/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #include #include "snes9x.h" #include "memmap.h" #include "ppu.h" struct Band { uint32_t Left; uint32_t Right; }; #undef MIN #undef MAX #define MIN(A,B) ((A) < (B) ? (A) : (B)) #define MAX(A,B) ((A) > (B) ? (A) : (B)) #define BAND_EMPTY(B) (B.Left >= B.Right) #define BANDS_INTERSECT(A,B) ((A.Left >= B.Left && A.Left < B.Right) || \ (B.Left >= A.Left && B.Left < A.Right)) #define OR_BANDS(R,A,B) {\ R.Left = MIN(A.Left, B.Left); \ R.Right = MAX(A.Right, B.Right);} #define AND_BANDS(R,A,B) {\ R.Left = MAX(A.Left, B.Left); \ R.Right = MIN(A.Right, B.Right);} static int IntCompare(const void* d1, const void* d2) { if (*(uint32_t*) d1 > *(uint32_t*) d2) return (1); else if (*(uint32_t*) d1 < * (uint32_t*) d2) return (-1); return (0); } static int BandCompare(const void* d1, const void* d2) { if (((struct Band*) d1)->Left > ((struct Band*) d2)->Left) return (1); else if (((struct Band*) d1)->Left < ((struct Band*) d2)->Left) return (-1); return (0); } void ComputeClipWindows() { struct ClipData* pClip = &IPPU.Clip [0]; int c, w, i; // Loop around the main screen then the sub-screen. for (c = 0; c < 2; c++, pClip++) { // Loop around the colour window then a clip window for each of the // background layers. for (w = 5; w >= 0; w--) { pClip->Count[w] = 0; if (w == 5) // The colour window... { if (c == 0) // ... on the main screen { if ((Memory.FillRAM [0x2130] & 0xc0) == 0xc0) { // The whole of the main screen is switched off, // completely clip everything. for (i = 0; i < 6; i++) { IPPU.Clip [c].Count [i] = 1; IPPU.Clip [c].Left [0][i] = 1; IPPU.Clip [c].Right [0][i] = 0; } continue; } else if ((Memory.FillRAM [0x2130] & 0xc0) == 0x00) continue; } else { // .. colour window on the sub-screen. if ((Memory.FillRAM [0x2130] & 0x30) == 0x30) { // The sub-screen is switched off, completely // clip everything. int i; for (i = 0; i < 6; i++) { IPPU.Clip [1].Count [i] = 1; IPPU.Clip [1].Left [0][i] = 1; IPPU.Clip [1].Right [0][i] = 0; } return; } else if ((Memory.FillRAM [0x2130] & 0x30) == 0x00) continue; } } // if (!Settings.DisableGraphicWindows) { if (w == 5 || pClip->Count [5] || (Memory.FillRAM [0x212c + c] & Memory.FillRAM [0x212e + c] & (1 << w))) { struct Band Win1[3]; struct Band Win2[3]; uint32_t Window1Enabled = 0; uint32_t Window2Enabled = 0; bool invert = (w == 5 && ((c == 1 && (Memory.FillRAM [0x2130] & 0x30) == 0x10) || (c == 0 && (Memory.FillRAM [0x2130] & 0xc0) == 0x40))); if (w == 5 || (Memory.FillRAM [0x212c + c] & Memory.FillRAM [0x212e + c] & (1 << w))) { if (PPU.ClipWindow1Enable [w]) { if (!PPU.ClipWindow1Inside [w]) { Win1[Window1Enabled].Left = PPU.Window1Left; Win1[Window1Enabled++].Right = PPU.Window1Right + 1; } else { if (PPU.Window1Left <= PPU.Window1Right) { if (PPU.Window1Left > 0) { Win1[Window1Enabled].Left = 0; Win1[Window1Enabled++].Right = PPU.Window1Left; } if (PPU.Window1Right < 255) { Win1[Window1Enabled].Left = PPU.Window1Right + 1; Win1[Window1Enabled++].Right = 256; } if (Window1Enabled == 0) { Win1[Window1Enabled].Left = 