/******************************************************************************* Snes9x - Portable Super Nintendo Entertainment System (TM) emulator. (c) Copyright 1996 - 2002 Gary Henderson (gary.henderson@ntlworld.com) and Jerremy Koot (jkoot@snes9x.com) (c) Copyright 2001 - 2004 John Weidman (jweidman@slip.net) (c) Copyright 2002 - 2004 Brad Jorsch (anomie@users.sourceforge.net), funkyass (funkyass@spam.shaw.ca), Joel Yliluoma (http://iki.fi/bisqwit/) Kris Bleakley (codeviolation@hotmail.com), Matthew Kendora, Nach (n-a-c-h@users.sourceforge.net), Peter Bortas (peter@bortas.org) and zones (kasumitokoduck@yahoo.com) C4 x86 assembler and some C emulation code (c) Copyright 2000 - 2003 zsKnight (zsknight@zsnes.com), _Demo_ (_demo_@zsnes.com), and Nach C4 C++ code (c) Copyright 2003 Brad Jorsch DSP-1 emulator code (c) Copyright 1998 - 2004 Ivar (ivar@snes9x.com), _Demo_, Gary Henderson, John Weidman, neviksti (neviksti@hotmail.com), Kris Bleakley, Andreas Naive DSP-2 emulator code (c) Copyright 2003 Kris Bleakley, John Weidman, neviksti, Matthew Kendora, and Lord Nightmare (lord_nightmare@users.sourceforge.net OBC1 emulator code (c) Copyright 2001 - 2004 zsKnight, pagefault (pagefault@zsnes.com) and Kris Bleakley Ported from x86 assembler to C by sanmaiwashi SPC7110 and RTC C++ emulator code (c) Copyright 2002 Matthew Kendora with research by zsKnight, John Weidman, and Dark Force S-DD1 C emulator code (c) Copyright 2003 Brad Jorsch with research by Andreas Naive and John Weidman S-RTC C emulator code (c) Copyright 2001 John Weidman ST010 C++ emulator code (c) Copyright 2003 Feather, Kris Bleakley, John Weidman and Matthew Kendora Super FX x86 assembler emulator code (c) Copyright 1998 - 2003 zsKnight, _Demo_, and pagefault Super FX C emulator code (c) Copyright 1997 - 1999 Ivar, Gary Henderson and John Weidman SH assembler code partly based on x86 assembler code (c) Copyright 2002 - 2004 Marcus Comstedt (marcus@mc.pp.se) Specific ports contains the works of other authors. See headers in individual files. Snes9x homepage: http://www.snes9x.com Permission to use, copy, modify and distribute Snes9x in both binary and source form, for non-commercial purposes, is hereby granted without fee, providing that this license information and copyright notice appear with all copies and any derived work. This software is provided 'as-is', without any express or implied warranty. In no event shall the authors be held liable for any damages arising from the use of this software. Snes9x is freeware for PERSONAL USE only. Commercial users should seek permission of the copyright holders first. Commercial use includes charging money for Snes9x or software derived from Snes9x. The copyright holders request that bug fixes and improvements to the code should be forwarded to them so everyone can benefit from the modifications in future versions. Super NES and Super Nintendo Entertainment System are trademarks of Nintendo Co., Limited and its subsidiary companies. *******************************************************************************/ #ifdef HAVE_CONFIG_H #include #endif #include "snes9x.h" #include "memmap.h" #include "ppu.h" #include "cpuexec.h" #include "missing.h" #include "dma.h" #include "apu.h" #include "gfx.h" #include "sa1.h" #include "spc7110.h" #ifdef SDD1_DECOMP #include "sdd1emu.h" #endif #ifdef SDD1_DECOMP uint8 buffer[0x10000]; #endif extern int HDMA_ModeByteCounts [8]; extern uint8* HDMAMemPointers [8]; extern uint8* HDMABasePointers [8]; // #define SETA010_HDMA_FROM_CART #ifdef SETA010_HDMA_FROM_CART uint32 HDMARawPointers[8]; // Cart address space pointer #endif #if defined(__linux__) || defined(__WIN32__) static int S9xCompareSDD1IndexEntries(const void* p1, const void* p2) { return (*(uint32*) p1 - * (uint32*) p2); } #endif /**********************************************************************************************/ /* S9xDoDMA() */ /* This function preforms the general dma transfer */ /**********************************************************************************************/ void S9xDoDMA(uint8 Channel) { uint8 Work; if (Channel > 7 || CPU.InDMA) return; CPU.InDMA = TRUE; bool8 in_sa1_dma = FALSE; uint8* in_sdd1_dma = NULL; uint8* spc7110_dma = NULL; bool s7_wrap = false; SDMA* d = &DMA[Channel]; int count = d->TransferBytes; if (count == 0) count = 0x10000; int inc = d->AAddressFixed ? 0 : (!d->AAddressDecrement ? 1 : -1); if ((d->ABank == 0x7E || d->ABank == 0x7F) && d->BAddress == 0x80) { d->AAddress += d->TransferBytes; //does an invalid DMA actually take time? // I'd say yes, since 'invalid' is probably just the WRAM chip // not being able to read and write itself at the same time CPU.Cycles += (d->TransferBytes + 1) * SLOW_ONE_CYCLE; goto update_address; } switch (d->BAddress) { case 0x18: case 0x19: if (IPPU.RenderThisFrame) FLUSH_REDRAW(); break; } if (Settings.SDD1) { if (d->AAddressFixed && Memory.FillRAM [0x4801] > 0) { // Hacky support for pre-decompressed S-DD1 data inc = !d->AAddressDecrement ? 1 : -1; uint32 address = (((d->ABank << 16) | d->AAddress) & 0xfffff) << 4; address |= Memory.FillRAM [0x4804 + ((d->ABank - 0xc0) >> 4)]; #ifdef SDD1_DECOMP if (Settings.SDD1Pack) { uint8* in_ptr = GetBasePointer(((d->ABank << 16) | d->AAddress)); in_ptr += d->AAddress; SDD1_decompress(buffer, in_ptr, d->TransferBytes); in_sdd1_dma = buffer; #ifdef SDD1_VERIFY void* ptr = bsearch(&address, Memory.SDD1Index, Memory.SDD1Entries, 12, S9xCompareSDD1IndexEntries); if (memcmp(buffer, ptr, d->TransferBytes)) { uint8* p = Memory.SDD1LoggedData; bool8 found = FALSE; uint8 SDD1Bank = Memory.FillRAM [0x4804 + ((d->ABank - 0xc0) >> 4)] | 0xf0; for (uint32 i = 0; i < Memory.SDD1LoggedDataCount; i++, p += 8) { if (*p == d->ABank || *(p + 1) == (d->AAddress >> 8) && *(p + 2) == (d->AAddress & 0xff) && *(p + 3) == (count >> 8) && *(p + 4) == (count & 0xff) && *(p + 7) == SDD1Bank) found = TRUE; } if (!found && Memory.SDD1LoggedDataCount < MEMMAP_MAX_SDD1_LOGGED_ENTRIES) { int j = 0; while (ptr[j] == buffer[j]) j++; *p = d->ABank; *(p + 1) = d->AAddress >> 8; *(p + 2) = d->AAddress & 0xff; *(p + 3) = j & 0xFF; *(p + 4) = (j >> 8) & 0xFF; *(p + 7) = SDD1Bank; Memory.SDD1LoggedDataCount += 1; } } #endif } else { #endif #if defined(__linux__) || defined (__WIN32__) void* ptr = bsearch(&address, Memory.SDD1Index, Memory.SDD1Entries, 12, S9xCompareSDD1IndexEntries); if (ptr) in_sdd1_dma = *(uint32*)((uint8*) ptr + 4) + Memory.SDD1Data; #else uint8* ptr = Memory.SDD1Index; uint32 e; for (e = 0; e < Memory.SDD1Entries; e++, ptr += 12) { if (address == *(uint32*) ptr) { in_sdd1_dma = *(uint32*)(ptr + 4) + Memory.SDD1Data; break; } } #endif if (!in_sdd1_dma) { // No matching decompressed data found. Must be some new // graphics not encountered before. Log it if it hasn't been // already. uint8* p = Memory.SDD1LoggedData; bool8 found = FALSE; uint8 SDD1Bank = Memory.FillRAM [0x4804 + ((d->ABank - 0xc0) >> 4)] | 0xf0; uint32 i; for (i = 0; i < Memory.SDD1LoggedDataCount; i++, p += 8) { if (*p == d->ABank || ((*(p + 1) == (d->AAddress >> 8)) && (*(p + 2) == (d->AAddress & 0xff)) && (*(p + 3) == (count >> 8)) && (*(p + 4) == (count & 0xff)) && (*(p + 7) == SDD1Bank))) { found = TRUE; break; } } if (!found && Memory.SDD1LoggedDataCount < MEMMAP_MAX_SDD1_LOGGED_ENTRIES) { *p = d->ABank; *(p + 1) = d->AAddress >> 8; *(p + 2) = d->AAddress & 0xff; *(p + 3) = count >> 8; *(p + 4) = count & 0xff; *(p + 7) = SDD1Bank; Memory.SDD1LoggedDataCount += 1; } } } #ifdef SDD1_DECOMP } #endif Memory.FillRAM [0x4801] = 0; } if (Settings.SPC7110 && (d->AAddress == 0x4800 || d->ABank == 0x50)) { uint32 i, j; i = (s7r.reg4805 | (s7r.reg4806 << 8)); i *= s7r.AlignBy; i += s7r.bank50Internal; i %= DECOMP_BUFFER_SIZE; j = 0; if ((i + d->TransferBytes) < DECOMP_BUFFER_SIZE) spc7110_dma = &s7r.bank50[i]; else { spc7110_dma = (uint8*)malloc(d->TransferBytes); j = DECOMP_BUFFER_SIZE - i; memcpy(spc7110_dma, &s7r.bank50[i], j); memcpy(&spc7110_dma[j], s7r.bank50, d->TransferBytes - j); s7_wrap = true; } int icount = s7r.reg4809 | (s7r.reg480A << 8); icount -= d->TransferBytes; s7r.reg4809 = 0x00ff & icount; s7r.reg480A = (0xff00 & icount) >> 8; s7r.bank50Internal += d->TransferBytes; s7r.bank50Internal %= DECOMP_BUFFER_SIZE; inc = 1; d->AAddress -= count; } if (d->BAddress == 0x18 && SA1.in_char_dma && (d->ABank & 0xf0) == 0x40) { // Perform packed bitmap to PPU character format conversion on the // data before transmitting it to V-RAM via-DMA. int num_chars = 1 << ((Memory.FillRAM [0x2231] >> 2) & 7); int depth = (Memory.FillRAM [0x2231] & 3) == 0 ? 8 : (Memory.FillRAM [0x2231] & 3) == 1 ? 4 : 2; int bytes_per_char = 8 * depth; int bytes_per_line = depth * num_chars; int char_line_bytes = bytes_per_char * num_chars; uint32 addr = (d->AAddress / char_line_bytes) * char_line_bytes; uint8* base = GetBasePointer((d->ABank << 16) + addr) + addr; uint8* buffer = &Memory.ROM [MAX_ROM_SIZE - 0x10000]; uint8* p = buffer; uint32 inc = char_line_bytes - (d->AAddress % char_line_bytes); uint32 char_count = inc / bytes_per_char; in_sa1_dma = TRUE; //printf ("%08x,", base); fflush (stdout); //printf ("depth = %d, count = %d, bytes_per_char = %d, bytes_per_line = %d, num_chars = %d, char_line_bytes = %d\n", //depth, count, bytes_per_char, bytes_per_line, num_chars, char_line_bytes); int i; switch (depth) { case 2: for (i = 0; i < count; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars) { uint32 j; uint8* line = base + (num_chars - char_count) * 2; for (j = 0; j < char_count && p - buffer < count; j++, line += 2) { int b, l; uint8* q = line; for (l = 0; l < 8; l++, q += bytes_per_line) { for (b = 0; b < 2; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 2) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 3) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 6) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 7) & 1); } p += 2; } } } break; case 4: for (i = 0; i < count; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars) { uint32 j; uint8* line = base + (num_chars - char_count) * 4; for (j = 0; j < char_count && p - buffer < count; j++, line += 4) { uint8* q = line; int b, l; for (l = 0; l < 8; l++, q += bytes_per_line) { for (b = 0; b < 4; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 0) = (*(p + 0) << 1) | ((r >> 4) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 5) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 6) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 7) & 1); } p += 2; } p += 32 - 16; } } break; case 8: for (i = 0; i < count; i += inc, base += char_line_bytes, inc = char_line_bytes, char_count = num_chars) { uint8* line = base + (num_chars - char_count) * 8; uint32 j; for (j = 0; j < char_count && p - buffer < count; j++, line += 8) { uint8* q = line; int b, l; for (l = 0; l < 8; l++, q += bytes_per_line) { for (b = 0; b < 8; b++) { uint8 r = *(q + b); *(p + 0) = (*(p + 0) << 1) | ((r >> 0) & 1); *(p + 1) = (*(p + 1) << 1) | ((r >> 1) & 1); *(p + 16) = (*(p + 16) << 1) | ((r >> 2) & 1); *(p + 17) = (*(p + 17) << 1) | ((r >> 3) & 1); *(p + 32) = (*(p + 32) << 1) | ((r >> 4) & 1); *(p + 33) = (*(p + 33) << 1) | ((r >> 5) & 1); *(p + 48) = (*(p + 48) << 1) | ((r >> 6) & 1); *(p + 49) = (*(p + 49) << 1) | ((r >> 7) & 1); } p += 2; } p += 64 - 16; } } break; } } if (!d->TransferDirection) { /* XXX: DMA is potentially broken here for cases where we DMA across * XXX: memmap boundries. A possible solution would be to re-call * XXX: GetBasePointer whenever we cross a boundry, and when * XXX: GetBasePointer returns (0) to take the 'slow path' and use * XXX: S9xGetByte instead of *base. GetBasePointer() would want to * XXX: return (0) for MAP_PPU and whatever else is a register range * XXX: rather than a RAM/ROM block, and we'd want to detect MAP_PPU * XXX: (or specifically, Address Bus B addresses $2100-$21FF in * XXX: banks $00-$3F) specially and treat it as MAP_NONE (since * XXX: PPU->PPU transfers don't work). */ //reflects extra cycle used by DMA CPU.Cycles += SLOW_ONE_CYCLE * (count + 1); uint8* base = GetBasePointer((d->ABank << 16) + d->AAddress); uint16 p = d->AAddress; if (!base) base = Memory.ROM; if (in_sa1_dma) { base = &Memory.ROM [MAX_ROM_SIZE - 0x10000]; p = 0; } if (in_sdd1_dma) { base = in_sdd1_dma; p = 0; } if (spc7110_dma) { base = spc7110_dma; p = 0; } if (inc > 0) d->AAddress += count; else if (inc < 0) d->AAddress -= count; if (d->TransferMode == 0 || d->TransferMode == 2 || d->TransferMode == 6) { switch (d->BAddress) { case 0x04: do { Work = *(base + p); REGISTER_2104(Work); p += inc; CHECK_SOUND(); } while (--count > 0); break; case 0x18: #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { do { Work = *(base + p); REGISTER_2118_linear(Work); p += inc; CHECK_SOUND(); } while (--count > 0); } else { do { Work = *(base + p); REGISTER_2118_tile(Work); p += inc; CHECK_SOUND(); } while (--count > 0); } break; case 0x19: #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { do { Work = *(base + p); REGISTER_2119_linear(Work); p += inc; CHECK_SOUND(); } while (--count > 0); } else { do { Work = *(base + p); REGISTER_2119_tile(Work); p += inc; CHECK_SOUND(); } while (--count > 0); } break; case 0x22: do { Work = *(base + p); REGISTER_2122(Work); p += inc; CHECK_SOUND(); } while (--count > 0); break; case 0x80: do { Work = *(base + p); REGISTER_2180(Work); p += inc; CHECK_SOUND(); } while (--count > 0); break; default: do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; CHECK_SOUND(); } while (--count > 0); break; } } else if (d->TransferMode == 1 || d->TransferMode == 5) { if (d->BAddress == 0x18) { // Write to V-RAM #ifndef CORRECT_VRAM_READS IPPU.FirstVRAMRead = TRUE; #endif if (!PPU.VMA.FullGraphicCount) { while (count > 1) { Work = *(base + p); REGISTER_2118_linear(Work); p += inc; Work = *(base + p); REGISTER_2119_linear(Work); p += inc; CHECK_SOUND(); count -= 2; } if (count == 1) { Work = *(base + p); REGISTER_2118_linear(Work); p += inc; } } else { while (count > 1) { Work = *(base + p); REGISTER_2118_tile(Work); p += inc; Work = *(base + p); REGISTER_2119_tile(Work); p += inc; CHECK_SOUND(); count -= 2; } if (count == 1) { Work = *(base + p); REGISTER_2118_tile(Work); p += inc; } } } else { // DMA mode 1 general case while (count > 1) { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); p += inc; CHECK_SOUND(); count -= 2; } if (count == 1) { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; } } } else if (d->TransferMode == 3 || d->TransferMode == 7) { do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; if (count <= 1) break; Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; if (count <= 2) break; Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); p += inc; if (count <= 3) break; Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); p += inc; CHECK_SOUND(); count -= 4; } while (count > 0); } else if (d->TransferMode == 4) { do { Work = *(base + p); S9xSetPPU(Work, 0x2100 + d->BAddress); p += inc; if (count <= 1) break; Work = *(base + p); S9xSetPPU(Work, 0x2101 + d->BAddress); p += inc; if (count <= 2) break; Work = *(base + p); S9xSetPPU(Work, 0x2102 + d->BAddress); p += inc; if (count <= 3) break; Work = *(base + p); S9xSetPPU(Work, 0x2103 + d->BAddress); p += inc; CHECK_SOUND(); count -= 4; } while (count > 0); } } else { /* XXX: DMA is potentially broken here for cases where the dest is * XXX: in the Address Bus B range. Note that this bad dest may not * XXX: cover the whole range of the DMA though, if we transfer * XXX: 65536 bytes only 256 of them may be Address Bus B. */ do { switch (d->TransferMode) { case 0: case 2: case 6: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; --count; break; case 1: case 5: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; count--; break; case 3: case 7: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; count--; break; case 4: Work = S9xGetPPU(0x2100 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2101 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2102 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; if (!