/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) (c) Copyright 2014 - 2016 Daniel De Matteis. (UNDER NO CIRCUMSTANCE WILL COMMERCIAL RIGHTS EVER BE APPROPRIATED TO ANY PARTY) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #ifndef _CPUMACRO_H_ #define _CPUMACRO_H_ static void SetZN16(uint16_t Work) { ICPU._Zero = Work != 0; ICPU._Negative = (uint8_t)(Work >> 8); } static void SetZN8(uint8_t Work) { ICPU._Zero = Work; ICPU._Negative = Work; } static void ADC8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); if (CheckDecimal()) { uint8_t A1 = (ICPU.Registers.A.W) & 0xF; uint8_t A2 = (ICPU.Registers.A.W >> 4) & 0xF; uint8_t W1 = Work8 & 0xF; uint8_t W2 = (Work8 >> 4) & 0xF; A1 += W1 + CheckCarry(); if (A1 > 9) { A1 -= 10; A1 &= 0xF; A2++; } A2 += W2; if (A2 > 9) { A2 -= 10; A2 &= 0xF; SetCarry(); } else ClearCarry(); int8_t Ans8 = (A2 << 4) | A1; if (~(ICPU.Registers.AL ^ Work8) & (Work8 ^ Ans8) & 0x80) SetOverflow(); else ClearOverflow(); ICPU.Registers.AL = Ans8; } else { int16_t Ans16 = ICPU.Registers.AL + Work8 + CheckCarry(); ICPU._Carry = Ans16 >= 0x100; if (~(ICPU.Registers.AL ^ Work8) & (Work8 ^ (uint8_t) Ans16) & 0x80) SetOverflow(); else ClearOverflow(); ICPU.Registers.AL = (uint8_t) Ans16; } SetZN8(ICPU.Registers.AL); } static void ADC16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); if (CheckDecimal()) { uint8_t A1 = (ICPU.Registers.A.W) & 0xF; uint8_t A2 = (ICPU.Registers.A.W >> 4) & 0xF; uint8_t A3 = (ICPU.Registers.A.W >> 8) & 0xF; uint8_t A4 = (ICPU.Registers.A.W >> 12) & 0xF; uint8_t W1 = Work16 & 0xF; uint8_t W2 = (Work16 >> 4) & 0xF; uint8_t W3 = (Work16 >> 8) & 0xF; uint8_t W4 = (Work16 >> 12) & 0xF; A1 += W1 + CheckCarry(); if (A1 > 9) { A1 -= 10; A1 &= 0xF; A2++; } A2 += W2; if (A2 > 9) { A2 -= 10; A2 &= 0xF; A3++; } A3 += W3; if (A3 > 9) { A3 -= 10; A3 &= 0xF; A4++; } A4 += W4; if (A4 > 9) { A4 -= 10; A4 &= 0xF; SetCarry(); } else ClearCarry(); uint16_t Ans16 = (A4 << 12) | (A3 << 8) | (A2 << 4) | (A1); if (~(ICPU.Registers.A.W ^ Work16) & (Work16 ^ Ans16) & 0x8000) SetOverflow(); else ClearOverflow(); ICPU.Registers.A.W = Ans16; } else { uint32_t Ans32 = ICPU.Registers.A.W + Work16 + CheckCarry(); ICPU._Carry = Ans32 >= 0x10000; if (~(ICPU.Registers.A.W ^ Work16) & (Work16 ^ (uint16_t) Ans32) & 0x8000) SetOverflow(); else ClearOverflow(); ICPU.Registers.A.W = (uint16_t) Ans32; } SetZN16(ICPU.Registers.A.W); } static void AND16(long Addr) { ICPU.Registers.A.W &= S9xGetWord(Addr); SetZN16(ICPU.Registers.A.W); } static void AND8(long Addr) { ICPU.Registers.AL &= S9xGetByte(Addr); SetZN8(ICPU.Registers.AL); } static inline void A_ASL16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif ICPU._Carry = (ICPU.Registers.AH & 0x80) != 0; ICPU.Registers.A.W <<= 1; SetZN16(ICPU.Registers.A.W); } static inline void A_ASL8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif ICPU._Carry = (ICPU.Registers.AL & 0x80) != 0; ICPU.Registers.AL <<= 1; SetZN8(ICPU.Registers.AL); } static void ASL16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); ICPU._Carry = (Work16 & 0x8000) != 0; Work16 <<= 1; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); SetZN16(Work16); } static void ASL8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); ICPU._Carry = (Work8 & 0x80) != 0; Work8 <<= 1; S9xSetByte(Work8, Addr); SetZN8(Work8); } static void BIT16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); ICPU._Overflow = (Work16 & 0x4000) != 0; ICPU._Negative = (uint8_t)(Work16 >> 8); ICPU._Zero = (Work16 & ICPU.Registers.A.W) != 0; } static void BIT8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); ICPU._Overflow = (Work8 & 0x40) != 0; ICPU._Negative = Work8; ICPU._Zero = Work8 & ICPU.Registers.AL; } static void CMP16(long Addr) { int32_t Int32 = (long) ICPU.Registers.A.W - (long) S9xGetWord(Addr); ICPU._Carry = Int32 >= 0; SetZN16((uint16_t) Int32); } static void CMP8(long Addr) { int16_t Int16 = (int16_t) ICPU.Registers.AL - (int16_t) S9xGetByte(Addr); ICPU._Carry = Int16 >= 0; SetZN8((uint8_t) Int16); } static void CMX16(long Addr) { int32_t Int32 = (long) ICPU.Registers.X.W - (long) S9xGetWord(Addr); ICPU._Carry = Int32 >= 0; SetZN16((uint16_t) Int32); } static void CMX8(long Addr) { int16_t Int16 = (int16_t) ICPU.Registers.XL - (int16_t) S9xGetByte(Addr); ICPU._Carry = Int16 >= 0; SetZN8((uint8_t) Int16); } static void CMY16(long Addr) { int32_t Int32 = (long) ICPU.Registers.Y.W - (long) S9xGetWord(Addr); ICPU._Carry = Int32 >= 0; SetZN16((uint16_t) Int32); } static void CMY8(long Addr) { int16_t Int16 = (int16_t) ICPU.Registers.YL - (int16_t) S9xGetByte(Addr); ICPU._Carry = Int16 >= 0; SetZN8((uint8_t) Int16); } static inline void A_DEC16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif ICPU.Registers.A.W--; SetZN16(ICPU.Registers.A.W); } static inline void A_DEC8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif ICPU.Registers.AL--; SetZN8(ICPU.Registers.AL); } static void DEC16(long Addr) { #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif uint16_t Work16 = S9xGetWord(Addr) - 1; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); SetZN16(Work16); } static void DEC8(long Addr) { #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif uint8_t Work8 = S9xGetByte(Addr) - 1; S9xSetByte(Work8, Addr); SetZN8(Work8); } static void EOR16(long Addr) { ICPU.Registers.A.W ^= S9xGetWord(Addr); SetZN16(ICPU.Registers.A.W); } static void EOR8(long Addr) { ICPU.Registers.AL ^= S9xGetByte(Addr); SetZN8(ICPU.Registers.AL); } static inline void A_INC16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif ICPU.Registers.A.W++; SetZN16(ICPU.Registers.A.W); } static inline void A_INC8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif ICPU.Registers.AL++; SetZN8(ICPU.Registers.AL); } static void INC16(long Addr) { #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif uint16_t Work16 = S9xGetWord(Addr) + 1; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); SetZN16(Work16); } static void INC8(long Addr) { #ifdef CPU_SHUTDOWN CPU.WaitAddress = NULL; #endif uint8_t Work8 = S9xGetByte(Addr) + 1; S9xSetByte(Work8, Addr); SetZN8(Work8); } static void LDA16(long Addr) { ICPU.Registers.A.W = S9xGetWord(Addr); SetZN16(ICPU.Registers.A.W); } static void LDA8(long Addr) { ICPU.Registers.AL = S9xGetByte(Addr); SetZN8(ICPU.Registers.AL); } static void LDX16(long Addr) { ICPU.Registers.X.W = S9xGetWord(Addr); SetZN16(ICPU.Registers.X.W); } static void LDX8(long Addr) { ICPU.Registers.XL = S9xGetByte(Addr); SetZN8(ICPU.Registers.XL); } static