/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ //#include "ds2_timer.h" //#include "ds2_cpu.h" //#include "ds2io.h" #include "snes9x.h" #include "memmap.h" #include "cpuops.h" #include "ppu.h" #include "cpuexec.h" #include "gfx.h" #include "missing.h" #include "apu.h" #include "dma.h" #include "fxemu.h" #include "sa1.h" #include "spc7110.h" extern void S9xProcessSound(unsigned int); void S9xMainLoop_SA1_SFX(void); void S9xMainLoop_SA1_NoSFX(void); void S9xMainLoop_NoSA1_SFX(void); void S9xMainLoop_NoSA1_NoSFX(void); /* * This is a CATSFC modification inspired by a Snes9x-Euphoria modification. * The emulator selects a main loop based on the chips used in an entire * frame. This avoids the constant SA1.Executing and Settings.SuperFX checks. * * The original version of S9xMainLoop is S9xMainLoop_SA1_SFX below. Remember * to propagate modifications to the SA1_NoSFX, NoSA1_SFX and NoSA1_NoSFX * versions. */ void S9xMainLoop(void) { if (Settings.SA1) { if (Settings.SuperFX) S9xMainLoop_SA1_SFX(); else /* if (!Settings.SuperFX) */ S9xMainLoop_SA1_NoSFX(); } else /* if (!Settings.SA1) */ { if (Settings.SuperFX) S9xMainLoop_NoSA1_SFX(); else /* if (!Settings.SuperFX) */ S9xMainLoop_NoSA1_NoSFX(); } } void S9xMainLoop_SA1_SFX(void) { for (;;) { APU_EXECUTE(); if (CPU.Flags) { if (CPU.Flags & NMI_FLAG) { if (--CPU.NMICycleCount == 0) { CPU.Flags &= ~NMI_FLAG; if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } S9xOpcode_NMI(); } } if (CPU.Flags & IRQ_PENDING_FLAG) { if (CPU.IRQCycleCount == 0) { if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } if (CPU.IRQActive && !Settings.DisableIRQ) { if (!CheckFlag(IRQ)) S9xOpcode_IRQ(); } else CPU.Flags &= ~IRQ_PENDING_FLAG; } else { if (--CPU.IRQCycleCount == 0 && CheckFlag(IRQ)) CPU.IRQCycleCount = 1; } } if (CPU.Flags & SCAN_KEYS_FLAG) break; } #ifdef CPU_SHUTDOWN CPU.PCAtOpcodeStart = CPU.PC; #endif CPU.Cycles += CPU.MemSpeed; (*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode)(); if (SA1.Executing) S9xSA1MainLoop(); DO_HBLANK_CHECK_SFX(); } ICPU.Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); #ifndef USE_BLARGG_APU IAPU.Registers.PC = IAPU.PC - IAPU.RAM; S9xAPUPackStatus(); #endif if (CPU.Flags & SCAN_KEYS_FLAG) { S9xSyncSpeed(); CPU.Flags &= ~SCAN_KEYS_FLAG; } #ifdef DETECT_NASTY_FX_INTERLEAVE if (CPU.BRKTriggered && Settings.SuperFX && !CPU.TriedInterleavedMode2) { CPU.TriedInterleavedMode2 = true; CPU.BRKTriggered = false; S9xDeinterleaveMode2(); } #endif } void S9xMainLoop_SA1_NoSFX(void) { for (;;) { APU_EXECUTE(); if (CPU.Flags) { if (CPU.Flags & NMI_FLAG) { if (--CPU.NMICycleCount == 0) { CPU.Flags &= ~NMI_FLAG; if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } S9xOpcode_NMI(); } } if (CPU.Flags & IRQ_PENDING_FLAG) { if (CPU.IRQCycleCount == 0) { if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } if (CPU.IRQActive && !Settings.DisableIRQ) { if (!CheckFlag(IRQ)) S9xOpcode_IRQ(); } else CPU.Flags &= ~IRQ_PENDING_FLAG; } else { if (--CPU.IRQCycleCount == 0 && CheckFlag(IRQ)) CPU.IRQCycleCount = 1; } } if (CPU.Flags & SCAN_KEYS_FLAG) break; } #ifdef CPU_SHUTDOWN CPU.PCAtOpcodeStart = CPU.PC; #endif CPU.Cycles += CPU.MemSpeed; (*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode)(); if (SA1.Executing) S9xSA1MainLoop(); DO_HBLANK_CHECK_NoSFX(); } ICPU.Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); #ifndef USE_BLARGG_APU IAPU.Registers.PC = IAPU.PC - IAPU.RAM; S9xAPUPackStatus(); #endif if (CPU.Flags & SCAN_KEYS_FLAG) { S9xSyncSpeed(); CPU.Flags &= ~SCAN_KEYS_FLAG; } } void S9xMainLoop_NoSA1_SFX(void) { for (;;) { APU_EXECUTE(); if (CPU.Flags) { if (CPU.Flags & NMI_FLAG) { if (--CPU.NMICycleCount == 0) { CPU.Flags &= ~NMI_FLAG; if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } S9xOpcode_NMI(); } } if (CPU.Flags & IRQ_PENDING_FLAG) { if (CPU.IRQCycleCount == 0) { if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } if (CPU.IRQActive && !Settings.DisableIRQ) { if (!CheckFlag(IRQ)) S9xOpcode_IRQ(); } else CPU.Flags &= ~IRQ_PENDING_FLAG; } else { if (--CPU.IRQCycleCount == 0 && CheckFlag(IRQ)) CPU.IRQCycleCount = 1; } } if (CPU.Flags & SCAN_KEYS_FLAG) break; } #ifdef CPU_SHUTDOWN CPU.PCAtOpcodeStart = CPU.PC; #endif CPU.Cycles += CPU.MemSpeed; (*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode)(); DO_HBLANK_CHECK_SFX(); } ICPU.Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); #ifndef USE_BLARGG_APU IAPU.Registers.PC = IAPU.PC - IAPU.RAM; S9xAPUPackStatus(); #endif if (CPU.Flags & SCAN_KEYS_FLAG) { S9xSyncSpeed(); CPU.Flags &= ~SCAN_KEYS_FLAG; } #ifdef DETECT_NASTY_FX_INTERLEAVE if (CPU.BRKTriggered && Settings.SuperFX && !CPU.TriedInterleavedMode2) { CPU.TriedInterleavedMode2 = true; CPU.BRKTriggered = false; S9xDeinterleaveMode2(); } #endif } void S9xMainLoop_NoSA1_NoSFX(void) { for (;;) { APU_EXECUTE(); if (CPU.Flags) { if (CPU.Flags & NMI_FLAG) { if (--CPU.NMICycleCount == 0) { CPU.Flags &= ~NMI_FLAG; if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } S9xOpcode_NMI(); } } if (CPU.Flags & IRQ_PENDING_FLAG) { if (CPU.IRQCycleCount == 0) { if (CPU.WaitingForInterrupt) { CPU.WaitingForInterrupt = false; CPU.PC++; } if (CPU.IRQActive && !Settings.DisableIRQ) { if (!CheckFlag(IRQ)) S9xOpcode_IRQ(); } else CPU.Flags &= ~IRQ_PENDING_FLAG; } else { if (--CPU.IRQCycleCount == 0 && CheckFlag(IRQ)) CPU.IRQCycleCount = 1; } } if (CPU.Flags & SCAN_KEYS_FLAG) break; } #ifdef CPU_SHUTDOWN CPU.PCAtOpcodeStart = CPU.PC; #endif CPU.Cycles += CPU.MemSpeed; (*ICPU.S9xOpcodes [*CPU.PC++].S9xOpcode)(); DO_HBLANK_CHECK_NoSFX(); } ICPU.Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); #ifndef USE_BLARGG_APU IAPU.Registers.PC = IAPU.PC - IAPU.RAM; S9xAPUPackStatus(); #endif if (CPU.Flags & SCAN_KEYS_FLAG) { S9xSyncSpeed(); CPU.Flags &= ~SCAN_KEYS_FLAG; } } void S9xSetIRQ(uint32_t source) { CPU.IRQActive |= source; CPU.Flags |= IRQ_PENDING_FLAG; CPU.IRQCycleCount = 3; if (CPU.WaitingForInterrupt) { // Force IRQ to trigger immediately after WAI - // Final Fantasy Mystic Quest crashes without this. CPU.IRQCycleCount = 0; CPU.WaitingForInterrupt = false; CPU.PC++; } } void S9xClearIRQ(uint32_t source) { CLEAR_IRQ_SOURCE(source); } /* * This is a CATSFC modification inspired by a Snes9x-Euphoria modification. * The emulator selects an HBlank processor based on the chips used in an * entire frame. This avoids the constant Settings.SuperFX checks. * * The original version of S9xDoHBlankProcessing is S9xDoHBlankProcessing_SFX * below. Remember to propagate modifications to the NoSFX version. */ void S9xDoHBlankProcessing_SFX() { #ifdef CPU_SHUTDOWN CPU.WaitCounter++; #endif switch (CPU.WhichEvent) { case HBLANK_START_EVENT: if (IPPU.HDMA && CPU.V_Counter <= PPU.ScreenHeight) IPPU.HDMA = S9xDoHDMA(IPPU.HDMA); break; case HBLANK_END_EVENT: S9xSuperFXExec(); #ifndef USE_BLARGG_APU if (Settings.SoundSync) S9xGenerateSound(); CPU.Cycles -= Settings.H_Max; if (IAPU.APUExecuting) { APU.Cycles -= Settings.H_Max; #ifdef MK_APU S9xCatchupCount(); #endif } else APU.Cycles = 0; #else S9xAPUExecute(); CPU.Cycles -= Settings.H_Max; S9xAPUSetReferenceTime(CPU.Cycles); #endif CPU.NextEvent = -1; ICPU.Scanline++; if (++CPU.V_Counter >= (Settings.PAL ? SNES_MAX_PAL_VCOUNTER : SNES_MAX_NTSC_VCOUNTER)) { CPU.V_Counter = 0; Memory.FillRAM[0x213F] ^= 0x80; PPU.RangeTimeOver = 0; CPU.NMIActive = false; ICPU.Frame++; PPU.HVBeamCounterLatched = 0; CPU.Flags |= SCAN_KEYS_FLAG; S9xStartHDMA(); } S9xProcessSound(0); if (PPU.VTimerEnabled && !PPU.HTimerEnabled && CPU.V_Counter == PPU.IRQVBeamPos) S9xSetIRQ(PPU_V_BEAM_IRQ_SOURCE); if (CPU.V_Counter == PPU.ScreenHeight + FIRST_VISIBLE_LINE) { // Start of V-blank S9xEndScreenRefresh(); IPPU.HDMA = 0; // Bits 7 and 6 of $4212 are computed when read in S9xGetPPU. missing.dma_this_frame = 0; IPPU.MaxBrightness = PPU.Brightness; PPU.ForcedBlanking = (Memory.FillRAM [0x2100] >> 7) & 1; if (!PPU.ForcedBlanking) { PPU.OAMAddr = PPU.SavedOAMAddr; uint8_t tmp = 0; if (PPU.OAMPriorityRotation) tmp = (PPU.OAMAddr & 0xFE) >> 1; if ((PPU.OAMFlip & 1) || PPU.FirstSprite != tmp) { PPU.FirstSprite = tmp; IPPU.OBJChanged = true; } PPU.OAMFlip = 0; } Memory.FillRAM[0x4210] = 0x80 | Model->_5A22; if (Memory.FillRAM[0x4200] & 0x80) { CPU.NMIActive = true; CPU.Flags |= NMI_FLAG; CPU.NMICycleCount = CPU.NMITriggerPoint; } #ifdef