--count) break; Work = S9xGetPPU(0x2103 + d->BAddress); S9xSetByte(Work, (d->ABank << 16) + d->AAddress); d->AAddress += inc; count--; break; default: count = 0; break; } CHECK_SOUND(); } while (count); } #ifdef SPC700_C IAPU.APUExecuting = Settings.APUEnabled; APU_EXECUTE(); #endif if (Settings.SuperFX) while (CPU.Cycles > CPU.NextEvent) S9xDoHBlankProcessing_SFX(); else /* if (!Settings.SuperFX) */ while (CPU.Cycles > CPU.NextEvent) S9xDoHBlankProcessing_NoSFX(); if (Settings.SPC7110 && spc7110_dma) { if (spc7110_dma && s7_wrap) free(spc7110_dma); } update_address: // Super Punch-Out requires that the A-BUS address be updated after the // DMA transfer. Memory.FillRAM[0x4302 + (Channel << 4)] = (uint8) d->AAddress; Memory.FillRAM[0x4303 + (Channel << 4)] = d->AAddress >> 8; // Secret of the Mana requires that the DMA bytes transfer count be set to // zero when DMA has completed. Memory.FillRAM [0x4305 + (Channel << 4)] = 0; Memory.FillRAM [0x4306 + (Channel << 4)] = 0; DMA[Channel].IndirectAddress = 0; d->TransferBytes = 0; CPU.InDMA = FALSE; } void S9xStartHDMA() { if (Settings.DisableHDMA) IPPU.HDMA = 0; else missing.hdma_this_frame = IPPU.HDMA = Memory.FillRAM [0x420c]; //per anomie timing post if (IPPU.HDMA != 0) CPU.Cycles += ONE_CYCLE * 3; IPPU.HDMAStarted = TRUE; uint8 i; for (i = 0; i < 8; i++) { if (IPPU.HDMA & (1 << i)) { CPU.Cycles += SLOW_ONE_CYCLE ; DMA [i].LineCount = 0; DMA [i].FirstLine = TRUE; DMA [i].Address = DMA [i].AAddress; if (DMA[i].HDMAIndirectAddressing) CPU.Cycles += (SLOW_ONE_CYCLE << 2); } HDMAMemPointers [i] = NULL; #ifdef SETA010_HDMA_FROM_CART HDMARawPointers [i] = 0; #endif } } uint8 S9xDoHDMA(uint8 byte) { SDMA* p = &DMA [0]; int d = 0; CPU.InDMA = TRUE; CPU.Cycles += ONE_CYCLE * 3; uint8 mask; for (mask = 1; mask; mask <<= 1, p++, d++) { if (byte & mask) { if (!p->LineCount) { //remember, InDMA is set. //Get/Set incur no charges! CPU.Cycles += SLOW_ONE_CYCLE; uint8 line = S9xGetByte((p->ABank << 16) + p->Address); if (line == 0x80) { p->Repeat = TRUE; p->LineCount = 128; } else { p->Repeat = !(line & 0x80); p->LineCount = line & 0x7f; } // Disable H-DMA'ing into V-RAM (register 2118) for Hook /* XXX: instead of p->BAddress == 0x18, make S9xSetPPU fail * XXX: writes to $2118/9 when appropriate */ #ifdef SETA010_HDMA_FROM_CART if (!p->LineCount) #else if (!p->LineCount || p->BAddress == 0x18) #endif { byte &= ~mask; p->IndirectAddress += HDMAMemPointers [d] - HDMABasePointers [d]; Memory.FillRAM [0x4305 + (d << 4)] = (uint8) p->IndirectAddress; Memory.FillRAM [0x4306 + (d << 4)] = p->IndirectAddress >> 8; continue; } p->Address++; p->FirstLine = 1; if (p->HDMAIndirectAddressing) { p->IndirectBank = Memory.FillRAM [0x4307 + (d << 4)]; //again, no cycle charges while InDMA is set! CPU.Cycles += SLOW_ONE_CYCLE << 2; p->IndirectAddress = S9xGetWord((p->ABank << 16) + p->Address); p->Address += 2; } else { p->IndirectBank = p->ABank; p->IndirectAddress = p->Address; } HDMABasePointers [d] = HDMAMemPointers [d] = S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress); #ifdef SETA010_HDMA_FROM_CART HDMARawPointers [d] = (p->IndirectBank << 16) + p->IndirectAddress; #endif } else CPU.Cycles += SLOW_ONE_CYCLE; if (!HDMAMemPointers [d]) { if (!p->HDMAIndirectAddressing) { p->IndirectBank = p->ABank; p->IndirectAddress = p->Address; } #ifdef SETA010_HDMA_FROM_CART HDMARawPointers [d] = (p->IndirectBank << 16) + p->IndirectAddress; #endif if (!(HDMABasePointers [d] = HDMAMemPointers [d] = S9xGetMemPointer((p->IndirectBank << 16) + p->IndirectAddress))) { /* XXX: Instead of this, goto a slow path that first * XXX: verifies src!