1; Win1[Window1Enabled++].Right = 0; } } else { // 'outside' a window with no range - // appears to be the whole screen. Win1[Window1Enabled].Left = 0; Win1[Window1Enabled++].Right = 256; } } } if (PPU.ClipWindow2Enable [w]) { if (!PPU.ClipWindow2Inside [w]) { Win2[Window2Enabled].Left = PPU.Window2Left; Win2[Window2Enabled++].Right = PPU.Window2Right + 1; } else { if (PPU.Window2Left <= PPU.Window2Right) { if (PPU.Window2Left > 0) { Win2[Window2Enabled].Left = 0; Win2[Window2Enabled++].Right = PPU.Window2Left; } if (PPU.Window2Right < 255) { Win2[Window2Enabled].Left = PPU.Window2Right + 1; Win2[Window2Enabled++].Right = 256; } if (Window2Enabled == 0) { Win2[Window2Enabled].Left = 1; Win2[Window2Enabled++].Right = 0; } } else { Win2[Window2Enabled].Left = 0; Win2[Window2Enabled++].Right = 256; } } } } if (Window1Enabled && Window2Enabled) { // Overlap logic // // Each window will be in one of three states: // 1. (Left > Right. One band) // 2. | ---------------- | (Left >= 0, Right <= 255, Left <= Right. One band) // 3. |------------ ----------| (Left1 == 0, Right1 < Left2; Left2 > Right1, Right2 == 255. Two bands) struct Band Bands [6]; int B = 0; switch (PPU.ClipWindowOverlapLogic [w] ^ 1) { case CLIP_OR: if (Window1Enabled == 1) { if (BAND_EMPTY(Win1[0])) { B = Window2Enabled; // memmove converted: Different stack allocations [Neb] memcpy(Bands, Win2, sizeof(Win2[0]) * Window2Enabled); } else { if (Window2Enabled == 1) { if (BAND_EMPTY(Win2[0])) Bands[B++] = Win1[0]; else { if (BANDS_INTERSECT(Win1[0], Win2[0])) { OR_BANDS(Bands[0], Win1[0], Win2[0]) B = 1; } else { Bands[B++] = Win1[0]; Bands[B++] = Win2[0]; } } } else { if (BANDS_INTERSECT(Win1[0], Win2[0])) { OR_BANDS(Bands[0], Win1[0], Win2[0]) if (BANDS_INTERSECT(Win1[0], Win2[1])) OR_BANDS(Bands[1], Win1[0], Win2[1]) else Bands[1] = Win2[1]; B = 1; if (BANDS_INTERSECT(Bands[0], Bands[1])) OR_BANDS(Bands[0], Bands[0], Bands[1]) else B = 2; } else if (BANDS_INTERSECT(Win1[0], Win2[1])) { Bands[B++] = Win2[0]; OR_BANDS(Bands[B], Win1[0], Win2[1]); B++; } else { Bands[0] = Win2[0]; Bands[1] = Win1[0]; Bands[2] = Win2[1]; B = 3; } } } } else if (Window2Enabled == 1) { if (BAND_EMPTY(Win2[0])) { // Window 2 defines an empty range - just // use window 1 as the clipping (which // could also be empty). B = Window1Enabled; // memmove converted: Different stack allocations [Neb] memcpy(Bands, Win1, sizeof(Win1[0]) * Window1Enabled); } else { // Window 1 has two bands and Window 2 has one. // Neither is an empty region. if (BANDS_INTERSECT(Win2[0], Win1[0])) { OR_BANDS(Bands[0], Win2[0], Win1[0]) if (BANDS_INTERSECT(Win2[0], Win1[1])) OR_BANDS(Bands[1], Win2[0], Win1[1]) else Bands[1] = Win1[1]; B = 1; if (BANDS_INTERSECT(Bands[0], Bands[1])) OR_BANDS(Bands[0], Bands[0], Bands[1]) else B = 2; } else if (BANDS_INTERSECT(Win2[0], Win1[1])) { Bands[B++] = Win1[0]; OR_BANDS(Bands[B], Win2[0], Win1[1]); B++; } else { Bands[0] = Win1[0]; Bands[1] = Win2[0]; Bands[2] = Win1[1]; B = 3; } } } else { // Both windows have two bands OR_BANDS(Bands[0], Win1[0], Win2[0]); OR_BANDS(Bands[1], Win1[1], Win2[1]); B = 1; if (BANDS_INTERSECT(Bands[0], Bands[1])) OR_BANDS(Bands[0], Bands[0], Bands[1]) else B = 2; } break; case CLIP_AND: if (Window1Enabled == 1) { // Window 1 has one band if (BAND_EMPTY(Win1[0])) Bands [B++] = Win1[0]; else if (Window2Enabled == 1) { if (BAND_EMPTY(Win2[0])) Bands [B++] = Win2[0]; else { AND_BANDS(Bands[0], Win1[0], Win2[0]); B = 1; } } else { AND_BANDS(Bands[0], Win1[0], Win2[0]); AND_BANDS(Bands[1], Win1[0], Win2[1]); B = 2; } } else if (Window2Enabled == 1) { if (BAND_EMPTY(Win2[0])) Bands[B++] = Win2[0]; else { // Window 1 has two bands. AND_BANDS(Bands[0], Win1[0], Win2[0]); AND_BANDS(Bands[1], Win1[1], Win2[0]); B = 2; } } else { // Both windows have two bands. AND_BANDS(Bands[0], Win1[0], Win2[0]); AND_BANDS(Bands[1], Win1[1], Win2[1]); B = 2; if (BANDS_INTERSECT(Win1[0], Win2[1])) { AND_BANDS(Bands[2], Win1[0], Win2[1]); B = 3; } else if (BANDS_INTERSECT(Win1[1], Win2[0])) { AND_BANDS(Bands[2], Win1[1], Win2[0]); B = 3; } } break; case CLIP_XNOR: invert = !invert; // Fall... case CLIP_XOR: if (Window1Enabled == 1 && BAND_EMPTY(Win1[0])) { B = Window2Enabled; // memmove converted: Different stack allocations [Neb] memcpy(Bands, Win2, sizeof(Win2[0]) * Window2Enabled); } else if (Window2Enabled == 1 && BAND_EMPTY(Win2[0])) { B = Window1Enabled; // memmove converted: Different stack allocations [Neb] memcpy(Bands, Win1, sizeof(Win1[0]) * Window1Enabled); } else { uint32_t p = 0; uint32_t points [10]; uint32_t i; invert = !invert; // Build an array of points (window edges) points [p++] = 0; for (i = 0; i < Window1Enabled; i++) { points [p++] = Win1[i].Left; points [p++] = Win1[i].Right; } for (i = 0; i < Window2Enabled; i++) { points [p++] = Win2[i].Left; points [p++] = Win2[i].Right; } points [p++] = 256; // Sort them qsort((void*) points, p, sizeof(points [0]), IntCompare); for (i = 0; i < p; i += 2) { if (points [i] == points [i + 1]) continue; Bands [B].Left = points [i]; while (i + 2 < p && points [i + 1] == points [i + 2]) i += 2; Bands [B++].Right = points [i + 1]; } } break; } if (invert) { int b; int j = 0; int empty_band_count = 0; // First remove all empty bands from the list. for (b = 0; b < B; b++) { if (!BAND_EMPTY(Bands[b])) { if (b != j) Bands[j] = Bands[b]; j++; } else empty_band_count++; } if (j > 0) { if (j == 1) { j = 0; // Easy case to deal with, so special case it. if (Bands[0].Left > 0) { pClip->Left[j][w] = 0; pClip->Right[j++][w] = Bands[0].Left + 1; } if (Bands[0].Right < 256) { pClip->Left[j][w] = Bands[0].Right; pClip->Right[j++][w] = 256; } if (j == 0) { pClip->Left[j][w] = 1; pClip->Right[j++][w] = 0; } } else { // Now sort the bands into order B = j; qsort((void*) Bands, B, sizeof(Bands [0]), BandCompare); // Now invert the area the bands cover j = 0; for (b = 0; b < B; b++) { if (b == 0 && Bands[b].Left > 0) { pClip->Left[j][w] = 0; pClip->Right[j++][w] = Bands[b].Left + 1; } else if (b == B - 1 && Bands[b].Right < 256) { pClip->Left[j][w] = Bands[b].Right; pClip->Right[j++][w] = 256; } if (b < B - 