void LDY16(long Addr) { ICPU.Registers.Y.W = S9xGetWord(Addr); SetZN16(ICPU.Registers.Y.W); } static void LDY8(long Addr) { ICPU.Registers.YL = S9xGetByte(Addr); SetZN8(ICPU.Registers.YL); } static inline void A_LSR16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif ICPU._Carry = ICPU.Registers.AL & 1; ICPU.Registers.A.W >>= 1; SetZN16(ICPU.Registers.A.W); } static inline void A_LSR8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif ICPU._Carry = ICPU.Registers.AL & 1; ICPU.Registers.AL >>= 1; SetZN8(ICPU.Registers.AL); } static void LSR16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); ICPU._Carry = Work16 & 1; Work16 >>= 1; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); SetZN16(Work16); } static void LSR8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); ICPU._Carry = Work8 & 1; Work8 >>= 1; S9xSetByte(Work8, Addr); SetZN8(Work8); } static void ORA16(long Addr) { ICPU.Registers.A.W |= S9xGetWord(Addr); SetZN16(ICPU.Registers.A.W); } static void ORA8(long Addr) { ICPU.Registers.AL |= S9xGetByte(Addr); SetZN8(ICPU.Registers.AL); } static inline void A_ROL16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif uint32_t Work32 = (ICPU.Registers.A.W << 1) | CheckCarry(); ICPU._Carry = Work32 >= 0x10000; ICPU.Registers.A.W = (uint16_t) Work32; SetZN16((uint16_t) Work32); } static inline void A_ROL8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif uint16_t Work16 = ICPU.Registers.AL; Work16 <<= 1; Work16 |= CheckCarry(); ICPU._Carry = Work16 >= 0x100; ICPU.Registers.AL = (uint8_t) Work16; SetZN8((uint8_t) Work16); } static void ROL16(long Addr) { uint32_t Work32 = S9xGetWord(Addr); Work32 <<= 1; Work32 |= CheckCarry(); ICPU._Carry = Work32 >= 0x10000; //S9xSetWord ((uint16_t) Work32, Addr); S9xSetByte((Work32 >> 8) & 0xFF, Addr + 1); S9xSetByte(Work32 & 0xFF, Addr); SetZN16((uint16_t) Work32); } static void ROL8(long Addr) { uint16_t Work16 = S9xGetByte(Addr); Work16 <<= 1; Work16 |= CheckCarry(); ICPU._Carry = Work16 >= 0x100; S9xSetByte((uint8_t) Work16, Addr); SetZN8((uint8_t) Work16); } static inline void A_ROR16() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif uint32_t Work32 = ICPU.Registers.A.W; Work32 |= (int) CheckCarry() << 16; ICPU._Carry = (uint8_t)(Work32 & 1); Work32 >>= 1; ICPU.Registers.A.W = (uint16_t) Work32; SetZN16((uint16_t) Work32); } static inline void A_ROR8() { #ifndef SA1_OPCODES CPU.Cycles += ONE_CYCLE; #endif uint16_t Work16 = ICPU.Registers.AL | ((uint16_t) CheckCarry() << 8); ICPU._Carry = (uint8_t) Work16 & 1; Work16 >>= 1; ICPU.Registers.AL = (uint8_t) Work16; SetZN8((uint8_t) Work16); } static void ROR16(long Addr) { uint32_t Work32 = S9xGetWord(Addr); Work32 |= (int) CheckCarry() << 16; ICPU._Carry = (uint8_t)(Work32 & 1); Work32 >>= 1; //S9xSetWord ((uint16_t) Work32, Addr); S9xSetByte((Work32 >> 8) & 0x00FF, Addr + 1); S9xSetByte(Work32 & 0x00FF, Addr); SetZN16((uint16_t) Work32); } static void ROR8(long Addr) { uint16_t Work16 = S9xGetByte(Addr); Work16 |= (int) CheckCarry() << 8; ICPU._Carry = (uint8_t)(Work16 & 1); Work16 >>= 1; S9xSetByte((uint8_t) Work16, Addr); SetZN8((uint8_t) Work16); } static void SBC16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); if (CheckDecimal()) { uint8_t