OLD_SNAPSHOT_CODE if (CPU.Flags & SAVE_SNAPSHOT_FLAG) { CPU.Flags &= ~SAVE_SNAPSHOT_FLAG; Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); S9xAPUPackStatus(); Snapshot(NULL); } #endif } if (CPU.V_Counter == PPU.ScreenHeight + 3) S9xUpdateJoypads(); if (CPU.V_Counter == FIRST_VISIBLE_LINE) { Memory.FillRAM[0x4210] = Model->_5A22; CPU.Flags &= ~NMI_FLAG; S9xStartScreenRefresh(); } if (CPU.V_Counter >= FIRST_VISIBLE_LINE && CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE) RenderLine(CPU.V_Counter - FIRST_VISIBLE_LINE); #ifndef USE_BLARGG_APU // Use TimerErrorCounter to skip update of SPC700 timers once // every 128 updates. Needed because this section of code is called // once every emulated 63.5 microseconds, which coresponds to // 15.750KHz, but the SPC700 timers need to be updated at multiples // of 8KHz, hence the error correction. // IAPU.TimerErrorCounter++; // if (IAPU.TimerErrorCounter >= ) // IAPU.TimerErrorCounter = 0; // else { if (APU.TimerEnabled [2]) { APU.Timer [2] += 4; while (APU.Timer [2] >= APU.TimerTarget [2]) { IAPU.RAM [0xff] = (IAPU.RAM [0xff] + 1) & 0xf; APU.Timer [2] -= APU.TimerTarget [2]; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } if (CPU.V_Counter & 1) { if (APU.TimerEnabled [0]) { APU.Timer [0]++; if (APU.Timer [0] >= APU.TimerTarget [0]) { IAPU.RAM [0xfd] = (IAPU.RAM [0xfd] + 1) & 0xf; APU.Timer [0] = 0; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } if (APU.TimerEnabled [1]) { APU.Timer [1]++; if (APU.Timer [1] >= APU.TimerTarget [1]) { IAPU.RAM [0xfe] = (IAPU.RAM [0xfe] + 1) & 0xf; APU.Timer [1] = 0; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } } } #endif // #ifndef USE_BLARGG_APU break; case HTIMER_BEFORE_EVENT: case HTIMER_AFTER_EVENT: if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || CPU.V_Counter == PPU.IRQVBeamPos)) S9xSetIRQ(PPU_H_BEAM_IRQ_SOURCE); break; } S9xReschedule(); } void S9xDoHBlankProcessing_NoSFX() { #ifdef CPU_SHUTDOWN CPU.WaitCounter++; #endif switch (CPU.WhichEvent) { case HBLANK_START_EVENT: if (IPPU.HDMA && CPU.V_Counter <= PPU.ScreenHeight) IPPU.HDMA = S9xDoHDMA(IPPU.HDMA); break; case HBLANK_END_EVENT: #ifndef USE_BLARGG_APU if (Settings.SoundSync) S9xGenerateSound(); CPU.Cycles -= Settings.H_Max; if (IAPU.APUExecuting) { APU.Cycles -= Settings.H_Max; #ifdef MK_APU S9xCatchupCount(); #endif } else APU.Cycles = 0; #else S9xAPUExecute(); CPU.Cycles -= Settings.H_Max; S9xAPUSetReferenceTime(CPU.Cycles); #endif CPU.NextEvent = -1; ICPU.Scanline++; if (++CPU.V_Counter >= (Settings.PAL ? SNES_MAX_PAL_VCOUNTER : SNES_MAX_NTSC_VCOUNTER)) { CPU.V_Counter = 0; Memory.FillRAM[0x213F] ^= 0x80; PPU.RangeTimeOver = 0; CPU.NMIActive = false; ICPU.Frame++; PPU.HVBeamCounterLatched = 0; CPU.Flags |= SCAN_KEYS_FLAG; S9xStartHDMA(); } S9xProcessSound(0); if (PPU.VTimerEnabled && !PPU.HTimerEnabled && CPU.V_Counter == PPU.IRQVBeamPos) S9xSetIRQ(PPU_V_BEAM_IRQ_SOURCE); if (CPU.V_Counter == PPU.ScreenHeight + FIRST_VISIBLE_LINE) { // Start of V-blank S9xEndScreenRefresh(); IPPU.HDMA = 0; // Bits 7 and 6 of $4212 are computed when read in S9xGetPPU. missing.dma_this_frame = 0; IPPU.MaxBrightness = PPU.Brightness; PPU.ForcedBlanking = (Memory.FillRAM [0x2100] >> 7) & 1; if (!PPU.ForcedBlanking) { PPU.OAMAddr = PPU.SavedOAMAddr; uint8_t tmp = 0; if (PPU.OAMPriorityRotation) tmp = (PPU.OAMAddr & 0xFE) >> 1; if ((PPU.OAMFlip & 1) || PPU.FirstSprite != tmp) { PPU.FirstSprite = tmp; IPPU.OBJChanged = true; } PPU.OAMFlip = 0; } Memory.FillRAM[0x4210] = 0x80 | Model->_5A22; if (Memory.FillRAM[0x4200] & 0x80) { CPU.NMIActive = true; CPU.Flags |= NMI_FLAG; CPU.NMICycleCount = CPU.NMITriggerPoint; } #ifdef OLD_SNAPSHOT_CODE if (CPU.Flags & SAVE_SNAPSHOT_FLAG) { CPU.Flags &= ~SAVE_SNAPSHOT_FLAG; Registers.PC = CPU.PC - CPU.PCBase; S9xPackStatus(); S9xAPUPackStatus(); Snapshot(NULL); } #endif } if (CPU.V_Counter == PPU.ScreenHeight + 3) S9xUpdateJoypads(); if (CPU.V_Counter == FIRST_VISIBLE_LINE) { Memory.FillRAM[0x4210] = Model->_5A22; CPU.Flags &= ~NMI_FLAG; S9xStartScreenRefresh(); } if (CPU.V_Counter >= FIRST_VISIBLE_LINE && CPU.V_Counter < PPU.ScreenHeight + FIRST_VISIBLE_LINE) RenderLine(CPU.V_Counter - FIRST_VISIBLE_LINE); // Use TimerErrorCounter to skip update of SPC700 timers once // every 128 updates. Needed because this section of code is called // once every emulated 63.5 microseconds, which coresponds to // 15.750KHz, but the SPC700 timers need to be updated at multiples // of 8KHz, hence the error correction. // IAPU.TimerErrorCounter++; // if (IAPU.TimerErrorCounter >= ) // IAPU.TimerErrorCounter = 0; // else #ifndef USE_BLARGG_APU { if (APU.TimerEnabled [2]) { APU.Timer [2] += 4; while (APU.Timer [2] >= APU.TimerTarget [2]) { IAPU.RAM [0xff] = (IAPU.RAM [0xff] + 1) & 0xf; APU.Timer [2] -= APU.TimerTarget [2]; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } if (CPU.V_Counter & 1) { if (APU.TimerEnabled [0]) { APU.Timer [0]++; if (APU.Timer [0] >= APU.TimerTarget [0]) { IAPU.RAM [0xfd] = (IAPU.RAM [0xfd] + 1) & 0xf; APU.Timer [0] = 0; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } if (APU.TimerEnabled [1]) { APU.Timer [1]++; if (APU.Timer [1] >= APU.TimerTarget [1]) { IAPU.RAM [0xfe] = (IAPU.RAM [0xfe] + 1) & 0xf; APU.Timer [1] = 0; #ifdef SPC700_SHUTDOWN IAPU.WaitCounter++; IAPU.APUExecuting = true; #endif } } } } #endif break; case HTIMER_BEFORE_EVENT: case HTIMER_AFTER_EVENT: if (PPU.HTimerEnabled && (!PPU.VTimerEnabled || CPU.V_Counter == PPU.IRQVBeamPos)) S9xSetIRQ(PPU_H_BEAM_IRQ_SOURCE); break; } S9xReschedule(); }