=Address Bus B, then uses * XXX: S9xGetByte(). Or make S9xGetByte return OpenBus * XXX: (probably?) for Address Bus B while inDMA. */ byte &= ~mask; continue; } // Uncommenting the following line breaks Punchout - it starts // H-DMA during the frame. //p->FirstLine = TRUE; } if (p->Repeat && !p->FirstLine) { p->LineCount--; continue; } if (p->BAddress == 0x04) { if (SNESGameFixes.Uniracers) { PPU.OAMAddr = 0x10c; PPU.OAMFlip = 0; } } switch (p->TransferMode) { case 0: CPU.Cycles += SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]++), 0x2100 + p->BAddress); HDMAMemPointers [d]++; #else S9xSetPPU(*HDMAMemPointers [d]++, 0x2100 + p->BAddress); #endif break; case 5: CPU.Cycles += 2 * SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress); HDMARawPointers [d] += 2; #else S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress); #endif HDMAMemPointers [d] += 2; /* fall through */ case 1: CPU.Cycles += 2 * SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress); HDMARawPointers [d] += 2; #else S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress); #endif HDMAMemPointers [d] += 2; break; case 2: case 6: CPU.Cycles += 2 * SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2100 + p->BAddress); HDMARawPointers [d] += 2; #else S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress); #endif HDMAMemPointers [d] += 2; break; case 3: case 7: CPU.Cycles += 4 * SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 2), 0x2101 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 3), 0x2101 + p->BAddress); HDMARawPointers [d] += 4; #else S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2101 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2101 + p->BAddress); #endif HDMAMemPointers [d] += 4; break; case 4: CPU.Cycles += 4 * SLOW_ONE_CYCLE; #ifdef SETA010_HDMA_FROM_CART S9xSetPPU(S9xGetByte(HDMARawPointers [d]), 0x2100 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 1), 0x2101 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 2), 0x2102 + p->BAddress); S9xSetPPU(S9xGetByte(HDMARawPointers [d] + 3), 0x2103 + p->BAddress); HDMARawPointers [d] += 4; #else S9xSetPPU(*(HDMAMemPointers [d] + 0), 0x2100 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 1), 0x2101 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 2), 0x2102 + p->BAddress); S9xSetPPU(*(HDMAMemPointers [d] + 3), 0x2103 + p->BAddress); #endif HDMAMemPointers [d] += 4; break; } if (!p->HDMAIndirectAddressing) p->Address += HDMA_ModeByteCounts [p->TransferMode]; p->IndirectAddress += HDMA_ModeByteCounts [p->TransferMode]; /* XXX: Check for p->IndirectAddress crossing a mapping boundry, * XXX: and invalidate HDMAMemPointers[d] */ p->FirstLine = FALSE; p->LineCount--; } } CPU.InDMA = FALSE; return (byte); } void S9xResetDMA() { int c, d; for (d = 0; d < 8; d++) { DMA [d].TransferDirection = FALSE; DMA [d].HDMAIndirectAddressing = FALSE; DMA [d].AAddressFixed = TRUE; DMA [d].AAddressDecrement = FALSE; DMA [d].TransferMode = 0xff; DMA [d].ABank = 0xff; DMA [d].AAddress = 0xffff; DMA [d].Address = 0xffff; DMA [d].BAddress = 0xff; DMA [d].TransferBytes = 0xffff; } for (c = 0x4300; c < 0x4380; c += 0x10) { for (d = c; d < c + 12; d++) Memory.FillRAM [d] = 0xff; Memory.FillRAM [c + 0xf] = 0xff; } }