A1 = (ICPU.Registers.A.W) & 0xF; uint8_t A2 = (ICPU.Registers.A.W >> 4) & 0xF; uint8_t A3 = (ICPU.Registers.A.W >> 8) & 0xF; uint8_t A4 = (ICPU.Registers.A.W >> 12) & 0xF; uint8_t W1 = Work16 & 0xF; uint8_t W2 = (Work16 >> 4) & 0xF; uint8_t W3 = (Work16 >> 8) & 0xF; uint8_t W4 = (Work16 >> 12) & 0xF; A1 -= W1 + !CheckCarry(); A2 -= W2; A3 -= W3; A4 -= W4; if (A1 > 9) { A1 += 10; A2--; } if (A2 > 9) { A2 += 10; A3--; } if (A3 > 9) { A3 += 10; A4--; } if (A4 > 9) { A4 += 10; ClearCarry(); } else SetCarry(); uint16_t Ans16 = (A4 << 12) | (A3 << 8) | (A2 << 4) | (A1); if ((ICPU.Registers.A.W ^ Work16) & (ICPU.Registers.A.W ^ Ans16) & 0x8000) SetOverflow(); else ClearOverflow(); ICPU.Registers.A.W = Ans16; SetZN16(ICPU.Registers.A.W); } else { int32_t Int32 = (long) ICPU.Registers.A.W - (long) Work16 + (long) CheckCarry() - 1; ICPU._Carry = Int32 >= 0; if ((ICPU.Registers.A.W ^ Work16) & (ICPU.Registers.A.W ^ (uint16_t) Int32) & 0x8000) SetOverflow(); else ClearOverflow(); ICPU.Registers.A.W = (uint16_t) Int32; SetZN16(ICPU.Registers.A.W); } } static void SBC8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); if (CheckDecimal()) { uint8_t A1 = (ICPU.Registers.A.W) & 0xF; uint8_t A2 = (ICPU.Registers.A.W >> 4) & 0xF; uint8_t W1 = Work8 & 0xF; uint8_t W2 = (Work8 >> 4) & 0xF; A1 -= W1 + !CheckCarry(); A2 -= W2; if (A1 > 9) { A1 += 10; A2--; } if (A2 > 9) { A2 += 10; ClearCarry(); } else SetCarry(); uint8_t Ans8 = (A2 << 4) | A1; if ((ICPU.Registers.AL ^ Work8) & (ICPU.Registers.AL ^ Ans8) & 0x80) SetOverflow(); else ClearOverflow(); ICPU.Registers.AL = Ans8; SetZN8(ICPU.Registers.AL); } else { int16_t Int16 = (int16_t) ICPU.Registers.AL - (int16_t) Work8 + (int16_t) CheckCarry() - 1; ICPU._Carry = Int16 >= 0; if ((ICPU.Registers.AL ^ Work8) & (ICPU.Registers.AL ^ (uint8_t) Int16) & 0x80) SetOverflow(); else ClearOverflow(); ICPU.Registers.AL = (uint8_t) Int16; SetZN8(ICPU.Registers.AL); } } static void STA16(long Addr) { S9xSetWord(ICPU.Registers.A.W, Addr); } static void STA8(long Addr) { S9xSetByte(ICPU.Registers.AL, Addr); } static void STX16(long Addr) { S9xSetWord(ICPU.Registers.X.W, Addr); } static void STX8(long Addr) { S9xSetByte(ICPU.Registers.XL, Addr); } static void STY16(long Addr) { S9xSetWord(ICPU.Registers.Y.W, Addr); } static void STY8(long Addr) { S9xSetByte(ICPU.Registers.YL, Addr); } static void STZ16(long Addr) { S9xSetWord(0, Addr); } static void STZ8(long Addr) { S9xSetByte(0, Addr); } static void TSB16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); ICPU._Zero = (Work16 & ICPU.Registers.A.W) != 0; Work16 |= ICPU.Registers.A.W; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); } static void TSB8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); ICPU._Zero = Work8 & ICPU.Registers.AL; Work8 |= ICPU.Registers.AL; S9xSetByte(Work8, Addr); } static void TRB16(long Addr) { uint16_t Work16 = S9xGetWord(Addr); ICPU._Zero = (Work16 & ICPU.Registers.A.W) != 0; Work16 &= ~ICPU.Registers.A.W; //S9xSetWord (Work16, Addr); S9xSetByte(Work16 >> 8, Addr + 1); S9xSetByte(Work16 & 0xFF, Addr); } static void TRB8(long Addr) { uint8_t Work8 = S9xGetByte(Addr); ICPU._Zero = Work8 & ICPU.Registers.AL; Work8 &= ~ICPU.Registers.AL; S9xSetByte(Work8, Addr); } #endif