1) { pClip->Left[j][w] = Bands[b].Right; pClip->Right[j++][w] = Bands[b + 1].Left + 1; } } } } else { // Inverting a window that consisted of only // empty bands is the whole width of the screen. // Needed for Mario Kart's rear-view mirror display. if (empty_band_count) { pClip->Left[j][w] = 0; pClip->Right[j][w] = 256; j++; } } pClip->Count[w] = j; } else { int j; for (j = 0; j < B; j++) { pClip->Left[j][w] = Bands[j].Left; pClip->Right[j][w] = Bands[j].Right; } pClip->Count [w] = B; } } else { // Only one window enabled so no need to perform // complex overlap logic... if (Window1Enabled) { if (invert) { int j = 0; if (Window1Enabled == 1) { if (Win1[0].Left <= Win1[0].Right) { if (Win1[0].Left > 0) { pClip->Left[j][w] = 0; pClip->Right[j++][w] = Win1[0].Left; } if (Win1[0].Right < 256) { pClip->Left[j][w] = Win1[0].Right; pClip->Right[j++][w] = 256; } if (j == 0) { pClip->Left[j][w] = 1; pClip->Right[j++][w] = 0; } } else { pClip->Left[j][w] = 0; pClip->Right[j++][w] = 256; } } else { pClip->Left [j][w] = Win1[0].Right; pClip->Right[j++][w] = Win1[1].Left; } pClip->Count [w] = j; } else { uint32_t j; for (j = 0; j < Window1Enabled; j++) { pClip->Left [j][w] = Win1[j].Left; pClip->Right [j][w] = Win1[j].Right; } pClip->Count [w] = Window1Enabled; } } else if (Window2Enabled) { if (invert) { int j = 0; if (Window2Enabled == 1) { if (Win2[0].Left <= Win2[0].Right) { if (Win2[0].Left > 0) { pClip->Left[j][w] = 0; pClip->Right[j++][w] = Win2[0].Left; } if (Win2[0].Right < 256) { pClip->Left[j][w] = Win2[0].Right; pClip->Right[j++][w] = 256; } if (j == 0) { pClip->Left[j][w] = 1; pClip->Right[j++][w] = 0; } } else { pClip->Left[j][w] = 0; pClip->Right[j++][w] = 256; } } else { pClip->Left [j][w] = Win2[0].Right; pClip->Right[j++][w] = Win2[1].Left + 1; } pClip->Count [w] = j; } else { uint32_t j; for (j = 0; j < Window2Enabled; j++) { pClip->Left [j][w] = Win2[j].Left; pClip->Right [j][w] = Win2[j].Right; } pClip->Count [w] = Window2Enabled; } } } if (w != 5 && pClip->Count [5]) { // Colour window enabled. Set the // clip windows for all remaining backgrounds to be // the same as the colour window. if (pClip->Count [w] == 0) { uint32_t i; pClip->Count [w] = pClip->Count [5]; for (i = 0; i < pClip->Count [w]; i++) { pClip->Left [i][w] = pClip->Left [i][5]; pClip->Right [i][w] = pClip->Right [i][5]; } } else { // Intersect the colour window with the bg's // own clip window. uint32_t i; for (i = 0; i < pClip->Count [w]; i++) { uint32_t j; for (j = 0; j < pClip->Count [5]; j++) { if ((pClip->Left[i][w] >= pClip->Left[j][5] && pClip->Left[i][w] < pClip->Right[j][5]) || (pClip->Left[j][5] >= pClip->Left[i][w] && pClip->Left[j][5] < pClip->Right[i][w])) { // Found an intersection! pClip->Left[i][w] = MAX(pClip->Left[i][w], pClip->Left[j][5]); pClip->Right[i][w] = MIN(pClip->Right[i][w], pClip->Right[j][5]); goto Clip_ok; } } // no intersection, nullify it pClip->Left[i][w] = 1; pClip->Right[i][w] = 0; Clip_ok: j = 0; // dummy statement } } } } // if (w == 5 | ... } // if (!Settings.DisableGraphicWindows) } // for (int w... } // for (int c... }