, IAPU.Address); Work8 &= IAPU.YA.B.A; APUSetZN8 (Work8); IAPU.PC += 3; } void Apu4E () { // TCLR1 abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); S9xAPUSetByte (Work8 & ~IAPU.YA.B.A, IAPU.Address); Work8 &= IAPU.YA.B.A; APUSetZN8 (Work8); IAPU.PC += 3; } void Apu0F () { // BRK #if 0 STOP ("BRK"); #else PushW ((IAPU.PC + 1 - IAPU.RAM)); S9xAPUPackStatus (); Push (IAPU.P); APUSetBreak (); APUClearInterrupt (); // XXX:Where is the BRK vector ??? IAPU.PC = IAPU.RAM + APU.ExtraRAM[0x20] + (APU.ExtraRAM[0x21] << 8); #endif } void ApuEF () { // SLEEP // XXX: sleep // STOP ("SLEEP"); CPU.APU_APUExecuting = FALSE; IAPU.PC++; } void ApuFF () { // STOP // STOP ("STOP"); CPU.APU_APUExecuting = FALSE; IAPU.PC++; } void Apu10 () { // BPL Relative (); if (!APUCheckNegative ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void Apu30 () { // BMI Relative (); if (APUCheckNegative ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void Apu90 () { // BCC Relative (); if (!APUCheckCarry ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void ApuB0 () { // BCS Relative (); if (APUCheckCarry ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void ApuD0 () { // BNE Relative (); if (!APUCheckZero ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void ApuF0 () { // BEQ Relative (); if (APUCheckZero ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 2; } void Apu50 () { // BVC Relative (); if (!APUCheckOverflow ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; } else IAPU.PC += 2; } void Apu70 () { // BVS Relative (); if (APUCheckOverflow ()) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; } else IAPU.PC += 2; } void Apu2F () { // BRA Relative (); IAPU.PC = IAPU.RAM + (uint16) Int16; } void Apu80 () { // SETC APUSetCarry (); IAPU.PC++; } void ApuED () { // NOTC IAPU._Carry ^= 1; IAPU.PC++; } void Apu40 () { // SETP APUSetDirectPage (); IAPU.DirectPage = IAPU.RAM + 0x100; IAPU.PC++; } void Apu1A () { // DECW dp uint16 Work16 = S9xAPUGetByteZ (OP1) + (S9xAPUGetByteZ (OP1 + 1) << 8); Work16--; S9xAPUSetByteZ ((uint8) Work16, OP1); S9xAPUSetByteZ (Work16 >> 8, OP1 + 1); APUSetZN16 (Work16); IAPU.PC += 2; } void Apu5A () { // CMPW YA,dp uint16 Work16 = S9xAPUGetByteZ (OP1) + (S9xAPUGetByteZ (OP1 + 1) << 8); long Int32 = (long) IAPU.YA.W - (long) Work16; IAPU._Carry = Int32 >= 0; APUSetZN16 ((uint16) Int32); IAPU.PC += 2; } void Apu3A () { // INCW dp uint16 Work16 = S9xAPUGetByteZ (OP1) + (S9xAPUGetByteZ (OP1 + 1) << 8); Work16++; S9xAPUSetByteZ ((uint8) Work16, OP1); S9xAPUSetByteZ (Work16 >> 8, OP1 + 1); APUSetZN16 (Work16); IAPU.PC += 2; } // XXX: HalfCarry - BJ Fixed? Or is it between bits 7 and 8 for ADDW/SUBW? void Apu7A () { // ADDW YA,dp uint16 Work16 = S9xAPUGetByteZ (OP1) + (S9xAPUGetByteZ (OP1 + 1) << 8); uint32 Work32 = (uint32) IAPU.YA.W + Work16; IAPU._Carry = Work32 >= 0x10000; if (~(IAPU.YA.W ^ Work16) & (Work16 ^ (uint16) Work32) & 0x8000) APUSetOverflow (); else APUClearOverflow (); APUClearHalfCarry (); if((IAPU.YA.W ^ Work16 ^ (uint16) Work32) & 0x10) APUSetHalfCarry (); IAPU.YA.W = (uint16) Work32; APUSetZN16 (IAPU.YA.W); IAPU.PC += 2; } // XXX: BJ: i think the old HalfCarry behavior was wrong... // XXX: Or is it between bits 7 and 8 for ADDW/SUBW? void Apu9A () { // SUBW YA,dp uint16 Work16 = S9xAPUGetByteZ (OP1) + (S9xAPUGetByteZ (OP1 + 1) << 8); long Int32 = (long) IAPU.YA.W - (long) Work16; APUClearHalfCarry (); IAPU._Carry = Int32 >= 0; if (((IAPU.YA.W ^ Work16) & 0x8000) && ((IAPU.YA.W ^ (uint16) Int32) & 0x8000)) APUSetOverflow (); else APUClearOverflow (); // if (((IAPU.YA.W ^ Work16) & 0x0080) && // ((IAPU.YA.W ^ (uint16) Int32) & 0x0080)) // APUSetHalfCarry (); // notaz: strange here APUSetHalfCarry (); // if((IAPU.YA.W ^ Work16 ^ (uint16) Work32) & 0x10) // notaz: Work32?! if((IAPU.YA.W ^ Work16 ^ (uint16) Int32) & 0x10) APUClearHalfCarry (); IAPU.YA.W = (uint16) Int32; APUSetZN16 (IAPU.YA.W); IAPU.PC += 2; } void ApuBA () { // MOVW YA,dp IAPU.YA.B.A = S9xAPUGetByteZ (OP1); IAPU.YA.B.Y = S9xAPUGetByteZ (OP1 + 1); APUSetZN16 (IAPU.YA.W); IAPU.PC += 2; } void ApuDA () { // MOVW dp,YA S9xAPUSetByteZ (IAPU.YA.B.A, OP1); S9xAPUSetByteZ (IAPU.YA.B.Y, OP1 + 1); IAPU.PC += 2; } void Apu64 () { // CMP A,dp uint8 Work8 = S9xAPUGetByteZ (OP1); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu65 () { // CMP A,abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu66 () { // CMP A,(X) uint8 Work8 = S9xAPUGetByteZ (IAPU.X); CMP (IAPU.YA.B.A, Work8); IAPU.PC++; } void Apu67 () { // CMP A,(dp+X) IndexedXIndirect (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu68 () { // CMP A,#00 uint8 Work8 = OP1; CMP (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu69 () { // CMP dp(dest), dp(src) uint8 W1 = S9xAPUGetByteZ (OP1); uint8 Work8 = S9xAPUGetByteZ (OP2); CMP (Work8, W1); IAPU.PC += 3; } void Apu74 () { // CMP A, dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu75 () { // CMP A,abs+X AbsoluteX (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu76 () { // CMP A, abs+Y AbsoluteY (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu77 () { // CMP A,(dp)+Y IndirectIndexedY (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); CMP (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu78 () { // CMP dp,#00 uint8 Work8 = OP1; uint8 W1 = S9xAPUGetByteZ (OP2); CMP (W1, Work8); IAPU.PC += 3; } void Apu79 () { // CMP (X),(Y) uint8 W1 = S9xAPUGetByteZ (IAPU.X); uint8 Work8 = S9xAPUGetByteZ (IAPU.YA.B.Y); CMP (W1, Work8); IAPU.PC++; } void Apu1E () { // CMP X,abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address); CMP (IAPU.X, Work8); IAPU.PC += 3; } void Apu3E () { // CMP X,dp uint8 Work8 = S9xAPUGetByteZ (OP1); CMP (IAPU.X, Work8); IAPU.PC += 2; } void ApuC8 () { // CMP X,#00 CMP (IAPU.X, OP1); IAPU.PC += 2; } void Apu5E () { // CMP Y,abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); CMP (IAPU.YA.B.Y, Work8); IAPU.PC += 3; } void Apu7E () { // CMP Y,dp uint8 Work8 = S9xAPUGetByteZ (OP1); CMP (IAPU.YA.B.Y, Work8); IAPU.PC += 2; } void ApuAD () { // CMP Y,#00 uint8 Work8 = OP1; CMP (IAPU.YA.B.Y, Work8); IAPU.PC += 2; } void Apu1F () { // JMP (abs+X) Absolute (); IAPU.PC = IAPU.RAM + S9xAPUGetByte (IAPU.Address + IAPU.X) + (S9xAPUGetByte (IAPU.Address + IAPU.X + 1) << 8); // XXX: HERE: // APU.Flags |= TRACE_FLAG; } void Apu5F () { // JMP abs Absolute (); IAPU.PC = IAPU.RAM + IAPU.Address; } void Apu20 () { // CLRP APUClearDirectPage (); IAPU.DirectPage = IAPU.RAM; IAPU.PC++; } void Apu60 () { // CLRC APUClearCarry (); IAPU.PC++; } void ApuE0 () { // CLRV APUClearHalfCarry (); APUClearOverflow (); IAPU.PC++; } void Apu24 () { // AND A,dp IAPU.YA.B.A &= S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu25 () { // AND A,abs Absolute (); IAPU.YA.B.A &= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu26 () { // AND A,(X) IAPU.YA.B.A &= S9xAPUGetByteZ (IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void Apu27 () { // AND A,(dp+X) IndexedXIndirect (); IAPU.YA.B.A &= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu28 () { // AND A,#00 IAPU.YA.B.A &= OP1; APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu29 () { // AND dp(dest),dp(src) uint8 Work8 = S9xAPUGetByteZ (OP1); Work8 &= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu34 () { // AND A,dp+X IAPU.YA.B.A &= S9xAPUGetByteZ (OP1 + IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu35 () { // AND A,abs+X AbsoluteX (); IAPU.YA.B.A &= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu36 () { // AND A,abs+Y AbsoluteY (); IAPU.YA.B.A &= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu37 () { // AND A,(dp)+Y IndirectIndexedY (); IAPU.YA.B.A &= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu38 () { // AND dp,#00 uint8 Work8 = OP1; Work8 &= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu39 () { // AND (X),(Y) uint8 Work8 = S9xAPUGetByteZ (IAPU.X) & S9xAPUGetByteZ (IAPU.YA.B.Y); APUSetZN8 (Work8); S9xAPUSetByteZ (Work8, IAPU.X); IAPU.PC++; } void Apu2B () { // ROL dp uint8 Work8 = S9xAPUGetByteZ (OP1); ROL (Work8); S9xAPUSetByteZ (Work8, OP1); IAPU.PC += 2; } void Apu2C () { // ROL abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ROL (Work8); S9xAPUSetByte (Work8, IAPU.Address); IAPU.PC += 3; } void Apu3B () { // ROL dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); ROL (Work8); S9xAPUSetByteZ (Work8, OP1 + IAPU.X); IAPU.PC += 2; } void Apu3C () { // ROL A ROL (IAPU.YA.B.A); IAPU.PC++; } void Apu2E () { // CBNE dp,rel uint8 Work8 = OP1; Relative2 (); if (S9xAPUGetByteZ (Work8) != IAPU.YA.B.A) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 3; } void ApuDE () { // CBNE dp+X,rel uint8 Work8 = OP1 + IAPU.X; Relative2 (); if (S9xAPUGetByteZ (Work8) != IAPU.YA.B.A) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; APUShutdown (); } else IAPU.PC += 3; } void Apu3D () { // INC X IAPU.X++; APUSetZN8 (IAPU.X); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void ApuFC () { // INC Y IAPU.YA.B.Y++; APUSetZN8 (IAPU.YA.B.Y); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void Apu1D () { // DEC X IAPU.X--; APUSetZN8 (IAPU.X); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void ApuDC () { // DEC Y IAPU.YA.B.Y--; APUSetZN8 (IAPU.YA.B.Y); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void ApuAB () { // INC dp uint8 Work8 = S9xAPUGetByteZ (OP1) + 1; S9xAPUSetByteZ (Work8, OP1); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 2; } void ApuAC () { // INC abs Absolute (); uint8 Work8 = S9xAPUGetByte (IAPU.Address) + 1; S9xAPUSetByte (Work8, IAPU.Address); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 3; } void ApuBB () { // INC dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X) + 1; S9xAPUSetByteZ (Work8, OP1 + IAPU.X); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 2; } void ApuBC () { // INC A IAPU.YA.B.A++; APUSetZN8 (IAPU.YA.B.A); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void Apu8B () { // DEC dp uint8 Work8 = S9xAPUGetByteZ (OP1) - 1; S9xAPUSetByteZ (Work8, OP1); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 2; } void Apu8C () { // DEC abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))) - 1; S9xAPUSetByte (Work8, IAPU.Address); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 3; } void Apu9B () { // DEC dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X) - 1; S9xAPUSetByteZ (Work8, OP1 + IAPU.X); APUSetZN8 (Work8); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC += 2; } void Apu9C () { // DEC A IAPU.YA.B.A--; APUSetZN8 (IAPU.YA.B.A); #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; #endif IAPU.PC++; } void Apu44 () { // EOR A,dp IAPU.YA.B.A ^= S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu45 () { // EOR A,abs Absolute (); IAPU.YA.B.A ^= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu46 () { // EOR A,(X) IAPU.YA.B.A ^= S9xAPUGetByteZ (IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void Apu47 () { // EOR A,(dp+X) IndexedXIndirect (); IAPU.YA.B.A ^= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu48 () { // EOR A,#00 IAPU.YA.B.A ^= OP1; APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu49 () { // EOR dp(dest),dp(src) uint8 Work8 = S9xAPUGetByteZ (OP1); Work8 ^= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu54 () { // EOR A,dp+X IAPU.YA.B.A ^= S9xAPUGetByteZ (OP1 + IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu55 () { // EOR A,abs+X AbsoluteX (); IAPU.YA.B.A ^= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu56 () { // EOR A,abs+Y AbsoluteY (); IAPU.YA.B.A ^= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void Apu57 () { // EOR A,(dp)+Y IndirectIndexedY (); IAPU.YA.B.A ^= S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void Apu58 () { // EOR dp,#00 uint8 Work8 = OP1; Work8 ^= S9xAPUGetByteZ (OP2); S9xAPUSetByteZ (Work8, OP2); APUSetZN8 (Work8); IAPU.PC += 3; } void Apu59 () { // EOR (X),(Y) uint8 Work8 = S9xAPUGetByteZ (IAPU.X) ^ S9xAPUGetByteZ (IAPU.YA.B.Y); APUSetZN8 (Work8); S9xAPUSetByteZ (Work8, IAPU.X); IAPU.PC++; } void Apu4B () { // LSR dp uint8 Work8 = S9xAPUGetByteZ (OP1); LSR (Work8); S9xAPUSetByteZ (Work8, OP1); IAPU.PC += 2; } void Apu4C () { // LSR abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); LSR (Work8); S9xAPUSetByte (Work8, IAPU.Address); IAPU.PC += 3; } void Apu5B () { // LSR dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); LSR (Work8); S9xAPUSetByteZ (Work8, OP1 + IAPU.X); IAPU.PC += 2; } void Apu5C () { // LSR A LSR (IAPU.YA.B.A); IAPU.PC++; } void Apu7D () { // MOV A,X IAPU.YA.B.A = IAPU.X; APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuDD () { // MOV A,Y IAPU.YA.B.A = IAPU.YA.B.Y; APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void Apu5D () { // MOV X,A IAPU.X = IAPU.YA.B.A; APUSetZN8 (IAPU.X); IAPU.PC++; } void ApuFD () { // MOV Y,A IAPU.YA.B.Y = IAPU.YA.B.A; APUSetZN8 (IAPU.YA.B.Y); IAPU.PC++; } void Apu9D () { //MOV X,SP IAPU.X = IAPU.S; APUSetZN8 (IAPU.X); IAPU.PC++; } void ApuBD () { // MOV SP,X IAPU.S = IAPU.X; IAPU.PC++; } void Apu6B () { // ROR dp uint8 Work8 = S9xAPUGetByteZ (OP1); ROR (Work8); S9xAPUSetByteZ (Work8, OP1); IAPU.PC += 2; } void Apu6C () { // ROR abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ROR (Work8); S9xAPUSetByte (Work8, IAPU.Address); IAPU.PC += 3; } void Apu7B () { // ROR dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); ROR (Work8); S9xAPUSetByteZ (Work8, OP1 + IAPU.X); IAPU.PC += 2; } void Apu7C () { // ROR A ROR (IAPU.YA.B.A); IAPU.PC++; } void Apu6E () { // DBNZ dp,rel uint8 Work8 = OP1; Relative2 (); uint8 W1 = S9xAPUGetByteZ (Work8) - 1; S9xAPUSetByteZ (W1, Work8); if (W1 != 0) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; } else IAPU.PC += 3; } void ApuFE () { // DBNZ Y,rel Relative (); IAPU.YA.B.Y--; if (IAPU.YA.B.Y != 0) { IAPU.PC = IAPU.RAM + (uint16) Int16; CPU.APU_Cycles += IAPU.TwoCycles; } else IAPU.PC += 2; } void Apu6F () { // RET uint16 Work16; PopW (Work16); IAPU.PC = IAPU.RAM + Work16; } void Apu7F () { // RETI // STOP ("RETI"); uint16 Work16; Pop (IAPU.P); S9xAPUUnpackStatus (); PopW (Work16); IAPU.PC = IAPU.RAM + Work16; } void Apu84 () { // ADC A,dp uint8 Work8 = S9xAPUGetByteZ (OP1); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu85 () { // ADC A, abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu86 () { // ADC A,(X) uint8 Work8 = S9xAPUGetByteZ (IAPU.X); ADC (IAPU.YA.B.A, Work8); IAPU.PC++; } void Apu87 () { // ADC A,(dp+X) IndexedXIndirect (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu88 () { // ADC A,#00 uint8 Work8 = OP1; ADC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu89 () { // ADC dp(dest),dp(src) uint8 Work8 = S9xAPUGetByteZ (OP1); uint8 W1 = S9xAPUGetByteZ (OP2); ADC (W1, Work8); S9xAPUSetByteZ (W1, OP2); IAPU.PC += 3; } void Apu94 () { // ADC A,dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu95 () { // ADC A, abs+X AbsoluteX (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu96 () { // ADC A, abs+Y AbsoluteY (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void Apu97 () { // ADC A, (dp)+Y IndirectIndexedY (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); ADC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void Apu98 () { // ADC dp,#00 uint8 Work8 = OP1; uint8 W1 = S9xAPUGetByteZ (OP2); ADC (W1, Work8); S9xAPUSetByteZ (W1, OP2); IAPU.PC += 3; } void Apu99 () { // ADC (X),(Y) uint8 W1 = S9xAPUGetByteZ (IAPU.X); uint8 Work8 = S9xAPUGetByteZ (IAPU.YA.B.Y); ADC (W1, Work8); S9xAPUSetByteZ (W1, IAPU.X); IAPU.PC++; } void Apu8D () { // MOV Y,#00 IAPU.YA.B.Y = OP1; APUSetZN8 (IAPU.YA.B.Y); IAPU.PC += 2; } void Apu8F () { // MOV dp,#00 uint8 Work8 = OP1; S9xAPUSetByteZ (Work8, OP2); IAPU.PC += 3; } void Apu9E () { // DIV YA,X if (IAPU.X == 0) { APUSetOverflow (); IAPU.YA.B.Y = 0xff; IAPU.YA.B.A = 0xff; } else { APUClearOverflow (); uint8 Work8 = IAPU.YA.W / IAPU.X; IAPU.YA.B.Y = IAPU.YA.W % IAPU.X; IAPU.YA.B.A = Work8; } // XXX How should Overflow, Half Carry, Zero and Negative flags be set?? // APUSetZN16 (IAPU.YA.W); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void Apu9F () { // XCN A IAPU.YA.B.A = (IAPU.YA.B.A >> 4) | (IAPU.YA.B.A << 4); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuA4 () { // SBC A, dp uint8 Work8 = S9xAPUGetByteZ (OP1); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void ApuA5 () { // SBC A, abs Absolute (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void ApuA6 () { // SBC A, (X) uint8 Work8 = S9xAPUGetByteZ (IAPU.X); SBC (IAPU.YA.B.A, Work8); IAPU.PC++; } void ApuA7 () { // SBC A,(dp+X) IndexedXIndirect (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void ApuA8 () { // SBC A,#00 uint8 Work8 = OP1; SBC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void ApuA9 () { // SBC dp(dest), dp(src) uint8 Work8 = S9xAPUGetByteZ (OP1); uint8 W1 = S9xAPUGetByteZ (OP2); SBC (W1, Work8); S9xAPUSetByteZ (W1, OP2); IAPU.PC += 3; } void ApuB4 () { // SBC A, dp+X uint8 Work8 = S9xAPUGetByteZ (OP1 + IAPU.X); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void ApuB5 () { // SBC A,abs+X AbsoluteX (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void ApuB6 () { // SBC A,abs+Y AbsoluteY (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 3; } void ApuB7 () { // SBC A,(dp)+Y IndirectIndexedY (); uint8 Work8 = S9xAPUGetByte (((IAPU.Address))); SBC (IAPU.YA.B.A, Work8); IAPU.PC += 2; } void ApuB8 () { // SBC dp,#00 uint8 Work8 = OP1; uint8 W1 = S9xAPUGetByteZ (OP2); SBC (W1, Work8); S9xAPUSetByteZ (W1, OP2); IAPU.PC += 3; } void ApuB9 () { // SBC (X),(Y) uint8 W1 = S9xAPUGetByteZ (IAPU.X); uint8 Work8 = S9xAPUGetByteZ (IAPU.YA.B.Y); SBC (W1, Work8); S9xAPUSetByteZ (W1, IAPU.X); IAPU.PC++; } void ApuAF () { // MOV (X)+, A S9xAPUSetByteZ (IAPU.YA.B.A, IAPU.X++); IAPU.PC++; } void ApuBE () { // DAS if ((IAPU.YA.B.A & 0x0f) > 9 || !APUCheckHalfCarry()) { IAPU.YA.B.A -= 6; } if (IAPU.YA.B.A > 0x9f || !IAPU._Carry) { IAPU.YA.B.A -= 0x60; APUClearCarry (); } else { APUSetCarry (); } APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuBF () { // MOV A,(X)+ IAPU.YA.B.A = S9xAPUGetByteZ (IAPU.X++); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuC0 () { // DI APUClearInterrupt (); IAPU.PC++; } void ApuA0 () { // EI APUSetInterrupt (); IAPU.PC++; } void ApuC4 () { // MOV dp,A S9xAPUSetByteZ (IAPU.YA.B.A, OP1); IAPU.PC += 2; } void ApuC5 () { // MOV abs,A Absolute (); S9xAPUSetByte (IAPU.YA.B.A, IAPU.Address); IAPU.PC += 3; } void ApuC6 () { // MOV (X), A S9xAPUSetByteZ (IAPU.YA.B.A, IAPU.X); IAPU.PC++; } void ApuC7 () { // MOV (dp+X),A IndexedXIndirect (); S9xAPUSetByte (IAPU.YA.B.A, IAPU.Address); IAPU.PC += 2; } void ApuC9 () { // MOV abs,X Absolute (); S9xAPUSetByte (IAPU.X, IAPU.Address); IAPU.PC += 3; } void ApuCB () { // MOV dp,Y S9xAPUSetByteZ (IAPU.YA.B.Y, OP1); IAPU.PC += 2; } void ApuCC () { // MOV abs,Y Absolute (); S9xAPUSetByte (IAPU.YA.B.Y, IAPU.Address); IAPU.PC += 3; } void ApuCD () { // MOV X,#00 IAPU.X = OP1; APUSetZN8 (IAPU.X); IAPU.PC += 2; } void ApuCF () { // MUL YA IAPU.YA.W = (uint16) IAPU.YA.B.A * IAPU.YA.B.Y; APUSetZN16 (IAPU.YA.W); IAPU.PC++; } void ApuD4 () { // MOV dp+X, A S9xAPUSetByteZ (IAPU.YA.B.A, OP1 + IAPU.X); IAPU.PC += 2; } void ApuD5 () { // MOV abs+X,A AbsoluteX (); S9xAPUSetByte (IAPU.YA.B.A, IAPU.Address); IAPU.PC += 3; } void ApuD6 () { // MOV abs+Y,A AbsoluteY (); S9xAPUSetByte (IAPU.YA.B.A, IAPU.Address); IAPU.PC += 3; } void ApuD7 () { // MOV (dp)+Y,A IndirectIndexedY (); S9xAPUSetByte (IAPU.YA.B.A, IAPU.Address); IAPU.PC += 2; } void ApuD8 () { // MOV dp,X S9xAPUSetByteZ (IAPU.X, OP1); IAPU.PC += 2; } void ApuD9 () { // MOV dp+Y,X S9xAPUSetByteZ (IAPU.X, OP1 + IAPU.YA.B.Y); IAPU.PC += 2; } void ApuDB () { // MOV dp+X,Y S9xAPUSetByteZ (IAPU.YA.B.Y, OP1 + IAPU.X); IAPU.PC += 2; } void ApuDF () { // DAA if ((IAPU.YA.B.A & 0x0f) > 9 || APUCheckHalfCarry()) { if(IAPU.YA.B.A > 0xf0) APUSetCarry (); IAPU.YA.B.A += 6; //APUSetHalfCarry (); Intel procs do this, but this is a Sony proc... } //else { APUClearHalfCarry (); } ditto as above if (IAPU.YA.B.A > 0x9f || IAPU._Carry) { IAPU.YA.B.A += 0x60; APUSetCarry (); } else { APUClearCarry (); } APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuE4 () { // MOV A, dp IAPU.YA.B.A = S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void ApuE5 () { // MOV A,abs Absolute (); IAPU.YA.B.A = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void ApuE6 () { // MOV A,(X) IAPU.YA.B.A = S9xAPUGetByteZ (IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC++; } void ApuE7 () { // MOV A,(dp+X) IndexedXIndirect (); IAPU.YA.B.A = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void ApuE8 () { // MOV A,#00 IAPU.YA.B.A = OP1; APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void ApuE9 () { // MOV X, abs Absolute (); IAPU.X = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.X); IAPU.PC += 3; } void ApuEB () { // MOV Y,dp IAPU.YA.B.Y = S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.YA.B.Y); IAPU.PC += 2; } void ApuEC () { // MOV Y,abs Absolute (); IAPU.YA.B.Y = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.Y); IAPU.PC += 3; } void ApuF4 () { // MOV A, dp+X IAPU.YA.B.A = S9xAPUGetByteZ (OP1 + IAPU.X); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void ApuF5 () { // MOV A, abs+X AbsoluteX (); IAPU.YA.B.A = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void ApuF6 () { // MOV A, abs+Y AbsoluteY (); IAPU.YA.B.A = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 3; } void ApuF7 () { // MOV A, (dp)+Y IndirectIndexedY (); IAPU.YA.B.A = S9xAPUGetByte (IAPU.Address); APUSetZN8 (IAPU.YA.B.A); IAPU.PC += 2; } void ApuF8 () { // MOV X,dp IAPU.X = S9xAPUGetByteZ (OP1); APUSetZN8 (IAPU.X); IAPU.PC += 2; } void ApuF9 () { // MOV X,dp+Y IAPU.X = S9xAPUGetByteZ (OP1 + IAPU.YA.B.Y); APUSetZN8 (IAPU.X); IAPU.PC += 2; } void ApuFA () { // MOV dp(dest),dp(src) S9xAPUSetByteZ (S9xAPUGetByteZ (OP1), OP2); IAPU.PC += 3; } void ApuFB () { // MOV Y,dp+X IAPU.YA.B.Y = S9xAPUGetByteZ (OP1 + IAPU.X); APUSetZN8 (IAPU.YA.B.Y); IAPU.PC += 2; } #if defined(NO_INLINE_SET_GET) #undef INLINE #define INLINE #include "apumem.h" #endif void (*S9xApuOpcodes[256]) (void) = { Apu00, Apu01, Apu02, Apu03, Apu04, Apu05, Apu06, Apu07, Apu08, Apu09, Apu0A, Apu0B, Apu0C, Apu0D, Apu0E, Apu0F, Apu10, Apu11, Apu12, Apu13, Apu14, Apu15, Apu16, Apu17, Apu18, Apu19, Apu1A, Apu1B, Apu1C, Apu1D, Apu1E, Apu1F, Apu20, Apu21, Apu22, Apu23, Apu24, Apu25, Apu26, Apu27, Apu28, Apu29, Apu2A, Apu2B, Apu2C, Apu2D, Apu2E, Apu2F, Apu30, Apu31, Apu32, Apu33, Apu34, Apu35, Apu36, Apu37, Apu38, Apu39, Apu3A, Apu3B, Apu3C, Apu3D, Apu3E, Apu3F, Apu40, Apu41, Apu42, Apu43, Apu44, Apu45, Apu46, Apu47, Apu48, Apu49, Apu4A, Apu4B, Apu4C, Apu4D, Apu4E, Apu4F, Apu50, Apu51, Apu52, Apu53, Apu54, Apu55, Apu56, Apu57, Apu58, Apu59, Apu5A, Apu5B, Apu5C, Apu5D, Apu5E, Apu5F, Apu60, Apu61, Apu62, Apu63, Apu64, Apu65, Apu66, Apu67, Apu68, Apu69, Apu6A, Apu6B, Apu6C, Apu6D, Apu6E, Apu6F, Apu70, Apu71, Apu72, Apu73, Apu74, Apu75, Apu76, Apu77, Apu78, Apu79, Apu7A, Apu7B, Apu7C, Apu7D, Apu7E, Apu7F, Apu80, Apu81, Apu82, Apu83, Apu84, Apu85, Apu86, Apu87, Apu88, Apu89, Apu8A, Apu8B, Apu8C, Apu8D, Apu8E, Apu8F, Apu90, Apu91, Apu92, Apu93, Apu94, Apu95, Apu96, Apu97, Apu98, Apu99, Apu9A, Apu9B, Apu9C, Apu9D, Apu9E, Apu9F, ApuA0, ApuA1, ApuA2, ApuA3, ApuA4, ApuA5, ApuA6, ApuA7, ApuA8, ApuA9, ApuAA, ApuAB, ApuAC, ApuAD, ApuAE, ApuAF, ApuB0, ApuB1, ApuB2, ApuB3, ApuB4, ApuB5, ApuB6, ApuB7, ApuB8, ApuB9, ApuBA, ApuBB, ApuBC, ApuBD, ApuBE, ApuBF, ApuC0, ApuC1, ApuC2, ApuC3, ApuC4, ApuC5, ApuC6, ApuC7, ApuC8, ApuC9, ApuCA, ApuCB, ApuCC, ApuCD, ApuCE, ApuCF, ApuD0, ApuD1, ApuD2, ApuD3, ApuD4, ApuD5, ApuD6, ApuD7, ApuD8, ApuD9, ApuDA, ApuDB, ApuDC, ApuDD, ApuDE, ApuDF, ApuE0, ApuE1, ApuE2, ApuE3, ApuE4, ApuE5, ApuE6, ApuE7, ApuE8, ApuE9, ApuEA, ApuEB, ApuEC, ApuED, ApuEE, ApuEF, ApuF0, ApuF1, ApuF2, ApuF3, ApuF4, ApuF5, ApuF6, ApuF7, ApuF8, ApuF9, ApuFA, ApuFB, ApuFC, ApuFD, ApuFE, ApuFF }; #endif